
Waves
Problem Set II

2.1 General boundary condition for sinusoidal waves. A semi-infinite string of linear
density µ extends from x = 0 to +∞ and is under tension T . At x = 0 the string is tied
to a rod that lies perpendicular to the string. The friction force between the string and
the rod is γvy, where γ is a constant and vy is the velocity of the knot in the direction
perpendicular to the string. Determine the relation between the reflected wave and an
incident sinusoidal wave of amplitude A. Calculate the average power lost due to friction
and discuss the limits T � γc and T � γc, where c =

√
T/µ.

2.2 More general boundary conditions for sinusoidal waves. A bar of uniform cross
section A, density ρ and Young’s modulus E transmits longitudinal elastic waves. Waves
of frequency ω traveling in the bar are reflected at an end which has a mass M rigidly
attached to it. Find the phase change on reflection and discuss the cases M = 0 and
M →∞.

2.3 Transmission lines. A semi-infinite transmission line, of capacitance C ′ and inductance
L′ per unit length, extends from −∞ to x = 0 and is terminated by an impedance ZT

at x = 0. Find the ratio of the amplitude and the phase difference for the reflected and
incident waves if

(a) ZT =
√
L′/C ′,

(b) ZT = 2
√
L′/C ′,

(c) ZT is a capacitor of capacitance C0.

In (a) and (b), what type of impedance is required?

2.4 Transmission problem in a stretched string. Two long strings lie along the x-axis
under tension T . They are joined at x = 0 so that for x < 0 the line density µ = µa,
and for x > 0, µ = µb. A mass M is attached to the join and it is connected to a fixed
support by a light spring of stiffness K. This spring exerts a transverse force on the mass
when the latter is displaced from y = 0. Show that at the join
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Small transverse sinusoidal oscillations propagate along these strings from x = −∞. Show
that the phase of the transmitted wave lags behind that of the incident wave by an angle

arctan

(
cacb(Mω2 −K)

ωT (ca + cb)

)
,

where ca and cb are the speeds of the waves for x < 0 and x > 0, respectively.

Check that the reflected and transmitted waves satisfy energy conservation.

2.5 Transmission problem in pipe full of gas. A pipe of constant cross section A contains
two gases with densities ρa (at x < 0) and ρb (at x > 0) separated by an elastic membrane
at x = 0. The elastic membrane moves to the left or the right following the law

A[p(x = 0−)− p(x = 0+)] = Kξ(x = 0),



where K is a constant. We consider perturbations to a background pressure p0 that is
the same for both gases.

(a) Find the relationships between ξ(x = 0−), ξ(x = 0+), ∂ξ/∂x|x=0− and ∂ξ/∂x|x=0− .

(b) Use these relationships to determine the reflected and transmitted waves that result
from an incident harmonic wave with frequency ω traveling from −∞ to x = 0.

(c) Discuss the limits of small and large ω.

2.6 Separation of variables. (a) For a stretched string with wave velocity c that satisfies
the boundary conditions ∂y/∂x(x = 0) = 0 = ∂y/∂x(x = L), show that the general
solution is of the form

y(x, t) = A0 + Ã0t+
∞∑
k=1

[
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L

)
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.

(b) For a stretched string with wave velocity c that satisfies the boundary conditions
y(x = 0) = 0 = ∂y/∂x(x = L), show that the general solution is of the form

y(x, t) =
∞∑
k=1

[
Ak cos

(
(k − 1/2)πct

L

)
+Bk sin

(
(k − 1/2)πct

L

)]
sin

(
(k − 1/2)πx

L

)
.

2.7 Initial conditions for separation of variables. (a) Determine the motion of a
stretched string with wave velocity c held in place at x = 0 and x = L with the ini-
tial conditions y(x, t = 0) = h sin(πx/L) + 2h sin(2πx/L) and ∂y/∂t(x, t = 0) = 0.

(b) Determine the motion of a stretched string with wave velocity c that can slide along
frictionless columns at x = 0 and x = L with the initial conditions y(x, t = 0) = 0 and
∂y/∂t(x, t = 0) = V sin2(πx/L).

(c) Determine the motion of a stretched string with wave velocity c that is held in place
at x = 0 and can slide along a frictionless column at x = L with the initial conditions
y(x, t = 0) = h sin(πx/2L) and ∂y/∂t(x, t = 0) = V sin(3πx/2L) cos(πx/L).

2.8 Dispersion. (a) Show that an alternative expression for group velocity vg is

vg = vp + k
dvp
dk

,

where vp is the phase velocity.

(b) Evaluate vp and vg as a functions of k for the following cases:

i. Long wavelength surface waves on water ω =
√
gk (where g is the acceleration due

to gravity).

ii. Short wavelength ripples on water ω =
√
σk3/ρ (where σ is the surface tension and

ρ the density).

iii. In the crossover region where both effects are important ω2 = gk + σk3/ρ.

iv. Guided electromagnetic waves in a waveguide (with a non-zero longitudinal compo-
nent of either E or B) ω2 = ω2

0 + k2c2 (where c is the speed of light).
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(c) In the first two cases but not the other two you should have found vg = αvp, where
the constant α is different in the two cases. What type of dispersion relation leads to this
result?

(d) In the fourth case you should have found vpvg = c2, so that either vp or vg is greater
than c. Which is it, and why does this not allow signalling faster than the speed of light?

2.9 Stationary phase or group velocity. In the long wavelength limit of question 2.8(b)i.,
vp and vg are decreasing functions of k, while in the short-wavelength limit of 2.8(b)ii.,
they increase with k. Thus in the cross-over region of question 2.8(b)iii., both pass
through minima.

(a) At the minimum of vp, we have, using the result of question 2.8(a), vp = vg. Find
the values of k and ω at which this occurs. Verify this using the dispersive wavepacket
plotter on the course web page, and describe the propagation of a wavepacket centred
around this wavenumber (for example, kmin = k − 25 m−1, kmax = k + 25 m−1). Don’t
forget that the length unit used in this section of the DWP is 10 cm.

(b) Calculate the wavenumber k and frequency ω at which vg has its minimum. Verify
this using the DWP. (Note that the displayed value of vg is evaluated for the centre
frequency of the wavepacket, so that it can be read out at steps of 5 m−1 in the cross-over
region by using appropriate combinations of kmin and kmax.) Around this frequency, vg is
essentially constant, making the envelope approximation particularly accurate.

3


