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1. Introduction

In these notes, we present the energy conservation equation for the stretched string.
The equation for energy conservation will reveal interesting physics, such as the fact that
waves can transport energy from one place to another even though matter is not being
transported in the process.

2. Energy density

We start by calculating the energy in an infinitesimally small piece dx of a stretched
string with linear density p tensioned by a force T. The string and the infinitesimal
piece of interest are represented in figure 1. The infinitesimal piece of string contains
infinitesimal amounts of kinetic and potential energy.

The kinetic energy of the infinitesimal piece of string is

1 dy 2

where we have used the fact that the mass of the piece of string is udx. Note that we
have ignored the velocity of the infinitesimal piece of string in the x direction. We can
do this because the motion in the x and y direction are decoupled from each other.
The potential energy is due to the work done by the tension of the string. To move the
string in the y direction, we have increased the original length of the string from dz to
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where we have used dy/0z ~ y/L < 1. Due this increase in length, the rest of the string
is doing work on the infinitesimal length of string of interest, and this work is
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The total energy of the string can be calculated by summing the kinetic and potential
energies of all the infinitesimal pieces of string,
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is the energy density and gives the energy per unit length.

The quantity
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FIGURE 1. Stretched string in red and an infinitesimal piece of it in black.

3. Energy conservation equation

We proceed to study the time evolution of the energy density. By simple differentiation,

we find
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Employing the wave equation to write 9%y/0t* = ¢*(9%y/dz?), we rewrite this equation
as
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Finally, recalling that ¢ = T/, we find the nice expression
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To understand what the term in the right side of equation (3.3) means, we consider
the energy of a finite piece of string that extends from z = 0 to x = L. Integrating
equation (3.3) from x = 0 to z = L, we obtain
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The fact that the term in the right side of equation (3.3) is a spatial derivative implies
that the time evolution of the energy of a finite length of string only depends on what
happens at its boundaries z = 0 and x = L. Physically, this is not surprising because the
boundary terms are the work done by the rest of the string on the piece of string that
we are considering. Indeed, in figure 1 we show that the vertical force F, exerted by the
rest of the string on x = L is

Fy =T (x=L,0). (3.5)

Thus, the first term in the right side of equation (3.4) is the power due to this vertical

force, Fyv,, where v, = dy/0t is the vertical velocity of the string. A similar result can
be found for the term at x = 0.

The boundary terms in equation (3.4) can also be interpreted as energy fluxes in and

out of the length of string of interest. Using the d’Alembert solution y(x,t) = f(z —ct) +
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FIGURE 2. Right- and left-traveling waves (in blue and purple, respectively) at times ¢ (solid
lines) and ¢ + dt (dashed lines).

g(z + ct), we can rewrite the energy density and the boundary terms as
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where f’ and ¢’ are the derivatives of f(u) and g(v) with respect to their arguments.
Using ¢? = T/, these expressions can be converted into

e=T(f")?+T() (3.8)
and
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Both the energy density and the boundary terms can be split into two additive terms
(even though they are nonlinear quantities!). In particular, the energy density can be
split into the energy density of the right-traveling wave, e; = T'(f")?, and the energy
density of the left-traveling wave, ¢, = T'(¢g')?. As a result, the boundary term can be
written as
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and equation (3.4) becomes
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To understand these terms, we consider what happens at x = L with the right-traveling
wave f(z — ct). In a time d¢, the wave moves a distance cdt to the right — see figure 2.
The energy of the piece of f(x — ct) that leaves the region between x = 0 and z = L,
ercdt, is lost, giving a rate of energy loss of —eyc, as seen in equation (3.11). Similarly,
the left-traveling wave g(z + ¢t) at & = L moves into the region between 2 = 0 and
x = L, feeding energy into the piece of string of interest at a rate e4c. For this reason,
the boundary terms in equation (3.4) can be interpreted as energy fluxes.

We finish by noting that the energy conservation equation is satisfied for the left- and
right-traveling waves independently. By simply noting that f depends on z — ¢t and g
depends on z + ct, it can be shown that
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and
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