Waves Problem Set I

1.1 Stretched string under gravity. Consider the transverse oscillations of a string of linear density μ tensioned with force T under the influence of the gravitational acceleration g.
(a) Sketch the forces on an infinitesimal piece of string of length $\mathrm{d} x$ including gravity.
(b) Using the diagram in part (a), show that the equation for the transverse displacements of the spring becomes

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{\mu} \frac{\partial^{2} y}{\partial x^{2}}-g
$$

(c) Solve the equation in part (b) for a stationary string $y_{s}(x)\left(\partial y_{s} / \partial t=0\right)$ held in place at $x=0$ and $x=L$, that is, $y_{s}(0)=0$ and $y_{s}(L)=0$. What is the equation for the oscillations $\tilde{y}(x, t)$ around this solution?
1.2 Longitudinal and transverse oscillations of a stretched string. (a) Using the equations for the longitudinal oscillations of a solid bar, find the longitudinal deformation $\xi_{s}(x)$ of a stationary stretched string $\left(\partial \xi_{s} / \partial t=0\right)$ of Young modulus E, volumetric density ρ, cross section area A and length L. Assume that the string is held in place at $x=0$, that is, $\xi_{s}(0)=0$, and that there are no transverse oscillations. Thus, show that under tension T, the string has stretched a distance $\xi_{s}(L)=T / K$, and determine the constant K as a function of quantities that you know.
(b) Consider the longitudinal oscillations $\tilde{\xi}(x, t)$ and the transverse oscillations $y(x, t)$ of the string around the steady state, that is, the point of the string originally at $\left(x+\xi_{s}(x), 0\right)$ moves to $\left(x+\xi_{s}(x)+\tilde{\xi}(x, t), y(x, t)\right)$. For $\xi / L \ll 1$ and $y / L \ll 1$, show that an infinitesimal piece of string of length $\left(1+\mathrm{d} \xi_{s} / \mathrm{d} x\right) \mathrm{d} x$ elongates to be of length

$$
\mathrm{d} l \simeq\left[1+\frac{\mathrm{d} \xi_{s}}{\mathrm{~d} x}+\frac{\partial \tilde{\xi}}{\partial x}+\frac{1}{2}\left(\frac{\partial y}{\partial x}\right)^{2}\right] \mathrm{d} x
$$

(c) Using the result in part (b), show that the equation for $\tilde{\xi}(x, t)$ is

$$
\frac{\partial^{2} \tilde{\xi}}{\partial t^{2}}=\frac{E}{\rho} \frac{\partial}{\partial x}\left[\frac{\partial \tilde{\xi}}{\partial x}+\frac{1}{2}\left(\frac{\partial y}{\partial x}\right)^{2}\right]
$$

(d) In deriving the equation for the transverse oscillations of the stretched string $y(x, t)$, we neglected the variation of the longitudinal force $F(x, t)$ with $x, \partial F / \partial x=0$. Keeping this derivative of F in the derivation, show that the longitudinal and transversal oscillations of the string are coupled by the equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial}{\partial x}\left[\left(\frac{T}{\rho A}+\frac{E}{\rho}\left(\frac{\partial \tilde{\xi}}{\partial x}+\frac{1}{2}\left(\frac{\partial y}{\partial x}\right)^{2}\right)\right) \frac{\partial y}{\partial x}\right]
$$

(e) Using parts (c) and (d), argue that the longitudinal and transversal oscillations decouple when $(y / L)^{2} \ll \tilde{\xi} / L \ll T / E A$.
1.3 Initial conditions for the \mathbf{d}^{\prime} Alembert solution. (a) Sketch as a function of time the displacement at $x=0$ and at $x=L, y(x=0, t)$ and $y(x=L, t)$, of an infinite stretched string with wave speed c for the initial conditions

$$
y(x, t=0)= \begin{cases}a(1+x / L) & \text { for }-L \leq x<0 \\ a(1-x / L) & \text { for } 0 \leq x<L \\ 0 & \text { otherwise }\end{cases}
$$

and $\partial y / \partial t(x, t=0)=0$.
(b) Sketch $y(x=0, t)$ and $y(x=L, t)$ for the initial conditions $y(x, t=0)=0$ and

$$
\frac{\partial y}{\partial t}(x, t=0)= \begin{cases}V & \text { for }-L \leq x \leq L \\ 0 & \text { otherwise }\end{cases}
$$

(c) What happens in the case that the string starts with the displacement of part (a) and the velocity of part (b)? For your sketches of $y(x=0, t)$ and $y(x=L, t)$, assume $V L / c<a$.
1.4 General boundary condition for the d'Alembert solution. Consider a semi-infinite stretched string with wave speed c that extends from $x=0$ to $+\infty$. At $x=0$, the string is tied with a massless knot to a frictionless column and a spring of constant K, as shown below.

(a) Show that, given the left-traveling wave $g(x+c t)$, the equation for the right-traveling wave $f(x-c t)$ is

$$
T f^{\prime}(u)-K f(u)=-T g^{\prime}(-u)+K g(-u)
$$

where f^{\prime} and g^{\prime} are the derivatives of f and g with respect to their argument.
From here on, consider the initial conditions

$$
y(x, t=0)= \begin{cases}a x / L & \text { for } 0 \leq x<L . \\ a & \text { for } x \geq L\end{cases}
$$

and $\partial y / \partial t(x, t=0)=0$
(b) Use the initial conditions to find $f(u)$ for positive u, and $g(v)$.
(c) Employing the differential equation in part (a), solve for $f(u)$ for negative u. Sketch $f(u)$.
(d) What is the solution for $y(x, t)$ for $t \rightarrow+\infty$?
1.5 Two boundary conditions for the d'Alembert solution. A stretched string with wave speed c is pinned at $x=0$ and is tied to a frictionless column at $x=L$, that is,
$y(x=0, t)=0$ and $\partial y / \partial x(x=L, t)=0$. The string is plucked at $x=L / 4$ at a distance h until it comes to rest. It is then released at $t=0$.
(a) Show that the initial displacement is

$$
y(x, t=0)= \begin{cases}4 h x / L & \text { for } 0 \leq x<L / 4 \\ h & \text { for } L / 4 \leq x \leq L\end{cases}
$$

(b) Using the initial conditions, determine the right- and left-traveling waves $f(x-c t)$ and $g(x+c t)$ for $0<x-c t<L$ and $0<x+c t<L$.
(c) Show that the boundary condition at $x=0$ imposes $f(u)=-g(-u)$, and that the boundary condition at $x=L$ requires $g(v)=g(L)-f(L)+f(2 L-v)$.
(d) With the results in parts (b) and (c), construct $f(x-c t)$ for $x-c t<L$ and $g(x+c t)$ for $x+c t>0$.
(e) Sketch $y(x, t)$ for $t=L / 4 c, L / c, 5 L / 4 c, 2 L / c$. Recall that $y(x, t)$ is only defined for $0<x<L$!
1.6 Energy equation. (a) For the longitudinal oscillations of a bar of volumetric density ρ, Young modulus E and cross section area A, show that the energy equation

$$
\frac{\partial}{\partial t}\left[\frac{\rho A}{2}\left(\frac{\partial \xi}{\partial t}\right)^{2}+\frac{E A}{2}\left(\frac{\partial \xi}{\partial x}\right)^{2}\right]=\frac{\partial}{\partial x}\left(E A \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial t}\right)
$$

is satisfied. Explain physically what each of the terms represents.
(b) For the longitudinal oscillations of a gas of pressure p_{0}, density ρ_{0} and adiabatic constant γ in a pipe of cross section A, show that the energy equation

$$
\frac{\partial}{\partial t}\left[\frac{\rho_{0} A}{2}\left(\frac{\partial \xi}{\partial t}\right)^{2}+\frac{\gamma p_{0} A}{2}\left(\frac{\partial \xi}{\partial x}\right)^{2}\right]=\frac{\partial}{\partial x}\left(\gamma p_{0} A \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial t}\right)
$$

is satisfied. Explain physically what each of the terms represents.
1.7 Energy conservation. A stretched string with wave speed c has an initial displacement and an initial velocity such that the right- and the left-traveling waves are

$$
f(u)= \begin{cases}A \sin (k u) & \text { for }-2 \pi / k \leq u<-\pi / k \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
g(v)= \begin{cases}A \sin (k v) & \text { for } \pi / k \leq v<2 \pi / k \\ 0 & \text { otherwise }\end{cases}
$$

(a) Sketch $y(x, t=0)$ and $y(x, t=3 \pi / 2 k c)$.
(b) Calculate the energy at $t=0$ and at $t=3 \pi / 2 k c$.

Comment on the results.

