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1. Introduction

In previous notes we have derived models for magnetized plasmas. We had to assume
that the characteristic lengths and time scales of the phenomena of interest were much
longer than the typical gyroradius and the inverse of the typical gyrofrequency. The
models that we obtained were non-linear, but in many of the examples presented, we
linearized the equations to study the response of the plasma to small perturbations. If
instead of searching for a nonlinear model of the plasma, we simply want to understand
its response to very small perturbations, we can directly linearize the Vlasov equation
and we need not assume anything about the time and length scales of the perturbations.
Plasma waves are the linear response of the plasma to small perturbations.

The study of plasma waves is interesting by itself because it reveals how ions, electrons
and electromagnetic fields respond differently to the same frequency. Moreover, some of
the waves that we will discuss can be used to probe plasmas, and even to heat them or
to impart momentum to them.

We start by studying the simplest waves: cold plasma waves in a homogeneous plasma.
We consider electromagnetic waves of the form

δE = Ẽ exp(ik · r− iωt),

δB = B̃ exp(ik · r− iωt), (1.1)

where δE and δB are the electric and magnetic field of the wave, k is the wavevector and
ω the wave frequency. The wave is a cold plasma wave when its phase velocity, ω/k, is
much larger than the characteristic velocity of the particles in the plasma, the thermal
speed vts, that is,

ω

k
� vts (1.2)

for all s. When condition (1.2) is satisfied, all the particles in the system see the same
electromagnetic fields: an electromagnetic wave that moves at a large speed ω/k. Con-
versely, when the phase velocity of the wave and the thermal speed are comparable, some
particles can leave the wave behind, so particles with different velocities experience dif-
ferent electromagnetic fields. We will treat this latter case in the notes about hot plasma
waves.

2. Equations

We consider a system composed of
(a) A homogeneous, steady state, collisionless plasma with several species s (we will

eventually particularize to a plasma with only one ion species and electrons). Each species
s has a distribution function fs constant in time and uniform in space. Only the density
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ns =
∫
fs d3v will be important for cold plasma waves. The densities satisfy quasineu-

trality, ∑
s

Zsens = 0. (2.1)

(b) A background magnetic field B constant in time and uniform in space.
(c) No background electric field E.

Note that to simplify the equations, we have neglected collisions and we have assumed
that the background electric field is zero. The decision to neglect the electric field can
be easily justified. In general, we can only have strong electric fields in the direction
perpendicular to B (particles can move freely along B, and short out electric fields in
this direction). A perpendicular electric field can be eliminated by going to a frame that

moves with the E×B velocity vE = B−1E× b̂.
We do not assume quasineutrality for the wave since it can have characteristic time

and length scales of the order of the plasma frequency and the Debye length. Thus, we
work with the full system of Maxwell’s equations. Using the wave assumption in (1.1),
we write the induction equation as

∇× δE = −∂δB
∂t
⇒ ik× Ẽ = iωB̃ (2.2)

and Ampere’s law as

∇× δB =
1

ε0c2
δJ +

1

c2
∂δE

∂t
⇒ ik× B̃ =

1

ε0c2
J̃− iω

c2
Ẽ. (2.3)

Note that we have included in Ampere’s law the perturbation to the current density due
to the response of the plasma to the electromagnetic fields,

δJ =
∑
s

ZseδΓs ⇒ J̃ =
∑
s

ZseΓ̃s, (2.4)

where δΓs is the perturbed flow of species s,

δΓs =

∫
δfsv d3v ⇒ Γ̃s =

∫
f̃sv d3v. (2.5)

We proceed to calculate δJ.
We linearize the Vlasov equation to find the equation for the perturbed distribution

function δfs, and we use assumption (1.2) to write

∂δfs
∂t︸ ︷︷ ︸
∼ωδfs

+ ��
���: small

v · ∇δfs︸ ︷︷ ︸
∼kvtsδfs�ωδfs

+
Zse

ms
(v×B)·∇vδfs = −Zse

ms
(δE+ ���

�: small
v × δB︸ ︷︷ ︸

∼(kvts/ω)δE�δE

)·∇vfs. (2.6)

Note that we have used equation (2.2) to estimate the size of δB. To find an equation
for δΓs, we multiply equation (2.6) by v and integrate over velocity space,

∂δΓs
∂t
− ΩsδΓs × b̂ =

Zsens
ms

δE⇒ −iωΓ̃s − ΩsΓ̃s × b̂ =
Zsens
ms

Ẽ, (2.7)

where Ωs = ZseB/ms is the gyrofrequency of species s and b̂ = B/B is the unit vector
in the direction of the background magnetic field

To find J̃ we need to invert (2.7). To invert (2.7), we project the equation onto the

orthonormal basis {ê1 = Ẽ⊥/Ẽ⊥, ê2 = b̂ × ê1, b̂}, where Ẽ⊥ is the component of Ẽ
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perpendicular to b̂. In this basis, equation (2.7) becomes −iω −Ωs 0
Ωs −iω 0
0 0 −iω

 Γ̃s · ê1

Γ̃s · ê2

Γ̃s · b̂

 =
Zsens
ms

 Ẽ⊥
0

Ẽ‖

 . (2.8)

The solution to this system of equations is Γ̃s · ê1

Γ̃s · ê2

Γ̃s · b̂

 =
Zsens
ms

i

ω(ω2 − Ω2
s)

 ω2Ẽ⊥
−iωΩsẼ⊥

(ω2 − Ω2
s)Ẽ‖

 . (2.9)

This solution can be written as

Γ̃s =
Zsens
ms

iω

(
1

ω2 − Ω2
s

Ẽ⊥ +
1

ω2
(Ẽ · b̂)b̂− iΩs

ω(ω2 − Ω2
s)

b̂× Ẽ

)
. (2.10)

Note that we have obtained a particle flow linear in Ẽ. By summing over species, we
obtain a plasma current linear in Ẽ,

J̃ =
∑
s

ZseΓ̃s = σ · Ẽ. (2.11)

The matrix

σ = iε0ω
∑
s

[
ω2
ps

ω2 − Ω2
s

(I− b̂b̂) +
ω2
ps

ω2
b̂b̂−

iω2
psΩs

ω(ω2 − Ω2
s)

b̂× I

]
(2.12)

is the conductivity tensor that relates current density and electric field. Here ωps =√
Z2
s e

2ns/ε0ms is the plasma frequency of species s, I is the unit matrix, and the tensor

b̂× I can be written in Einstein’s index notation as

(b̂× I)ij = εiklb̂kδlj = εikj b̂k, (2.13)

where εikl is the Levi-Civita symbol, and δlj is the Kronecker delta.

3. Cold plasma dispersion relation

To find an equation for the wave, we first express all quantities of interest as functions
of Ẽ. We use (2.11) for J̃, and eliminate B̃ by using (2.2) to find

B̃ =
1

ω
k× Ẽ. (3.1)

With B̃ and J̃ known as functions of Ẽ, we can replace them into Ampere’s law (2.3) to
find

c2

ω2
k× (k× Ẽ) = −Ẽ− i

ε0ω
J̃ = −ε · Ẽ, (3.2)

where

ε = I +
i

ε0ω
σ = I−

∑
s

[
ω2
ps

ω2 − Ω2
s

(I− b̂b̂) +
ω2
ps

ω2
b̂b̂−

iω2
psΩs

ω(ω2 − Ω2
s)

b̂× I

]
(3.3)

is the dielectric tensor. It is the equivalent of the relative permittivity εr in dielectrics.
The displacement vector of electromagnetic theory, which in vacuum is D = ε0E, is

D = ε0ε ·E (3.4)
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for a plasma. The plasma produces currents and charge displacements that will reinforce
or reduce the size of the electric field. Because of the anisotropy introduced by the
background magnetic field, the dielectric permittivity is not a scalar but a tensor.

Using k× (k× Ẽ) = (k · Ẽ)k− k2Ẽ, equation (3.2) becomes[
c2k2

ω2
(k̂k̂− I) + ε

]
· Ẽ = 0, (3.5)

where k̂ = k/k is the unit vector in the direction of k. This equation is linear in Ẽ, and
it has the trivial solution Ẽ = 0 that is uninteresting. To obtain a non-trivial solution,
the linear system in (3.5) must be singular, that is,

det

[
c2k2

ω2
(k̂k̂− I) + ε

]
= 0. (3.6)

This equation can be thought of as the relation that gives the magnitude k as a function
of the frequency ω, the direction k̂ and the plasma characteristics contained in ε. Given
an antenna with certain frequency that emits waves in a certain direction, the plasma
response will decide k and hence the phase velocity of the wave. It is typical to use the
index of refraction

n =
kc

ω
(3.7)

instead of k. Note that then the phase velocity is given by c/n.
Once k is obtained from (3.6), we go back to (3.5) to calculate the polarization of the

wave, that is, the direction of Ẽ. Note that the magnitude of Ẽ cannot be found from
(3.5), and it is determined by the boundary condition at the antenna.

We proceed to discuss (3.5) and (3.6).
• The cold plasma dielectric tensor ε is the term that contains most of the information.

It is useful to split it into three components,

ε = ε⊥(I− b̂b̂) + ε‖b̂b̂− igb̂× I, (3.8)

where

ε⊥ = 1−
∑
s

ω2
ps

ω2 − Ω2
s

, ε‖ = 1−
∑
s

ω2
ps

ω2
, g = −

∑
s

ω2
psΩs

ω(ω2 − Ω2
s)
. (3.9)

It is convetional to use the orthonormal basis {x̂, ŷ, b̂}, with x̂ = k⊥/k⊥ the unit vector

in the direction of k⊥ = k − (k · b̂)b̂, and ŷ = b̂ × x̂ (see figure 1). In this basis, the
dielectric tensor is

ε =

 ε⊥ ig 0
−ig ε⊥ 0

0 0 ε‖

 . (3.10)

• The tensor ε is Hermitian. As a result, n2 is real. To prove it, we transpose and
conjugate (3.5) to find

Ẽ∗ ·
[
(n2)∗(k̂k̂− I) + ε

]
= 0. (3.11)

Post-multiplying this equation by Ẽ and pre-multiplying (3.5) by Ẽ∗, we obtain

Ẽ∗ ·
[
(n2)∗(k̂k̂− I) + ε

]
· Ẽ = 0 (3.12)

and

Ẽ∗ ·
[
n2(k̂k̂− I) + ε

]
· Ẽ = 0. (3.13)



Cold plasma waves 5

x

y

z

B = Bẑ
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Figure 1. Basis used to solve (3.6).

Subtracting (3.13) from (3.12), we find

[(n2)∗ − n2](|Ẽ|2 − |k̂ · Ẽ|2) = 0. (3.14)

Thus, either n2 is real, or Ẽ is parallel to k. When Ẽ is parallel to k, the wave is
electrostatic and we cannot prove that n2 is real, but in fact, we cannot determine n2,
as we discuss below.
• When Ẽ is parallel to k, the wave is electrostatic because it can be written as

Ẽ = −ikφ̃⇒ δE = −∇δφ. (3.15)

In this limiting case, equation (3.5) becomes

ε · k̂ = 0. (3.16)

Since the tensor ε does not depend on k, this equation cannot determine k. To find k we
have to relax the cold plasma assumption (1.2).
Typically, waves with large index of refraction n are approximately electrostatic. Indeed,
for n� 1, equation (3.5) is, to lowest order in 1/n2,

n2(k̂k̂− I) · Ẽ ' 0. (3.17)

Thus, to lowest order, Ẽ ∝ k̂. Expanding in 1/n2, we can write Ẽ = k̂ + Ẽ(1), where
Ẽ(1) ∼ 1/n2. Then, equation (3.5) becomes

ε · k̂ + n2(k̂k̂− I) · Ẽ(1) ' 0. (3.18)

We can eliminate the higher order correction Ẽ(1) by pre-multiplying by k̂, leaving

k̂ · ε · k̂ ' 0. (3.19)

This is the approximate dispersion relation for waves with large index of refraction n. As
we have noted above, this dispersion relation is independent of k and it determines the
frequency of the wave as a function of the direction k̂.
• To solve for n in (3.6), it is convenient to use the orthonormal basis {x̂, ŷ, b̂} in

figure 1. In this basis, we define the direction of k using

k̂ = sin θx̂ + cos θb̂. (3.20)

Using this form of k̂, the form of ε in (3.8), and projecting on the basis {x̂, ŷ, b̂}, the
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tensor in (3.5) becomes

n2(k̂k̂− I) + ε =

 ε⊥ − n2 cos2 θ ig n2 sin θ cos θ
−ig ε⊥ − n2 0

n2 sin θ cos θ 0 ε‖ − n2 sin2 θ

 . (3.21)

As a result, equation (3.6) becomes

αn4 + βn2 + γ = 0, (3.22)

where

α = ε‖ cos2 θ+ε⊥ sin2 θ, β = −ε⊥ε‖(1+cos2 θ)−(ε2⊥−g2) sin2 θ, γ = ε‖(ε
2
⊥−g2). (3.23)

This is the Booker quartic. Its solution is

n2 =
−β ±

√
β2 − 4αγ

2α
. (3.24)

Depending on the sign chosen for the square root, we have slow waves (larger n and
hence smaller phase velocity), and fast waves (smaller n and larger phase velocity).
• Using cos2 θ = (1 + tan2 θ)−1 and sin2 θ = tan2 θ/(1 + tan2 θ) in (3.22), we can solve

for tan2 θ, finding the useful expression

tan2 θ = −
ε‖(n

2 − ε⊥ + g)(n2 − ε⊥ − g)

ε⊥(n2 − ε‖)(n2 − ε⊥ + g2/ε⊥)
. (3.25)

4. Parallel propagation

We consider waves that propagate along B, that is, k̂ = b̂. Then, equation (3.5)
becomes

[(ε⊥ − n2)(I− b̂b̂) + ε‖b̂b̂− igb̂× I] · Ẽ = 0. (4.1)

We could impose that this linear system of equations be singular, find n2, and once n2 is
given, we can find the polarization of Ẽ. Instead, we take another approach. Taking the
scalar product of b̂ with equation (4.1), we obtain

ε‖b̂ · Ẽ = 0. (4.2)

Thus, for parallel propagation we have two options: either ε‖ = 0 or b̂ · Ẽ = 0.

(a) If ε‖ = 0, equation (4.1) gives that Ẽ must be parallel to b̂. This wave is electro-

static because b̂ and k are parallel. As we have seen, electrostatic waves can have any
value of n in the cold plasma approximation. To see what ε‖ = 0 gives, we consider a
plasma with only one ion species with charge Ze and mass mi, and electrons with charge
−e and mass me. Considering that according to quasineutrality, Zni = ne, ε‖ becomes

ε‖ = 1−
∑
s

ω2
ps

ω2
= 1−

ω2
pe

ω2

(
1 +

Zme

mi

)
. (4.3)

Since me/mi � 1, ε‖ = 0 gives

ω ' ωpe =

√
e2ne
ε0me

. (4.4)

This mode represents electrostatic oscillations along the magnetic field line. Since the
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Figure 2. Left- and right-handed circular polarization. The magnetic field B is pointing out
of the page.

electric field points along B, particles move mostly along B and the magnetic force does
not play any role in these oscillations.

(b) Another possibility allowed by (4.2) is that b̂ · Ẽ = 0. Then, equation (4.1) gives(
ε⊥ − n2 ig
−ig ε⊥ − n2

)(
Ẽ · x̂
Ẽ · ŷ

)
=

(
0
0

)
, (4.5)

where we are using the orthonormal basis in figure 1. The determinant of the matrix,
(ε⊥ − n2)2 − g2, must be zero, giving

n2 = ε⊥ ± g. (4.6)

The polarization corresponding to the this solution is

Ẽ ∝ x̂∓ iŷ. (4.7)

Taking into account that the time dependence in (1.1) is exp(−iωt), we find that
• the top sign in (4.6) and (4.7) corresponds to left-handed circular polarization, and
• the bottom sign in (4.6) and (4.7) corresponds to right-handed circular polarization.

See figure 2 for the two types of polarization.
The dependence on plasma parameters of the index of refraction in equation (4.6) is not
explicit. Considering a plasma with only one ion species again, we find

n2 = ε⊥ ± g = 1−
∑
s

ω2
ps

ω(ω ∓ Ωs)
= 1−

ω2
pe

ω(ω ± Ωe)
−

ω2
pi

ω(ω ∓ Ωi)
. (4.8)

Importantly, the electron gyrofrequency Ωe = eB/me is defined to be positive,
and as a result, when s → e, Ωs → −Ωe. Using ω2

peΩi − ω2
piΩe = 0, equation (4.8)

becomes

n2 =
ω2 ± (Ωe − Ωi)ω − ΩeΩi − ω2

pe − ω2
pi

(ω ± Ωe)(ω ∓ Ωi)
, (4.9)

where the top sign corresponds to left-handed circular polarization, and the bottom sign
to right-handed circular polarization. Using the frequencies

ωL =

√(
Ωe + Ωi

2

)2

+ ω2
pe + ω2

pi −
Ωe − Ωi

2
, (4.10)

ωR =

√(
Ωe + Ωi

2

)2

+ ω2
pe + ω2

pi +
Ωe − Ωi

2
, (4.11)
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Figure 3. Cold plasma waves with parallel propagation for an electron-proton plasma (Z = 1,
mi/me = 1836) with ωpe/Ωe = 2. The plasma oscillation (ω = ωpe) is represented as a black
line, the waves with left-handed polarization as blue lines, and the waves with right-handed
polarization as red lines. For comparison, we plot the frequencies ωL, ωR, Ωe and Ωi and the
dispersion relations for light (ω = kc) and Alfven waves (ω = kvA) as dashed lines.

we can rewrite equation (4.9) as

n2 =
(ω ∓ ωL)(ω ± ωR)

(ω ± Ωe)(ω ∓ Ωi)
. (4.12)

Using ω2
pi/ω

2
pe = Ωi/Ωe = Zme/mi � 1, the relative size of the frequencies ωpe, ωL,

ωR, Ωe and Ωi is determined by the non-dimensional parameter ωpe/Ωe. Most plasmas
of interest in astrophysics and magnetic confinement fusion satisfy ωpe/Ωe & 1, leading
to

ωL '
√

Ω2
e

4
+ ω2

pe −
Ωe
2
, ωR '

√
Ω2
e

4
+ ω2

pe +
Ωe
2
. (4.13)

In this regime, ωR > ωpe > ωL � Ωi. The relative size of Ωe with respect to ωpe and ωL
depends on the exact value of ωpe/Ωe. For example, for ωpe/Ωe >

√
2, we find

ωR > ωpe > ωL > Ωe � Ωi. (4.14)

In figure 3 we represent the dispersion relation of the waves with parallel propagation for
the assumptions in (4.14). The relations in (4.14) and the fact that n2 in (4.12) must be
positive for wave propagation indicate that waves with left-handed polarization exist for
ω > ωL and ω < Ωi. Similarly, waves with right-handed polarization exist for ω > ωR
and ω < Ωe. Under the assumptions (4.14), we find several interesting limits:

(a) For ω � ωR, ωL,Ωe,Ωi, we find light,

ω ' kc. (4.15)

Light can have both left- and right-handed polarization.
(b) For ω ' Ωe, we find the electron cyclotron wave,

Ωe − ω '
ω2
peΩe

k2c2
� 1. (4.16)
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This wave has right-handed polarization.
(c) For Ωi � ω � Ωe, we find the whistler wave,

ω ' k2c2Ωe
ω2
pe

. (4.17)

This wave has right-handed polarization.
(d) For ω ' Ωi, we find the ion cyclotron wave,

Ωi − ω '
Ω3
i

k2v2A
� 1, (4.18)

where vA =
√
ε0c2B2/nimi is the Alfven speed. This wave has left-handed polarization.

(e) For ω � Ωi,Ωe, we find the Alfven waves,

ω ' kvA. (4.19)

These waves can have both left- and right-handed polarization.

5. Perpendicular propagation

We consider k̂ · b̂ = 0. In this case, equation (3.5) becomes

[ε⊥(I− b̂b̂)− n2(I− k̂k̂) + ε‖b̂b̂− igb̂× I] · Ẽ = 0. (5.1)

Taking the scalar product of this equation with b̂, we find

(ε‖ − n2)b̂ · Ẽ = 0. (5.2)

Thus, there are two possibilities: either ε‖ − n2 = 0 or b̂ · Ẽ = 0.
(a) Ordinary mode. The velocity of propagation of the ordinary mode is given by

ε‖ − n2 = 0. Using ε‖ − n2 = 0 in (5.1), we find that Ẽ must be parallel to B. This
electric field only moves particles along B, and as a result, the magnetic force does not
play a role. For a plasma composed of a single ion species and electrons, the equation
ε‖ − n2 = 0 gives

ω2 = ω2
pe + k2c2, (5.3)

where we have used (4.3) and Zme/mi � 1.

(b) Extraordinary mode. Assuming b̂ · Ẽ = 0, equation (5.1) becomes

[ε⊥I− n2(I− k̂k̂)− igb̂× I] · Ẽ = 0. (5.4)

To solve this equation, we project onto the basis in figure 1 to find(
ε⊥ ig
−ig ε⊥ − n2

)(
Ẽ · x̂
Ẽ · ŷ

)
= 0. (5.5)

Imposing that the determinant of the matrix be zero, we obtain

n2 = ε⊥ −
g2

ε⊥
. (5.6)

The polarization is given by

Ẽ ∝ igx̂− ε⊥ŷ. (5.7)

Thus, these waves have elliptical polarization.
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Equation (5.6) can be written in terms of the plasma properties. We assume again a
plasma with a single ion species. The index of refraction in (5.6) is

n2 =
ε2⊥ − g2

ε⊥
, (5.8)

where ε2⊥ − g2 and ε⊥ can be written in a convenient way. Using equations (4.6) and
(4.12) to write

ε⊥ ± g =
(ω ∓ ωL)(ω ± ωR)

(ω ± Ωe)(ω ∓ Ωi)
, (5.9)

we find

ε2⊥ − g2 = (ε⊥ + g)(ε⊥ − g) =
(ω2 − ω2

L)(ω2 − ω2
R)

(ω2 − Ω2
e)(ω

2 − Ω2
i )
. (5.10)

We also have

ε⊥ = 1−
∑
s

ω2
ps

ω2 − Ω2
s

= 1−
ω2
pe

ω2 − Ω2
e

−
ω2
pi

ω2 − Ω2
i

. (5.11)

Substituting (5.10) and (5.11) into (5.8), and using ω2
piΩe = ω2

peΩi, we find

n2 =
(ω2 − ω2

L)(ω2 − ω2
R)

ω4 − (Ω2
e + Ω2

i + ω2
pe + ω2

pi)ω
2 + Ω2

eΩ
2
i + ω2

peΩi(Ωe + Ωi)
. (5.12)

Finally, using the upper hybrid frequency

ω2
UH =

Ω2
e + Ω2

i + ω2
pe + ω2

pi

2
+

√√√√(Ω2
e + Ω2

i + ω2
pe + ω2

pi

2

)2

− Ω2
eΩ

2
i − ω2

peΩi(Ωe + Ωi)

(5.13)
and the lower hybrid frequency

ω2
LH =

Ω2
e + Ω2

i + ω2
pe + ω2

pi

2
−

√√√√(Ω2
e + Ω2

i + ω2
pe + ω2

pi

2

)2

− Ω2
eΩ

2
i − ω2

peΩi(Ωe + Ωi),

(5.14)
equation (5.12) can be written as

n2 =
(ω2 − ω2

L)(ω2 − ω2
R)

(ω2 − ω2
UH)(ω2 − ω2

LH)
. (5.15)

Again, using ω2
pi/ω

2
pe = Ωi/Ωe = Zme/mi � 1, the relative size of ωpe, ωR, ωL, ωUH

and ωLH is determined by the non-dimensional number ωpe/Ωe. For ωpe/Ωe & 1, we find

ωUH '
√
ω2
pe + Ω2

e, ωLH '
√

ΩiΩe
1 + Ω2

e/ω
2
pe

, (5.16)

leading to

ωR > ωUH > ωpe > ωL � ωLH . (5.17)

Thus, according to (5.12), there are extraordinary waves for ω > ωR, ωL < ω < ωUH
and ω < ωLH . In figure 4 we give the possible waves with perpendicular propagation for
the assumptions in (5.17).
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Figure 4. Cold plasma waves with perpendicular propagation for an electron-proton plasma
(Z = 1, mi/me = 1836) with ωpe/Ωe = 2. The ordinary mode is represented as a blue line, and
the extraordinary mode as red lines. For comparison, we plot the frequencies ωL, ωR, ωUH and
ωLH and the dispersion relations for light (ω = kc) and Alfven waves (ω = kvA) as dashed lines.


