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1. Introduction

In these notes, we study the behavior of waves that satisfy

w
E ~ Uts (11)

for at least one species s. Under these conditions, plasma waves can grow due to insta-
bilities, or decrease by transferring their energy to the background plasma. The waves
must be treated kinetically.

2. Background plasma

We consider a system composed of

(a) A homogeneous, steady state, collisionless plasma with several species s. Each
species s follows the distribution function fs(v).

(b) A background magnetic field B constant in time and uniform in space.

(¢) No background electric field E.

The distribution functions must satisfy the collisionless Vlasov equations,

. s
68J26+V-st+ ﬂ;j(E—l—va)-vaS:O. (2.1)
Since the plasma is homogeneous and in steady state, and E = 0, this equation becomes
Zs
“(vxB)-Vyfs = 0. (2.2)

S
To see what this equation implies for f, we describe the velocity space using the compo-
nent of the velocity parallel to B, v, the perpendicular velocity, v, , and the gyrophase,
@. The velocity is then
% :vJ_(cosgpfc—Singoy)—l—v”f), (2.3)
where X and y are two orthogonal unit vectors that satisfy X x y = b. The velocity is
sketched in figure 1 (note the sign of ¢). Using {v), v, ¢}, we find

0 0 0 0 v 0 1 ~ 0
v = Vo v o =Db — 5 5 b—, 2.4
v Vv”é)v‘|+vwavl+v<p8¢ C{)U”—i_vlavl—’—vivx 8@ ( )
and as a result, equation (2.2) becomes
Afs
Qs— =0. 2.5
L (25)

Thus, fs does not depend on ¢,
fs(v) = fs(v),vL). (2.6)
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FIGURE 1. Basis for velocity. Note that the gyrophase ¢ is defined to be the opposite of the
usual cylindrical angle.

The distribution function does not depend on the direction of v, , given by ¢, because
particles in a magnetic field gyrate around magnetic field lines rapidly. As a result, all
possible directions of v seem equally probable.

Finally, we assume that the background plasma satisfies quasineutrality,

ZZsens =0, (2.7)

where the background density of species s is

nsz/fsd%z/fs

Here we have used the determinant of the Jacobian of the transformation v (v, v, ),

ov 1
(3(v|7vmp)> Vo) - (Vovr X Vop) o %)

ov
det | ——— || dvydv dp =2 v duydo . 2.8
© (3(U|aw,s0))’ IR W/fvL wdve- (28)

3. Hot plasma waves

We assume that the electromagnetic fields of the waves are of the form
OE = Eexp(ik - r — iwt),
6B = Bexp(ik - r — iwt). (3.1)

As a result, the induction equation and Ampere’s law become

—iwB = —ik x E (3.2)
and
. - 1 - iw-

Equations (3.2) and (3.3) can be combined in the same way as we combined them to find
the cold plasma dispersion relation,

n?(kk —I)+ ¢ -E=0. (3.4)
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The only difference with the cold plasma dispersion relation is the dielectric tensor
e=1+— 3.5
t oy (3.5)

where the conductivity tensor, defined by

J=0"E, (3.6)

is different from the conductivity tensor in the cold plasma dispersion relation. We cal-
culate the new dielectric and conductivity tensors in the following section.

4. Dielectric and conductivity tensors

The perturbed plasma current is given by
0J = Z Zse/éfsv dBo=J= Z Zse/fsv dBo. (4.1)

Thus, to obtain the conductivity tensor in (3.6), we need to first find fs as a function of
E, and then integrate over velocity space to find J.

4.1. Perturbed distribution function

The equation for the perturbation to the distribution function §f, is obtained by lin-
earizing the Vlasov equation (2.1),
Zge

A6 fs Zge B
5 TV VOl (v X B) Vb, = = (BB 4V x B) - Vo .. (4.2)
Fourier analyzing and using (3.1), equation (4.2) becomes
. . Z, - Ze - )
—iw fs +ik-vfs+ nf(v xB) Vyfs= —25(B+vxB) Vofs.  (43)

S mS

Since we want to obtain the conductivity tensor in (3.6), it is convenient to express
equation (4.3) in terms of E only, and not in terms of both E and B. Using equation
(3.2), equation (4.3) becomes

- 7 ~ Zse [~ 1 ~
(—iw+ik-v)fs + se(v X B) - V,fs=— s€ {E+v x (k x E)} Vo fs (4.4)
w

ms ms

To solve equation (4.4), we describe the velocity space using the coordinates {v), v, ¢}
in figure 1. Recalling equations (2.4) and (2.6), we find

Aafs+£8fs Vv 3fg +lj)<6f9_v|afs’>

Uszb - 4.
Vol dvp  wp vy vy vy Ov| vy dvy (4.5)

Using this result, equation (2.4) and v x (k x E) = (v - E)k — (k - v)E, equation (4.4)
becomes
; ofs Zse Of, |-
(—iw + ik - v)fs + Qs f = — e 9f. E-v+
Op mev, Ov|
Zse <<9fs v Ofs

mew \Ov| vy vy

> [(w—k.v)E.B+kH(E-v) . (46)
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Using v = UHB + v, and k = k:”f) + k, this equation can be rewritten as
7 e
s€l <6fs . ﬂ 8fs ) E b:l
8’UH v (9’UL

0
<—1w+1kz|v| +ik| vy + Q4 ) |:fs
(@.7)

s k s s E N nd "

= - af + H (AN 8f ”U” af AE + ﬂ:E ‘b |.
ms | Ovy 811” ov| v v

To integrate equation (4.7), we write it in the orthonormal basis {x,y,b}, where

1/k; andy = b x k) /k, (see figure 1). In this basis

x=k
7 e
( iw 4 ikjv +ikLvy cosp + Q ) |:fs €l <3fs Y 8fs)b E]
811“ vl 8vl
€ afS k“ afs afs kJ_ BXkJ_ . ’UH ~ ~
- L)Ul—i_ v 8UH v”@vL HCOS@_ kL Sln@"‘ab - E.
(4.8)

ms

- k'J_’UJ_
As = Q.

Equation (4.8) has an integrating factor: exp(i\s sin ¢), where

Multiplying by this factor, we find
<—1o.) + kv + Qs 0 ) { {fs (afs _ o 9t > b- ]:3] exp(iAs sin 90)}
61}” V1 aUL
ofs Ky ( 0fs  Ofs
— As
. {6U¢ + v (%H )| Do, exp (iAg sin p)
k b x k .
X (/ﬂj_ cos p — ZL L sing + ZJ_b) : (4.10)
To solve equation (4.10), we Fourier analyze in the gyrophase. In particular, we Fourier
analyze the function
= Zs Ofs Ofs \ ¢+ = >
{fs Zsel (31{| - :ji(,i_) b- E} exp (i sin ) = m;m Fy mexp(imep).  (4.11)
To Fourier analyze equation (4.10), we use that
exp(ids sin ) Z Im(As) exp(imey), (4.12)
(4.13)

10 —[exp(iAs siny)] = Z %S()\S)exp(imcp)

cos @ exp(iXg sin p) =
Z J!(As) exp(imp), (4.14)

and
. o 19
sin g exp(ids sin @) = TN [exp(iXs sin )]
i

(4.15)

where
1 s
/ exp(idg sin ¢ — imep) de

—T
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Im(w) >0 Im(w) =0 Im(w) <0
Im(v)) Im(v)) Im(v))
)
————— e
Re(vH) \ ’RG(UH) T Re(v”)
i
sC ‘o

FIGURE 2. Landau contours for integration of the resonant denominators in (4.18). For
Im(w) > 0, the contour is the real line, as expected. For Im(w) < 0, the contour surrounds
w to ensure that the integral is an analytic continuation of the integral with Im(w) > 0. For
Im(w) = 0, the part of the contour that surrounds w is a semi-circumference, SC, whereas for
Im(w) < 0, the piece of the contour that surrounds w is a a complete circumference, C'.

is the m-th order Bessel function of the first kind, and J), = dJ,,/d\s is its derivative.
Using (4.11), (4.12), (4.13) and (4.14) in (4.10), we can solve for the Fourier coefficients
Fs,m7

- Z el 1 ofs k| ofs Ofs ~
Fom=— — — -E,  (4.16
’ ms w — kv —mf {81& + w \* v Yl ovy tm (4.16)
where the complex vector u,, is
mJm(A) ks ., bxk, v .
_ _ —- =4 . 4.1
u,, N kL iJ) (As) m + o Jm(As)b (4.17)

4.2. Conductivity tensor
Equations (4.11) and (4.16) give the distribution function f,. From (4.1), we obtain

- ) ZseQ e o T Ofs v Ofs .~
J= —IEOWZ P /—oodvu/o dv | _ﬂ'dQO’UJ_ (37}” — m3v¢> v(b-E)

+ Z Zse/ dy / d’UJ_/ dp vy exp(—iXs sin ) Z E,mexp(ime)v, (4.18)
s CL 0 -7 m=—o0
where
k b x k A
v=u, <cosapl—sin<p . J') +v)b. (4.19)
ki ki

The resonant denominator w — kjjvj —mfls in Fsm produces damping or growth. It also
indicates that we should have Laplace transformed in time instead of using a Fourier
transform. The final result obtained using the Laplace transform is the same except for
the fact that we need to use the Landau contour Cp, (shown in figure 2) to take the
integrals over parallel velocity. See (Schekochihin 2015) for more details.

Using equations (4.12), (4.13) and (4.14) (and changing ¢ to —¢), we find

/ exp(—iAg sinp) Z Fym exp(ime)v dp = 27 Z FomUp,, (4.20)

- m=—o0 m=-—00

where the complex vector u,, is defined in (4.17). With this result and equation (4.16),
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FIGURE 3. The first four Bessel functions of the first kind (Jo in black, Ji in blue, J2 in red,
and Js in green) as a function of their argument.

equation (4.18) gives the conductivity tensor (recall (3.6))

27Tw Ofs Ofs
= —1600.}; Toe w2 / dUH/ d'UJ_ { <'UJ_6 H - UH 3UL) Ube

dfs ki [ Ofs O fs - wu,
2 m
—H)J‘ [GUL + UL a’U” U” 81}L m_z w — k‘HU” — sz ' (4.21)

=—0Q

4.3. Dielectric tensor
From (4.21), we find that the dielectric tensor is

1o o ., 9
e=1+ cow . UJ2 /CL dUH / dv { ('UJ_ 8v‘| =7 81“_) U||bb
ofs Ky ( 9fs  9fs = wuy,u;,
2| 248 __Tmm
+UJ_ [81@ + UL 81)H ” 81@ _Z—oo w — k‘H’UH - sz ' (4.22)

The dielectric tensor can be simplified in various limits. For the Bessel functions, it is
very useful to know several properties.

e The Bessel functions with negative m can be deduced from the ones with positive
m by using the change of variables ¢’ = 7 — ¢, giving

1
J_m(As) = Py exp(is sin ¢ + imyp) de

= w / exp(ids sing’ —ime’)dy’ = (=1)"Jn(Xs), (4.23)
a —7

where m =1,2,3,...

e The values of the Bessel function for negative arguments can be deduced from its
values for positive arguments by using the change of variables ¢’ = ¢ — 7, giving
1 ™
— exp(—iA; sinp — imy) dp
2 J_ .

= M/ exp(ilg sin ¢’ —ime’) dy’ = (=1)"Jn(Xs)- (4.24)
77

I (—As)

—T
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Hence, for m even, J,,(\s) is even, and for m odd, J,,,(A) is odd.

e The Bessel functions are bounded oscillatory functions with a decreasing amplitude.
We show a few of them in figure 3.

e The derivatives of Bessel functions can also be written in terms of Bessel functions

by using sin ¢ = [exp(ip) — exp(—ip)]/2i,

- 1
I () = %/ sin p exp(idg sin g — imy) dp = 5 [Tm—1(As) = Tm+1(As)] . (4.25)
[

e The Bessel functions can be expanded for small and large As. For Ay < 1, the Bessel
functions with positive m become (see Appendix A)

)\S m oo (_1);0 )\8 2p
In(As) = | — — | = . 4.26
) (2> 230n+mw!<2> (4:20)
For A\; > 1, the Bessel functions with positive m become (see Appendix B)

2 mnT T
Jm()\s) =~ 7'(')\5 COSs ()\S — 7 — Z) . (427)

The resonant denominator w — kjjv) —m$2, can be expanded as well (Schekochihin 2015).

5. Cold plasma limit

The cold plasma limit is recovered when we assume kvis/w < 1 and Ag ~ kv /Qs <
1. In this limit, the Bessel functions are given by (4.23) and (4.26). Thus, to lowest
order in Ay < 1, Jo(As) = 1, J1(Xs)/As = 1/2, J_1(As)/As = —1/2, J{(Xs) =2 1/2 and
J' 1(As) =~ —1/2 are the only non-zero contributions. As a result, of all the vectors u,,
defined in (4.17), only the vectors

_lkiJ__‘riE)XkJ_ u—ﬂA 1k, ilA)XkJ_
_2]{@ 2 kl ’ O_UL _le 2 kl

u_q

contribute to lowest order in Ay < 1. Using this result and kv;s/w < 1, equation (4.22)
becomes

2rw2, [ o Ofs s Ofs [ wu_ju* wujuj
~ 1 L d d ~=“bb +v3 = — Lo
‘ +Z:mwz[w?m4 WL%HM%M T\ wras oo

(5.2)
Since
1 - - i - .
u_1u*_1:—Q[kLkL—F(b><kl)(b><kL)]—Fj[(bka)kl—kl(bka)]
4K2 k2
1 A in
=-—(I- - I .
JA-DBb)+ b xT (5.3)
and
1 - . i o .
uluT:—[kLkl—F(bka)(b><kl)]——[(bxkl)kl—kL(bxkl)]

k2 4k

1 -~ ix
=-(I- - = I 4
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equation (5.2) can be rewritten as
2mw?, [ o Of o V3 Ofs w? -
~ I ps S 7J_ S - I _
€ + zs: o? /_OO de/O dv | {’UJ_’U| a0, bb + > Do, | o Qg( bb)

iwy

S

Finally, integrating by parts in v and v, and using

27?/ dy / dv, vy fs = ng, (5.6)

—00 0

the dielectric tensor becomes the cold plasma dielectric tensor
EZEHBB—FEL(I—BB)—igBXI, (5.7)

where

w? w? w2 Q
_ ps _ ps _ psSEs
Ei—l_ZwLQ%’fn—l—Z 20 9= _Zw(wZ—Qg)' (5.8)

S

6. Dispersion relation for Maxwellian distribution functions

In this section, we consider waves for stationary Maxwellian distribution functions,

3/2 ms(v? +v?)

B ms sV T UL
= = —_ . 1
fe = fars = s (27rTS> exp < o7 (6.1)

With these distribution functions and the integration variables w = v, /oy, and u =
(k) /1Ky |)(v) /ves), where vy = /2T /m, the dielectric tensor in (4.22) becomes

d " dww? exp(—w? Ul 6
+Zw|k‘”|vts\f/ u exp(— )/0 ww” exp(—w )m:z_ocu_c&m, (6.2)
where
w —mf
Cs,m ey, (6.3)
Zo\"™ mJ( W)k, [ Z, N\, bxk,
m= (2 e 2,
" <ZS|> %, ki ‘(|zs|> Imw2be) =5
Ry ( Zs mu :
- 2 A4
+|k||(|Z> (V2 )b (64)
and

202 msQ2
Note that we had to keep track of the sign of €, which is the same as the sign of Zj,
because v/2b; is alway positive.
Equation (6.2) can be expressed in terms of known special functions. Using the plasma

dispersion function Z((s ), we find

1 exp(—u?) du

ﬁ Cr, U_Cs,m

= Z(Csm), (6.6)
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1 uexp(—u®) .
VT Je, mdu =14 C,mZ(Cs,m) (6.7)
and
1 u?exp(—u?)
Vale, u—Com du = Csm[1 4 Co,mZ(Co,m)]- (6.8)

We will also need several integrals of the Bessel functions of the first kind. We calculate
these integrals in Appendix C, where we obtain

2 /OO J2 (wr/2b)w exp(—w?) dw = I,,,(bs) exp(—bs), (6.9)
0

4/000 T (wr/2b,) T, (wr/2b,)w? exp(—w?) dw = \/2b, [I!, (bs) — I (bs)] exp(—bs)

(6.10)
and
< 2,3 2 > Ly (bs) /
4 [J), (wy/2bs)]*w> exp(—w?) dw = — + 2bs (I (bs) — I, (bs)) | exp(—bs),
0 s
(6.11)
where
1 s
I, (bs) = 2—/ exp(bs cos p — imgp) dep. (6.12)
T™J-n

are the m-th order modified Bessel function of the first kind and I}, (bs) = dI,,/dbs is
the derivative of the modified Bessel function with respect to its argument.

Using all the results above, the dielectric tensor in (6.2) in the basis shown in figure 1
is

€z i€y  €xz
€= | —leoy €y e |, (6.13)
€xz _ieyz €22
h
where s e
- 1+Z Z w|k\||’Uts bs exp( ) (Cs m) (614)
ey =1+ Z = [ml(bs)ﬂL?b (Zm (bs) — I, (bs)) | exp(—bs) Z(Cs,m);
5 e —oo (JJ|/€”|’Uts bs SATmMATYS m p s,m
(6.15)
€2z = “ZS:m; w|ku|vt (bs) exp(=by) Com [1+ ComZ(Cem)] s (6.16)
;m; Wlk\||'Ut m (1}, (bs) = I (bs)] exp(—bs) 2 (Cs,m), (6.17)
e Zm_z_: wkuvts \Z, |\F Ml (bs) exp(=bs) [1 + Cs;m Z(Co,m )] (6.18)
and

€z == Z wkﬂvm |Z‘ 20 [T}y (bs) — Tn (b)) exp(—bs) [1+ Con Z (o)
- (6.19)
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I5(bs) exp(—bs)

0 1 2 3 4 5 6 7 8 9 10

bs

FIGURE 4. Functions I, (bs) exp(—bs) as a function of their argument b, for m = 0 (black),
m =1 (blue), m = 2 (red) and m = 3 (green).

As in the case of a general distribution function f,(v,v1), this dielectric tensor can
be simplified in various limits. For the modified Bessel functions, it is very useful to know
several properties.

e The modified Bessel functions with negative m can be deduced from the ones with
positive m by using the change of variables ¢’ = —¢, giving

s

1
Lp(bs) =5 | exp(bscosp +imp)dyp

—T
T

= % exp(bs cos ¢’ —imy') d¢’ = I,,,(bs), (6.20)
where m =1,2,3,...

o The modified Bessel functions are functions that diverge exponentially for large
arguments. In figure 4, we show I,,,(bs) exp(—bs) for a few m. We multiply I,,,(bs) by
the exponential because this is the combination in which the modified Bessel functions
appear in the dispersion relation.

e The derivatives of the modified Bessel functions can also be written in terms of
modified Bessel functions by using cos ¢ = [exp(ip) + exp(—ip)]/2,

1 [ 1
I (bs) = %/ cos pexp(bs cos ¢ — imyp) dp = 5 [Ir—1(bs) + Lnt1(bs)] - (6.21)

e The modified Bessel functions of the first kind are the Fourier coefficients of the
function exp(bs cos ¢),

o0

exp(bs cos ) = Z I, (bs) exp(im). (6.22)

m=—0oo

This Fourier series is useful to calculate infinite sums of modified Bessel functions.
e The modified Bessel functions can be expanded for small and large bs. For by < 1,
the Bessel functions with positive m become (see Appendix A)

no=(3) S (3) .

p=0
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For bs > 1, the modified Bessel functions become (see Appendix D)

In(bs) = ej;g(ﬁib;) (1 - 47”87():1 + O(bSQ)) . (6.24)

The plasma dispersion function can also be expanded for (s ,, small and large.

We proceed to solve three examples in which we use the hot plasma dispersion relation
for Maxwellian distribution functions. In these examples, the plasma is composed of an
ion species with charge Ze and mass m;, and electrons with charge —e and mass m..
The electron gyrofrequency Q. = eB/m, is defined to be positive, that is, Qs — —Q,
when s = e. We also assume that wp. ~ . and that the temperatures of electrons and
ions are of the same order, T; ~ T,.

6.1. Electron cyclotron damping

We study the damping of the the electron cyclotron wave. We discussed this wave in
the notes on cold plasma waves. This wave propagates parallel to the magnetic field line
(k =b, k = k), its polarization is right-handed circular, and its dispersion relation is

2
Wpelle

e —w = kﬁc2

< 1. (6.25)

To study how this wave damps, we consider the limit
W~ Qe ~wpe > |w— Q| 2 Ky |vte, (6.26)

and we ignore the ions because they do not respond to high frequencies. In the limit (6.26),
the wave damping is small, and the wave is very close to the cold plasma limit To simplify
(6.13), we use that terms that contain Z((c,—1), with (c,—1 = (w — Qc)/|kj|vee 2
are much larger than the rest of the terms because for m # —1, (., > 1 and hence
(Ce m) ~ —1/Ce.m < 1. Moreover, b, = 0 because k; = 0, giving
( e) =0 for m # 0 and Io(b.) = 1,
o m?1,(b.)/b. =0 for m # +1 and I_1(b.)/be = 1/2 = I;(b.)/be, and
o I/ (be) =0 for m# £1 and I’ ;(b.) = 1/2 = I](be).
Using these approximations, the dielectric tensor (6.13) simplifies to

€xg  d€gy O

e=| —dezy €y O , (6.27)
0 0 e,
where
w? w—0
€xx = €yy = —€py = WZ(Ca_l) + o <|g)€|> . (628)
In the subsidiary limit (w — Q) /[k)|vte = Ce,—1 > 1,
1 1
Z((e_1) ~ — Texp(—C2_,). 6.29
O A () (6.29)

Thus, equation (6.28) becomes

2

~e o~ e~ Ype 1
€px 2 Eyy X —Egy 20 (w — Q) <1 + 2<2 — iv/mCe,—1 exp(—(;, 1)) . (6.30)
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Substituting (6.27) into (3.4) and assuming that E-b = E, = 0, we obtain the solutions

k22 B 2
JLQ _ €rx ;‘ Cyy 4 \/(Eww 5 €yy> 4 6;%y~ (631)
The electron cyclotron wave is the solution corresponding to the plus sign,
k2c? w? 1
e e .
o= e = —Qe(w’: o) (1 + 5 iV/mCe, -1 exp(—(?}ﬁ) . (6.32)
e e,—

The last term in equation (6.32) is exponentially small when |(. _1| > 1, but we keep
it because it is fundamentally different from other terms: it is imaginary and it will give
wave damping. The term small by C Z, < 1 is kept because it is needed to obtain the
correct factor of order unity for the exponentlally small correction. To lowest order we
find the cold plasma wave solution

w? Qe

w® ~0Q, — 1:222 . (6.33)
I

We can find the correction to this dispersion relation by using w = w(® +w™ +ivy, where
v < wh < w®, We find

w® 1 kST, c*
~ — ~ (6.34)
Qe —w© 2(¢@ )2 meS2wih,’
where Cé?l (@ — Q) /|ky|vte, and

Q. —w® (Qe — w©)?
T ~ o fre W e ).
Qe 0 = VG e () = v pfore ( R (6:39)

Thus, the resonance with the electron cyclotron motion damps the wave. In this case,
where we have assumed |w — Q.| > |kj|vse, the damping is small, but the damping
becomes large for |w — Qc| ~ [k |vee.

6.2. FElectron Bernstein waves

We now consider perpendicular propagation (k; = 0). To simplify the problem, we assume
that the index of refraction is very large, that is, k) c¢/w > 1. We showed in the cold
plasma waves notes that waves with very large index of refraction are electrostatic and
have to satisfy the dispersion relation k-e-k ~ 0. In the perpendicular propagation case,
this dispersion relation becomes €,, = 0. This condition gives the lower and upper hybrid
resonance in the cold plasma dispersion relation. In the hot plasma dispersion relation,
using that kj = 0 implies that (|kj|vy) ' Z(Com) = —(w — mQ) ™, we find

wm1m T Y ey ea by =0 @)

S Mm=—0o0

This is the dispersion relation for Bernstein waves.
We consider only frequencies of the order of the electron gyrofrequency 2.. Then, the
ion contribution can be neglected, leading to

- w2, 2m2I,(b.)
€ra 1= ) — _};,1292 ; exp(—be) = 0, (6.37)

m=1
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ke vie /2

FIGURE 5. Frequency w as a function of the perpendicular wavenumber k; for electron
Bernstein waves with wpe /e = 2.

where we have used the fact that I,,,(bs) = I_,,(bs). The dispersion relation (6.37) can
be solved numerically.

We show the dispersion relation for wpe/€e = 2 in figure 5. The dispersion relation
is multivalued, giving several possible frequencies at each value of k. It is easy to see
why there are multiple solutions in the limits kj vt /Qe. < 1 and kv /Qe > 1. For
ki vie/Qe < 1, be is small and the functions I, (b.)/be become small for m > 2. Thus,
one possible way to satisfy equation (6.37) is that one of the denominators become
small, that is, w ~ ¢€. for some integer ¢ > 2. Similarly, for &k v /Qe > 1, the functions
I, (be) exp(—be)/be become small, and the frequency must be close to one of the multiples
of Q. to ensure that at least one of the denominators is small. Interestingly, the frequencies
w = ¢, with ¢ > 2 are not the only possible solutions when k& v /Qe < 1. In this limit,
m21,,(be)/be = 0 for m # 1, and I (be)/be = 1/2, giving

w?

€rx = 1-— fpem =0. (638)

The solution to this dispersion relation is the upper-hybrid frequency wy g = 4 /Wf;e + Q2

that can be seen in figure 5.

The electrostatic approximation used to obtain equation (6.37) fails for sufficiently
small k; because the index of refraction k) c/w becomes sufficiently small. Thus, the
region of small k| vs. /€. is not exact.

We finish by pointing out that these waves are not damped because of the restrictive
assumption k| = 0.

6.3. Low frequency modes: linear gyrokinetics

We consider modes with frequencies much lower than the gyrofrequencies, w < 2. In this
limit, we recover drift kinetic results when by < 1. By keeping finite gyroradius effects,
bs ~ 1, we obtain gyrokinetics. We assume w ~ k|jvys and at the same time kv /Qs ~ 1.
These two assumptions imply that kj/kL ~ w/€Qs < 1. These requirements can be
summarized in the following orderings

Wps
Qs Cs,m;éO k”

(6.39)

k O,
bs ~ CS,O ~ = U
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Note that we are not making a distinction between electrons and ions, that is, we are
assuming that \/W < w/Qs. The assumptions in (6.39) imply that, for m # 0,

L 1 [Kylves 1 WP\ kylves | wlkylves

Z s,m) = — = ~ ,
(o) Com +O< ; ) mQs 1 —w/m, o Q3 msg * m2Q2

—_—— —

s,m

~w/Qs ~w2 /02

(6.40)
1 2
and 7
1 1 kyj|vgs Eyjlvts
o1+ G B (Gom] = 57—+ 0( )= < (P

With these results, the coefficients of the dielectric tensor in equations (6.14) - (6.19)
become

e =14 Z QZ 5 xp(fbs) =0(1), (6.43)

s m=1
w12)3 ! Qz
= 3 G e~ B le(4)260 =0 () 64
20.)25 Qg
€2z = Z w|ku’|7% Io(bs) exp(—bs) Cs,0 [1 + (.02 (Cs,0)] = O <w2) : (6.45)
s Q,
=) Z 01 (11 (b,) — (b)) exp(—b) = O (%). (6.46)
and
€y = ,Z Wi Zs V2 [ I (bs) — Io(bs)] exp(—by) [1 + C5.02(Co0)] = O (Qi) :
Y whkyvss | Zs| ' . 2
(6.47)

where we have used I_,,(bs) = I, (bs) in €, and €,,. Note that the components of the
dielectric tensor with m = 0 are the largest. We do not give the component €., = O(1) <
Q; /w because its contribution to the determinant of n2(kk —I)+ € is small. The elements
€xo and €y can be simplified by evaluating (6.22) and its derivative with respect to by
at ¢ = 0 to obtain

eXp(bs) = Z Im(bs) = IO(bs) +2 Z Im(bs) (648)
m=—oo m=1
and
exp(bs) = > I, (bs) )42 Z I ( (6.49)

Thus, equations (6.43) and (6.46) become

eXp( %) _ on) (6.50)




Hot plasma waves 15

and
w , Q,
€ry = Z o ° [Io(bs) — I} (bs)] exp(—=bs) = O — . (6.51)
Using equations (6.44), (6.45), (6.47), (6.50) and (6.51), and assuming
k k Qs
TE L B (6.52)
w w w
the dispersion relation finally becomes
n2(kk —1) + ¢ -E=
”02/w i€zy k“]fJ_CQ/W2 E:z 0
—legy €yy — kf_cz/w2 i€y, E, =10
k”kJ_cQ/o.)2 —iey, €rs — Iff_CQ/w2 E 0

(6.53)

This is the simplest linear gyrokinetic model. Note that large factors such as Qs/w or
ki/ k)| appear in equation (6.53). To eliminate these factors, we. normalize the equations.
We use the normalized electric field (E, (ki c/w)E,, (kJ_/kH) .), and we multiply the
second equation by (w/kc) and the third equation by k| /k. . With these operations, we
obtain

Dy — k”cg/w2 iDg, ”02/w E, 0
—iDy, D,, —1 iD,, (kic/w)E, | =1 0 |, (6.54)
kQ 2/‘” —iDy. k2 ?/w? (ky/ky)E: 0
where
c?Bs1—1 exp(—b,
Diw = €30 = 1 4+ Z vi o(bs Z p(=bs) (6.55)
Dy = 1z = 2 s lo(bs) — (bl exp(~0)Gs0 2 Gr0); (6.56)
Do = M =5 P L) expl(00) [+ 02 (Goo) (6.57)
zz k2 €2z = - Utg bs 0l0s) €XP s s,0 s5,0)] > .
Dey= 1% ey = 3 P l(b2) — b)) exp(—b) (6.55)
Ty — kLCEwy - - Vs 2b5 0\Us 0\Ys Xp s). .

k
Dy = 2L D+ 3Pl 10,) = 10 exp(—b0)Co0Z (o), (6.59)

Here 3, = 2uonsT,/B? is the 3 parameter for species s.

As an example of the use of these equations, we study kinetic Alfven waves. We first
expand in \/m./m; < 1 assuming that vy ~ va < ve < ¢, ie. B; = 2uon;T;/B? is
of order unity. Here va = vy /v/B;i = +/B?/1onim; is the Alfven velocity. We use the
ordering

m m c c kyc m;
beNfe<<Ce,0N 76<<C,L-)0Nbiwﬂimﬁew7ml<<7w [ -
m; \ m;

T Vte UVt w Me

(6.60)
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0'50 0.5 1 1.5 2 25 3 _0'350 0.5 1 1.5 2 25 3

kivg/Q; k1ve /S

FIGURE 6. Real frequency w, and growth rate « as a function of the perpendicular wavenumber
k. for kinetic Alfven waves with ZT./T; = 1 and ; = 0.2(black), 1(red), 5(blue). The growth
rate of the case with 3; = 0.2 is barely visible.

Then, Z((e0) ~ iv/m, Lo(be) ~ 1, [1 — Iy(be) exp(—be)]/be ~ 1 and I} (b.) ~ 0. With these
results, equations (6.55)-(6.59) become

N c? 1 — Io(b;) exp(—b;)
Dyy =~ B; [Io(bi) — Iy (bi)] exp(—b;)¢i0Z (Gio)s (6.62)
02
Dov= G | i+ T expl=h) 1+ Go2(G)) (6.63)
Day = [ 2 (00(0) — Ty(0) expl(~b) — 1 (6.64)

and

Dys = Doy + \/Z [To(b) — Iy (50)] exp(=bi)Gi0 2 (Go)- (6.65)

Substituting these results into (6.54) and setting the determinant of the matrix equal
to zero, one obtains the frequency of the kinetic Alfven wave. In figure 6, the complex
frequency w = w, +1i7 of the kinetic Alfven wave is shown as a function of b; for ZT,/T; =
1 and several values of f3;.

The dispersion relation (6.61)-(6.65) gives the shear Alfven wave in the limit b; < 1
because in this limit, the dispersion relation reduces to D, — kﬁc2 Jw? =0, where D, ~
/v, Thus, w = kjva. Keeping higher order terms in b; < 1 gives the small damping
of the shear Alfven wave.

In the limit b; > 1, the dispersion relation (6.61)-(6.65) becomes

2 T, 1 c Bi
Dyy~D,, ~——1] —.
Y Y vA Qbi

2

c 1

Dmmf:i* -D =~ — 7
124b Ui ZTebz'
Bi

(6.66)
i/ bf/ % can be neglected for 8; ~ 1. Thus, the dispersion relation

The coefficient D, ~
(6.54) becomes

Dy — kﬁcQ/oﬂ iDyy ||c2/w E, 0
—iD,, -1 iD,, (kic/w)E, | = 0 ]|. (6.67)
kic?jw? —1Dqy k2 c?fw? (ki/k))E. 0
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Setting the determinant of the matrix equal to zero gives

_ 1+ ZT./T; :
v \/1+(1+ZT8/13)52./21“|”A\/E~ (6.68)

The polarization corresponding to this solution is

E, _ ik (1 + ZT@)M B E. _ k2T, (6.69)
E, ki T; 2+ (1+2ZT./T;)8;" E, ki T, '

Note that this wave, like the shear Alfven wave for b; < 1, is not strongly damped
even though we have assumed that (; o ~ 1. Unlike in the shear Alfven wave, this wave
induces a parallel electric field and a perturbation to the magnitude of the magnetic
field, B=B, = k lE’y Jw. However, due to finite ion gyroradius effects, the combination
of parallel electric field and perturbation to the magnetic field magnitude in (6.69) does
not cause damping.
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Appendix A. Bessel functions and modified Bessel functions for
small argument

For \; <« 1,
Im(As) = S /7T exp(idg sing — imyp) dp = i S /7r liq)\q sin? p exp(—imey) de.
maTe 2w J_. ® = 2 J_. ¢! " °
(A1)
Using
1 1<
Waind o — — o) — = yar (9 —
tsint = gelexplie) —exp(ial' = 35 3 (1) 1 extier — 0. (42)
and
1 f" .
o exp(imep) dp = dom, (A3)

where §;; is the Kronecker delta, equation (A 1) with m > 0 becomes equation (4.26).
A similar calculation for the modified Bessel functions gives (6.23).

Appendix B. Bessel functions for large argument

For A\s > 1, the integral in (4.15) is dominated by the values of ¢ around the maxima
and minima of the phase A sin ¢, that is, by the values of ¢ around 7/2 and —n/2. To
obtain the integral, we follow the stationary phase method (Bender & Orszag 1999). The
integrand of (4.15) is

. s _ 2 2
exp(ids sin ¢ — imgp) =~ exp (1)\ — ? — w> (B1)
around ¢ = 7/2 and
i s 2)2
exp(ids sin ¢ — imgp) ~ exp (—i)\s + 1mT7r + 1(90—'2—7#)) (B2)

around ¢ = —7/2. For |p — 7/2| > 1/\/As and |p + 7/2| > 1/4/)s, the integrand is
highly oscillatory and it does not contribute much to the integral in (4.15), as we will
show below.

For \s > 1, we write

1 s
Im(As) = Py / exp(ids sin @ — imy) dp
1 —7/24+A/V s : : 9 2
~ L exp <_MS+W+WH/)> dy
2w —n/2—A/VAL 2 2

1 7r/2+A/\/x : -)\S _ 2 2
1 exp(lA _W_lwﬂ/)) dy
7)2— A/ Xy 2 2
1
+— exp(ids sin @ — imy) dep, (B3)

2

rest

where A is a large positive number that satisfies

1< A</ (B4)
We will show that the exact value of A is not important. The last integral in (B3) (the
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integral over the “rest”) is the integral over what is left of the interval [—m, 7] after
subtracting the intervals [—7/2 — A/ s, —7/2 + A/V ] and [71/2 — A/ s, 7/2 +
A/V A,

—7/2—A/VAs
/ exp(iXs sing — imyp) dp = / exp(ids sing — imy) de
rest -7
m/2— A/ XS T
+ / exp(ids sin ¢ — imep) dp + / exp(ids sin ¢ — imy) de.
T/24+A/VNS 7/24+A/VAS

(B5)

We will show at the end of this appendix that these integrals are negligible.

To take the first two integrals in equation (B 3), we use the complex plane. The first
integral in (B3) is equal to the integrals over the paths shown in figure 7(a): C' (the
straight line through ¢ = —7/2 at a 7/4 angle with respect to the real axis), C_., and
Cw (the two circumference sectors at large |¢ + w/2|). Thus,

1 —7/2+A/V s : 92 2
1 eXp(_1A+W+W+ﬂ/>>d _
2w J _wje—asvxs 2 2
iAg 2)2
/exp<1)\ ++l((p+ﬂ/)> dsp
2 2
i s 2)2
+7/ exp( +m7r+1 (90"‘77/))(190
2 2
imm i\s(p+7/2)?
g+ — + ———" ) do. B
+o- Cmexp( iAs + —— + 5 ® (B6)

The integral over C' dominates. We take this integral using ¢ = —mw/24t1/2/ A, exp(in/4)

1 iAg 2)2
L e (i, 4 Ao m/2)7Y
o Jo 2 2

1 imm iw A/V2
= —iAg + — + — —t?) dt. B7
- 2ASexp( s + =5 +4>/A/ﬁexp( ) (B7)

Since we have chosen A > 1, we find fAfQ(f exp(—t?)dt ~ [7_exp(—t?)dt = /7,

leading to

. inm  iX(p+ 71'/2)2> 1 ( . inm iﬂ')
—iAs+ —+ ———— | dp > —iAs+—+— .
CeXp( Ns + 5 + 5 2 oW exp Ns + 5 + 1
(B38)

We proceed to show that the integrals over C_ ., and Cy, are negligible. For the integral
over C_o we use p = —7/2 + (A//As) exp(i(6 — 7)),

2

1 imr iXs(p + m/2)?
. exp (—1/\ + 5 + > de
A . 71-/4 AQ.
2ﬂ\/> exp ( iXs + m;ﬂ> /0 exp (21 exp(2if) +i(0 — 71')) de. (B9)

Using that in the interval 0 < 6 < 7/4,

2. 2 2
exp <A21 exp(2i0) +1(0 — 77)) ‘ = exp (—/; sin 29) exp (—A9> (B10)
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(b) , Im(yp)

FIGURE 7. Contours in the complex plane used to take the integrals in equation (B 3).

we find

. . 2
/ exp <i)\s + 2T sl £ m/2)7 ) de

A m/4 242 1 1
< o) d=0 —ro) <« —. B11
21V A /o P ( T ) <A\FAS> Vr (B11)

Thus, the integral over the path C_, is negligible compared to (B8). Using a similar
method, we can show that the integral over C'y, is negligible as well, leaving

1 [T/2HANVAS i i 2)2
1 exp (_MS+W+1<¢+7T/>> dy
21 Jonjr- /v 2 2

o~ exp <—i/\s + % + 12) (B12)

We can take the second integral in (B 3) using the path shown in figure 7(b). Following
the procedure that we used to obtain (B 12), we find

1 7r/2+A/\/K . . _ 9 2
1 exp (i/\s Cimm (e —7/2) ) dy
27 Jrj2—A/vs 2 2

imm iw
iNg — — — — B13
o (1 22 0) o1

1
V21,
Adding the integrals in (B12) and (B 13), we find equation (4.27).

We finish by arguing that the integrals in (B5) are negligible. We can prove it by
integrating by parts. We show the procedure for the first integral in the right side of
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(B5). Integrating by parts this integral, we find

—m/2— A/ A, . D\ si i —7m/2—A/VAs
/ exp(iAs sin p — imep) dp = _L {exp(l s SILY 1mg0)}
777 As cos o
i pm/2=AN A d s
i o exp(—imep)
— As — | ———— ) de.
—|—)\S » exp(i\s sin ) i ( cos 5 ) ©
(B14)
In the first term of this equation, the limit ¢ = —n/2 — A/\/A; dominates because
cosp ~ ¢+ /2 around ¢ = —7/2, giving
i [iexp(idgsinp —imyp) —m/2= AV 1
-—— =0(——==]). (B15)
As cos o AV

The second integral in the right side of (B14) can be bounded. The integrand of the
second integral in the right side of (B 14) goes as 1/(p+7/2)? for ¢ near —7 /2. Thus, we
will find its maximum value in this region. Taking this into consideration, in the interval
[—m, —7/2 — A/\/As], there is a constant K ~ 1 such that

L d [exp(—imyp) K
As -— < ; Bl
exp(iAs sin ) 7 < cos o PEEIRE (B16)

leading to

. p—m/2— A/ :
i - d (exp(—imy)
— As — | ——— ] d
As /_,r exp(ids sin ) dey ( cos v

1 /mfwx K

1
— ——dp =0 ——= . B17
. im0 (ar) B
This bound is not very accurate, and it can be made better by integrating by parts again.

However, to prove that the integral is negligible, this bound is sufficient. Estimates (B 15)
and (B17) give

—m/2=A/VXs 1 1

Thus, this integral is much smaller than the main contribution (4.27). All the integrals
in (B5) are of the same order and hence the integrals in (B 5) are negligible,

1 1
exp(idgsing —imp)dp =0 | —= | < . B19
/r N xp( ® p)de < ) 7\5) ~ (B19)

Appendix C. Useful integrals of Bessel functions

In this Appendix, we calculate the integrals in (6.9), (6.10) and (6.11). To calculate
these integrals, we will use the auxiliary function

s

oo 1 o0 v
F(,n) =2 /0 Ton(€0) T ) exp(—?) o = /0 dw [ dp [ agw

x exp(—w? + ifwsin @ + inwsin ¢’ — im(p + ¢')). (C1)
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Using the integration variables w, = wcos ¢, w, = wsing and 0 = ¢ + ¢’, we find

F(&n) = 22/ dwm/ dwy/_dﬁ

X exp(—w} — wy + inwg sin 6 + iwy (€ — ncos ) — imf). (C2)

Integrating over w, by completing the square, we obtain

1 o0 e 2
F¢n) = W/ dwy/ df exp <7Zl sin? § — wg + 1w, (§ — ncosh) — imﬂ) .

(C3)
Integrating over w, gives
1 ™ 2 _ 2] 2
F(f,n):—/ exp —n—sin20—w—im9 dé. (C4)
2 J_ . 4 4
After a few manipulations, this integral becomes
52 + 2
F&on) = Infen/esp (-7 ) ()

Noting that 2 [;° JZ (wv/2bs)w exp(—w?) dw = F(v/2bs, v/2bs), we obtain (6.9). Using
that

4/ T (w/2b)J), (w/2bs)w? exp(—w?) dw = 2 — , (C6)
0 O | yab =35,

we find (6.10). Finally, employing that
0%F ‘
OEON | ¢35 =var;

4/ [, (wr/2b,)]*w® exp(—w?) dw = 2
0
we obtain

4/00[(],',1(10 20,)]2w? exp(—w?) dw =
O [11,(bs) + by (1 (bs) — 210,(bs) + In(b,)] exp(~b,).  (C8)
Since the modified Bessel functions satisfy the differential equation
VI, + b, — (b2 +n*) I, =0, (C9)

equation (C8) can be written as (6.11).

Appendix D. Modified Bessel functions for large argument
For bs; > 1, the integral

I, (bs) = S / exp(bs cos p — imyp) dep. (D1)

2 J_,
is dominated by a small region around ¢ = 0. Indeed, at ¢ = 0 the argument of the

exponential is maximum and it can be approximated by

bs bs
bs cos p — imep = by —Ego +24<,0 + O(bs®) + imep. (D2)
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Thus, since the argument of the exponential exp(bscosp — imy) is very negative for
¢ > 1/4/bs, the integrand of the integral in (D 1) is only significantly different from zero
in an interval of size 1//bs around ¢ = 0.

To calculate the integral, we change to the integration variable a = ¢+/bs/2 and we
use the approximation (D 2) to write

T/bs/2 9 1
In(bs) = &(bs)/ exp(—a?) exp (—1 [ Zima + —a* + O(b;2)> da. (D3)
T 2b5 —74/bs/2 bs 6[)@

Since b, > 1, we can approximate the the limits of the integral to be —oo and oo, and
we can Taylor expand one of the exponentials to find

2 1, 5 2, m? 1y
Y et —1-.,/=2 _
exp( bslma—i— Gbsa + O(b; )) bslma ™ o’ + 6bsa

im3v/2

3b3/2

o® + 0. (D 4)

S

With these approximations, equation (D 3) gives

bs ° 2. 2 1
L (bs) Z%/ exp(—a?) (1 - \/Zlma _ ”; o4 = o

im3
exp(bs m? — _
200 ez - SR =0 o) (D5)

where I'(v) = [;° 2~ exp(—z) dz is the Euler Gamma function. Equation (D 5) leads
to expression (6.24).



