
Collisionless Plasma Physics
Problem Set I

Due: Wednesday 3 February 2021

1.1 (10 points) Find the general solution to the equation

dw

dt
= Ωw × b̂. (1)

The scalar Ω and the unit vector b̂ are constants. Use your preferred method to solve
systems of linear ordinary differential equations with constant coefficients.

1.2 (10 points) A particle with charge Ze and mass m moves in a constant magnetic field
B = Bẑ. Its position and velocity at t = 0 are r(t = 0) = 0 and v(t = 0) = v0x̂. At
t = 0, the electric field E = Eŷ sin(ωt) is switched on.

(a) Calculate the exact particle’s position r(t) and velocity v(t) for t > 0. What happens
for ω = Ω = ZeB/m?

(b) Expand the solution for v0 ∼ E/B and ω � Ω, keeping only the leading order terms.

(c) Calculate the initial values of the guiding center parallel velocity v‖ and magnetic
moment µ. Using these values, integrate the guiding center equations for this system
assuming that ω � Ω. Compare to the result in (b).

1.3 (15 points) A particle of charge Ze and mass m moves in the magnetic field

B = Br(r, z)r̂ +Bz(z)ẑ, (2)

where

Bz(z) =

{
B1 for z < 0
B2 for z ≥ 0

(3)

Here {r, θ, z} are the usual cylindrical coordinates, and B1 and B2 are two constants that
satisfy B1 < B2.

(a) Using ∇ ·B = 0, and assuming that Br at r = 0 is regular, prove that

Br(r, z) = −(B2 −B1)r

2
δ(z), (4)

where δ(z) is the Dirac delta function.

(b) The particle approaches the point z = 0 from negative z. When it reaches z = 0−,

its velocity is v = −v⊥θ̂ + v‖ẑ and its position is r = mv⊥/ZeB1 and θ = 0. Show that
from z = 0− to z = 0+, the particle’s radial velocity vr does not change appreciably, but
the particle’s azimuthal velocity vθ changes by the amount

∆vθ = −1

2

(
B2

B1

− 1

)
v⊥. (5)



(c) Argue that the kinetic energy of the particle must be conserved, and use this fact to
calculate the change in axial velocity vz from z = 0− to z = 0+. For which values of
v‖/v⊥ does the particle bounce back?

(d) Compare your results with the particle motion along a magnetic field line in which
the magnitude of the magnetic field changes gradually from B1 to B2 over a length
L � mv⊥/ZeB1. Sketch ∆vθ vs. (B2/B1 − 1) and ∆vz vs. (B2/B1 − 1) for both
situations.

(e) What happens to ∆vz if the particle reaches z = 0− with velocity v = v⊥θ̂ + v‖ẑ

instead of v = −v⊥θ̂ + v‖ẑ?

1.4 (25 points) Along a magnetic field line, the magnitude of the magnetic field is

B(l) = B0

[
1− b cos

(
πl

L

)]
, (6)

where 0 < b < 1 is a constant. The electric field is negligible and the magnetic field is
in steady state. Consider the motion of a magnetized particles of mass m and charge
Ze in this magnetic configuration. To describe this motion we use the magnitude of the
velocity v =

√
2E/m and the coordinate λ = mµB0/E . Here E = mv2‖/2 + mµB(l) is

the kinetic energy and µ = w2
⊥/2B is the magnetic moment.

(a) Show that the parallel velocity can be written as v‖ = ±v
√

1− λB/B0.

(b) Show that the maximum value that λ can take at each position l is λmax(l) = B0/B(l).
What is the maximum value of λmax?

(c) We call particles that cannot leave the region |l| < L “trapped particles”. Show that
the minimum value of λ for which particles are trapped is λt = (1 + b)−1. Show that
trapped particles satisfy

|l(t)| < lb =
L

π
arccos

(
1− λ−1

b

)
.

Configurations with a magnetic field as in equation (6) are known as magnetic mirrors
because trapped particles are reflected by the regions of high B.

(d) Sketch the phase space trajectories v‖ vs. l of particles in the magnetic field (6). In
the sketch, mark the most important features.

(e) Calculate the trajectory of the “deeply trapped” particles, that is, the particles with
0 < λ−1 − (1 − b) � b. To solve this problem, prove that for deeply trapped particles,
|l(t)| � L and hence we can use B(l)/B0 ' 1 − b + bπ2l2/2L2. Use this approximation
to solve for l(t). What is the bounce period?

Consider the steady state distribution of particles f .

(f) Using the steady state, lowest order, low flow, drift kinetic equation, show that f is
constant along the phase space trajectories of part (c), that is, the phase space trajectories
are the characteristics of the drift kinetic equation.

(g) Assume that all non-trapped particles are lost to absorbing walls at l = −L and
l = L. Argue that f = 0 for 0 < λ < λt.
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(h) Assume that

f(l = 0, v, λ) =

{
n0

√
1+b
2b

(
m

2πT0

)3/2
exp

(
−mv2

2T0

)
for λt < λ < λmax(l = 0)

0 for 0 < λ < λt.

Using the results in (f) and (g), calculate the density n(l) =
∫
f d3v for every position

l. [Hint: write the distribution function in the variables {v‖, µ, ϕ} for which you already
know the differential velocity space volume, or calculate the differential velocity space
volume for {v, λ, µ}.]

1.5 (15 points) The θ-pinch is a magnetic confinement cylindrical configuration in which the
magnetic field is aligned with the axis of the cylinder (see Figure 1). The magnitude of
the magnetic field depends on radius, that is, B = B(r)ẑ.

B = B(r, t)ẑ

r

✓

z

Figure 1: θ-pinch.

At t = 0, the magnetic field starts increasing in time, B(r, t) = B(r, t)ẑ, with ∂ lnB/∂t ∼
v/L and v the characteristic speed of the particles.

(a) Calculate the azimuthal electric field generated by the change in magnetic field.
Neglect the electric field in the radial and axial directions.

(b) Give the guiding center equations of motion to lowest order in ρ∗ � 1 during the
magnetic field change. What happens to the parallel velocity? And to the perpendicular
velocity?

(c) Show that during the change in the magnetic field, the quantity

Ψ(r, t) =

∫ r

0

B(r′, t)r′ dr′ (7)

is a conserved quantity for the particle, that is, Ψ(r(t), t) = constant.

(d) Using the result in (c), calculate r(t) for B(r, t) = B0 exp(t/t0).
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(e) Assume that the initial distribution function is

f(r,v, t = 0) =

 n0

(
m

2πT0

)3/2
exp

(
−
m(v2‖/2+µB(r,t=0))

T0

)
for r < R0

0 for r ≥ R0

, (8)

where n0 and T0 are constants. Using the drift kinetic equation, calculate the distribution
function for B(r, t) = B0 exp(t/t0). Calculate the density n =

∫
f d3v, the parallel

average velocity u‖ = n−1
∫
f v‖ d3v, the parallel pressure p‖ =

∫
f m(v‖ − u‖)

2 d3v
and the perpendicular pressure p⊥ =

∫
f(mw2

⊥/2) d3v. Check that the total number of
particles is conserved.

1.6 (25 points) The z-pinch is a magnetic confinement cylindrical configuration in which the
magnetic field closes in azimuthal loops (see Figure 2). The magnitude of the magnetic

field depends on radius, that is, B = Bθ(r)θ̂. The plasma contained in the z-pinch is
composed of electrons with charge −e and mass me, and one ion species with charge Ze
and mass mi. We assume that the equilibrium gyoraveraged distribution functions for
both ions and electrons are

〈fs〉ϕ(r, v‖, µ) = fMs(r, v‖, µ) ≡ ns(r)

(
ms

2πTs(r)

)3/2

exp

(
−
ms(v

2
‖/2 + µBθ(r))

Ts(r)

)
. (9)

We also assume that the equilibrium electric field is zero.

r
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z

B = B✓(r)✓̂

Figure 2: z-pinch.

Consider an electrostatic perturbation to the z-pinch of the form φ̃(r) exp(−iωt+ iMθ+
ikzz).

(a) If the perturbations to the gyroaveraged distribution functions are of the form
g̃s(r, v‖, µ) exp(−iωt + iMθ + ikzz), show that the perturbed, electrostatic drift kinetic
equation gives to lowest order[
−iω +

iMv‖
r

+
ikz
Ωs

(
v2‖
r
− µdBθ

dr

)]
g̃s =

{
iω∗s

[
1 +

(
ms(v

2
‖/2 + µBθ)

Ts
− 3

2

)
ηs

]

−
iMv‖
r
− ikz

Ωs

(
v2‖
r
− µdBθ

dr

)}
Zseφ̃

Ts
fMs,

(10)
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where Ωs = ZseBθ/ms, ω∗s = kzTs/ZseBθLns , ηs = Lns/LTs , and the length scale of any
quantity Q(r) is given by LQ = −(d lnQ/dr)−1.

To simplify the problem, we are going to expand in ηi ∼ ηe � 1 assuming

Mvti
ω∗ir

∼ Ln
r
∼ 1

ηi
� Z ∼ Ti

Te
∼ ω

ω∗i
∼ ω

ω∗e
∼ 1� ηi �

Mvte
ω∗er

, (11)

(b) For the ions, expand keeping zeroth and first order terms in the expansion in η−1i � 1
to find

g̃i ' −
ω∗i
ω

{
ηi

(
mi(v

2
‖/2 + µBθ)

Ti
− 3

2

)[
1 +

Mv‖
ωr

+
kz
ωΩs

(
v2‖
r
− µdBθ

dr

)]
+ 1

}
Zeφ̃

Ti
fMi

(12)

For the electrons, use the lowest order approximation in the limit η−1e � 1 to obtain

g̃e '
eφ̃

Te
fMe. (13)

(c) Using the quasineutrality condition Z
∫
gi d

3v =
∫
ge d3v, obtain the dispersion rela-

tion

1− ω∗e
ω

+
ω2
∗eηi
ω2

Ti
ZTe

(
Ln
r
− Ln
Bθ

dBθ

dr

)
= 0. (14)

What is the condition for this mode to be unstable? Why did we keep the zeroth and
first order terms in the expansion in η−1i � 1 for the ions but only the lowest order for
the electrons?

(d) We have assumed that M 6= 0. What happens to the electron distribution function
for M = 0?
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