
Waves
Problem Set I

1.1 Stretched string under gravity. Consider the transverse oscillations of a string of lin-
ear density µ tensioned with force T under the influence of the gravitational acceleration
g.

(a) Sketch the forces on an infinitesimal piece of string of length dx including gravity.

(b) Using the diagram in part (a), show that the equation for the transverse displacements
of the spring becomes

∂2y

∂t2
=
T

µ

∂2y

∂x2
− g.

(c) Solve the equation in part (b) for a stationary string ys(x) (∂ys/∂t = 0) held in place
at x = 0 and x = L, that is, ys(0) = 0 and ys(L) = 0. What is the equation for the
oscillations ỹ(x, t) around this solution?

1.2 Longitudinal and transverse oscillations of a stretched string. (a) Using the
equations for the longitudinal oscillations of a solid bar, find the longitudinal deformation
ξs(x) of a stationary stretched string (∂ξs/∂t = 0) of Young modulus E, volumetric
density ρ, cross section area A and length L. Assume that the string is held in place at
x = 0, that is, ξs(0) = 0, and that there are no transverse oscillations. Thus, show that
under tension T , the string has stretched a distance ξs(L) = T/K, and determine the
constant K as a function of quantities that you know.

(b) Consider the longitudinal oscillations ξ̃(x, t) and the transverse oscillations y(x, t) of
the string around the steady state, that is, the point of the string originally at (x+ξs(x), 0)

moves to (x+ξs(x)+ξ̃(x, t), y(x, t)). For ξ/L� 1 and y/L� 1, show that an infinitesimal
piece of string of length (1 + dξs/dx) dx elongates to be of length
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(c) Using the result in part (b), show that the equation for ξ̃(x, t) is
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(d) In deriving the equation for the transverse oscillations of the stretched string y(x, t),
we neglected the variation of the longitudinal force F (x, t) with x, ∂F/∂x = 0. Keep-
ing this derivative of F in the derivation, show that the longitudinal and transversal
oscillations of the string are coupled by the equation
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.

(e) Using parts (c) and (d), argue that the longitudinal and transversal oscillations de-

couple when (y/L)2 � ξ̃/L� T/EA.



1.3 Initial conditions for the d’Alembert solution. (a) Sketch as a function of time the
displacement at x = 0 and at x = L, y(x = 0, t) and y(x = L, t), of an infinite stretched
string with wave speed c for the initial conditions

y(x, t = 0) =

 a(1 + x/L) for − L ≤ x < 0,
a(1− x/L) for 0 ≤ x < L,
0 otherwise,

and ∂y/∂t(x, t = 0) = 0.

(b) Sketch y(x = 0, t) and y(x = L, t) for the initial conditions y(x, t = 0) = 0 and

∂y

∂t
(x, t = 0) =

{
V for − L ≤ x ≤ L,
0 otherwise.

(c) What happens in the case that the string starts with the displacement of part (a)
and the velocity of part (b)? For your sketches of y(x = 0, t) and y(x = L, t), assume
V L/c < a.

1.4 General boundary condition for the d’Alembert solution. Consider a semi-infinite
stretched string with wave speed c that extends from x = 0 to +∞. At x = 0, the string
is tied with a massless knot to a frictionless column and a spring of constant K, as shown
below.
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(a) Show that, given the left-traveling wave g(x+ ct), the equation for the right-traveling
wave f(x− ct) is

Tf ′(u)−Kf(u) = −Tg′(−u) +Kg(−u),

where f ′ and g′ are the derivatives of f and g with respect to their argument.

From here on, consider the initial conditions

y(x, t = 0) =

{
ax/L for 0 ≤ x < L.,
a for x ≥ L,

and ∂y/∂t(x, t = 0) = 0

(b) Use the initial conditions to find f(u) for positive u, and g(v).

(c) Employing the differential equation in part (a), solve for f(u) for negative u. Sketch
f(u).

(d) What is the solution for y(x, t) for t→ +∞?

1.5 Two boundary conditions for the d’Alembert solution. A stretched string with
wave speed c is pinned at x = 0 and is tied to a frictionless column at x = L, that is,
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y(x = 0, t) = 0 and ∂y/∂x(x = L, t) = 0. The string is plucked at x = L/4 at a distance
h until it comes to rest. It is then released at t = 0.

(a) Show that the initial displacement is

y(x, t = 0) =

{
4hx/L for 0 ≤ x < L/4,
h for L/4 ≤ x ≤ L.

(b) Using the initial conditions, determine the right- and left-traveling waves f(x − ct)
and g(x+ ct) for 0 < x− ct < L and 0 < x+ ct < L.

(c) Show that the boundary condition at x = 0 imposes f(u) = −g(−u), and that the
boundary condition at x = L requires g(v) = g(L)− f(L) + f(2L− v).

(d) With the results in parts (b) and (c), construct f(x− ct) for x− ct < L and g(x+ ct)
for x+ ct > 0.

(e) Sketch y(x, t) for t = L/4c, L/c, 5L/4c, 2L/c. Recall that y(x, t) is only defined for
0 < x < L!

1.6 Energy equation. (a) For the longitudinal oscillations of a bar of volumetric density ρ,
Young modulus E and cross section area A, show that the energy equation
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)
is satisfied. Explain physically what each of the terms represents.

(b) For the longitudinal oscillations of a gas of pressure p0, density ρ0 and adiabatic
constant γ in a pipe of cross section A, show that the energy equation
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)
is satisfied. Explain physically what each of the terms represents.

1.7 Energy conservation. A stretched string with wave speed c has an initial displacement
and an initial velocity such that the right- and the left-traveling waves are

f(u) =

{
A sin(ku) for − 2π/k ≤ u < −π/k,
0 otherwise,

and

g(v) =

{
A sin(kv) for π/k ≤ v < 2π/k,
0 otherwise.

(a) Sketch y(x, t = 0) and y(x, t = 3π/2kc).

(b) Calculate the energy at t = 0 and at t = 3π/2kc.

Comment on the results.

3


