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1. Introduction

In these notes, we study the behavior of waves that satisfy

ω

k
∼ vts (1.1)

for at least one species s. Under these conditions, plasma waves can grow due to insta-
bilities, or decrease by transferring their energy to the background plasma. The waves
must be treated kinetically.

2. Background plasma

We consider a system composed of
(a) A homogeneous, steady state, collisionless plasma with several species s. Each

species s follows the distribution function fs(v).
(b) A background magnetic field B constant in time and uniform in space.
(c) No background electric field E.
The distribution functions must satisfy the collisionless Vlasov equations,

∂fs
∂t

+ v · ∇fs +
Zse

ms
(E + v ×B) · ∇vfs = 0. (2.1)

Since the plasma is homogeneous and in steady state, and E = 0, this equation becomes

Zse

ms
(v ×B) · ∇vfs = 0. (2.2)

To see what this equation implies for fs, we describe the velocity space using the compo-
nent of the velocity parallel to B, v‖, the perpendicular velocity, v⊥, and the gyrophase,
ϕ. The velocity is then

v = v⊥(cosϕ x̂− sinϕ ŷ) + v‖b̂, (2.3)

where x̂ and ŷ are two orthogonal unit vectors that satisfy x̂ × ŷ = b̂. The velocity is
sketched in figure 1 (note the sign of ϕ). Using {v‖, v⊥, ϕ}, we find

∇v = ∇vv‖
∂

∂v‖
+∇vv⊥

∂

∂v⊥
+∇vϕ

∂

∂ϕ
= b̂

∂

∂v‖
+

v⊥
v⊥

∂

∂v⊥
+

1

v2
⊥

v × b̂
∂

∂ϕ
, (2.4)

and as a result, equation (2.2) becomes

Ωs
∂fs
∂ϕ

= 0. (2.5)

Thus, fs does not depend on ϕ,

fs(v) = fs(v‖, v⊥). (2.6)
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Figure 1. Basis for velocity. Note that the gyrophase ϕ is defined to be the opposite of the
usual cylindrical angle.

The distribution function does not depend on the direction of v⊥, given by ϕ, because
particles in a magnetic field gyrate around magnetic field lines rapidly. As a result, all
possible directions of v⊥ seem equally probable.

Finally, we assume that the background plasma satisfies quasineutrality,∑
s

Zsens = 0, (2.7)

where the background density of species s is

ns =

∫
fs d3v =

∫
fs

∣∣∣∣det

(
∂v

∂(v‖, v⊥, ϕ)

)∣∣∣∣ dv‖ dv⊥ dϕ = 2π

∫
fsv⊥ dv‖ dv⊥. (2.8)

Here we have used the determinant of the Jacobian of the transformation v(v‖, v⊥, ϕ),

det

(
∂v

∂(v‖, v⊥, ϕ)

)
=

1

∇vv‖ · (∇vv⊥ ×∇vϕ)
= −v⊥. (2.9)

3. Hot plasma waves

We assume that the electromagnetic fields of the waves are of the form

δE = Ẽ exp(ik · r− iωt),

δB = B̃ exp(ik · r− iωt). (3.1)

As a result, the induction equation and Ampere’s law become

−iωB̃ = −ik× Ẽ (3.2)

and

ik× B̃ =
1

ε0c2
J̃− iω

c2
Ẽ. (3.3)

Equations (3.2) and (3.3) can be combined in the same way as we combined them to find
the cold plasma dispersion relation,

[n2(k̂k̂− I) + ε] · Ẽ = 0. (3.4)
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The only difference with the cold plasma dispersion relation is the dielectric tensor

ε = I +
iσ

ε0ω
, (3.5)

where the conductivity tensor, defined by

J̃ = σ · Ẽ, (3.6)

is different from the conductivity tensor in the cold plasma dispersion relation. We cal-
culate the new dielectric and conductivity tensors in the following section.

4. Dielectric and conductivity tensors

The perturbed plasma current is given by

δJ =
∑
s

Zse

∫
δfsv d3v ⇒ J̃ =

∑
s

Zse

∫
f̃sv d3v. (4.1)

Thus, to obtain the conductivity tensor in (3.6), we need to first find f̃s as a function of
Ẽ, and then integrate over velocity space to find J̃.

4.1. Perturbed distribution function

The equation for the perturbation to the distribution function δfs is obtained by lin-
earizing the Vlasov equation (2.1),

∂δfs
∂t

+ v · ∇δfs +
Zse

ms
(v ×B) · ∇vδfs = −Zse

ms
(δE + v × δB) · ∇vfs. (4.2)

Fourier analyzing and using (3.1), equation (4.2) becomes

−iω f̃s + ik · v f̃s +
Zse

ms
(v ×B) · ∇v f̃s = −Zse

ms
(Ẽ + v × B̃) · ∇vfs. (4.3)

Since we want to obtain the conductivity tensor in (3.6), it is convenient to express
equation (4.3) in terms of Ẽ only, and not in terms of both Ẽ and B̃. Using equation
(3.2), equation (4.3) becomes

(−iω + ik · v)f̃s +
Zse

ms
(v ×B) · ∇v f̃s = −Zse

ms

[
Ẽ +

1

ω
v × (k× Ẽ)

]
· ∇vfs. (4.4)

To solve equation (4.4), we describe the velocity space using the coordinates {v‖, v⊥, ϕ}
in figure 1. Recalling equations (2.4) and (2.6), we find

∇vfs = b̂
∂fs
∂v‖

+
v⊥
v⊥

∂fs
∂v⊥

=
v

v⊥

∂fs
∂v⊥

+ b̂

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)
. (4.5)

Using this result, equation (2.4) and v × (k × Ẽ) = (v · Ẽ)k − (k · v)Ẽ, equation (4.4)
becomes

(−iω + ik · v)f̃s + Ωs
∂f̃s
∂ϕ

= − Zse

msv⊥

∂fs
∂v⊥

Ẽ · v +
1

ω��
���

���:
0

[v × (k× Ẽ)] · v


− Zse

msω

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)[
(ω − k · v)Ẽ · b̂ + k‖(Ẽ · v)

]
. (4.6)
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Using v = v‖b̂ + v⊥ and k = k‖b̂ + k⊥, this equation can be rewritten as(
−iω + ik‖v‖ + ik⊥ · v⊥ + Ωs

∂

∂ϕ

)[
f̃s +

Zsei

msω

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)
Ẽ · b̂

]
= −Zse

ms

[
∂fs
∂v⊥

+
k‖
ω

(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)](
Ẽ · v⊥
v⊥

+
v‖
v⊥

Ẽ · b̂
)
. (4.7)

To integrate equation (4.7), we write it in the orthonormal basis {x̂, ŷ, b̂}, where

x̂ = k⊥/k⊥ and ŷ = b̂× k⊥/k⊥ (see figure 1). In this basis,(
− iω + ik‖v‖ + ik⊥v⊥ cosϕ+ Ωs

∂

∂ϕ

)[
f̃s +

Zsei

msω

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)
b̂ · Ẽ

]

= −Zse
ms

[
∂fs
∂v⊥

+
k‖
ω

(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)](
k⊥
k⊥

cosϕ− b̂× k⊥
k⊥

sinϕ+
v‖
v⊥

b̂

)
· Ẽ.

(4.8)

Equation (4.8) has an integrating factor: exp(iλs sinϕ), where

λs =
k⊥v⊥

Ωs
. (4.9)

Multiplying by this factor, we find(
−iω + ik‖v‖ + Ωs

∂

∂ϕ

){[
f̃s +

Zsei

msω

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)
b̂ · Ẽ

]
exp(iλs sinϕ)

}
= −Zse

ms

[
∂fs
∂v⊥

+
k‖
ω

(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)]
exp (iλs sinϕ)

×
(

k⊥
k⊥

cosϕ− b̂× k⊥
k⊥

sinϕ+
v‖
v⊥

b̂

)
· Ẽ. (4.10)

To solve equation (4.10), we Fourier analyze in the gyrophase. In particular, we Fourier
analyze the function[

f̃s +
Zsei

msω

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)
b̂ · Ẽ

]
exp (iλs sinϕ) =

∞∑
m=−∞

F̃s,m exp(imϕ). (4.11)

To Fourier analyze equation (4.10), we use that

exp(iλs sinϕ) =

∞∑
m=−∞

Jm(λs) exp(imϕ), (4.12)

cosϕ exp(iλs sinϕ) =
1

iλs

∂

∂ϕ
[exp(iλs sinϕ)] =

∞∑
m=−∞

mJm(λs)

λs
exp(imϕ) (4.13)

and

sinϕ exp(iλs sinϕ) =
1

i

∂

∂λs
[exp(iλs sinϕ)] = −i

∞∑
m=−∞

J ′m(λs) exp(imϕ), (4.14)

where

Jm(λs) =
1

2π

∫ π

−π
exp(iλs sinϕ− imϕ) dϕ (4.15)
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Figure 2. Landau contours for integration of the resonant denominators in (4.18). For
Im(ω) > 0, the contour is the real line, as expected. For Im(ω) 6 0, the contour surrounds
ω to ensure that the integral is an analytic continuation of the integral with Im(ω) > 0. For
Im(ω) = 0, the part of the contour that surrounds ω is a semi-circumference, SC, whereas for
Im(ω) < 0, the piece of the contour that surrounds ω is a a complete circumference, C.

is the m-th order Bessel function of the first kind, and J ′m = dJm/dλs is its derivative.
Using (4.11), (4.12), (4.13) and (4.14) in (4.10), we can solve for the Fourier coefficients
F̃s,m,

F̃s,m = −Zsei
ms

1

ω − k‖v‖ −mΩs

[
∂fs
∂v⊥

+
k‖
ω

(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)]
u∗m · Ẽ, (4.16)

where the complex vector um is

um =
mJm(λs)

λs

k⊥
k⊥
− iJ ′m(λs)

b̂× k⊥
k⊥

+
v‖
v⊥
Jm(λs)b̂. (4.17)

4.2. Conductivity tensor

Equations (4.11) and (4.16) give the distribution function f̃s. From (4.1), we obtain

J̃ = −iε0ω
∑
s

Z2
s e

2

ε0msω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥

∫ π

−π
dϕv⊥

(
∂fs
∂v‖
− v‖
v⊥

∂fs
∂v⊥

)
v (b̂ · Ẽ)

+
∑
s

Zse

∫
CL

dv‖

∫ ∞
0

dv⊥

∫ π

−π
dϕv⊥ exp(−iλs sinϕ)

∞∑
m=−∞

F̃s,m exp(imϕ)v, (4.18)

where

v = v⊥

(
cosϕ

k⊥
k⊥
− sinϕ

b̂× k⊥
k⊥

)
+ v‖b̂. (4.19)

The resonant denominator ω− k‖v‖−mΩs in F̃s,m produces damping or growth. It also
indicates that we should have Laplace transformed in time instead of using a Fourier
transform. The final result obtained using the Laplace transform is the same except for
the fact that we need to use the Landau contour CL (shown in figure 2) to take the
integrals over parallel velocity. See (Schekochihin 2015) for more details.

Using equations (4.12), (4.13) and (4.14) (and changing ϕ to −ϕ), we find∫ π

−π
exp(−iλs sinϕ)

∞∑
m=−∞

F̃s,m exp(imϕ)v dϕ = 2π

∞∑
m=−∞

F̃s,mum, (4.20)

where the complex vector um is defined in (4.17). With this result and equation (4.16),
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Figure 3. The first four Bessel functions of the first kind (J0 in black, J1 in blue, J2 in red,
and J3 in green) as a function of their argument.

equation (4.18) gives the conductivity tensor (recall (3.6))

σ = −iε0ω
∑
s

2πω2
ps

nsω2

∫
CL

dv‖

∫ ∞
0

dv⊥

{(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)
v‖b̂b̂

+v2
⊥

[
∂fs
∂v⊥

+
k‖
ω

(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)] ∞∑
m=−∞

ωumu∗m
ω − k‖v‖ −mΩs

}
. (4.21)

4.3. Dielectric tensor

From (4.21), we find that the dielectric tensor is

ε = I +
iσ

ε0ω
= I +

∑
s

2πω2
ps

nsω2

∫
CL

dv‖

∫ ∞
0

dv⊥

{(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)
v‖b̂b̂

+v2
⊥

[
∂fs
∂v⊥

+
k‖
ω

(
v⊥
∂fs
∂v‖
− v‖

∂fs
∂v⊥

)] ∞∑
m=−∞

ωumu∗m
ω − k‖v‖ −mΩs

}
. (4.22)

The dielectric tensor can be simplified in various limits. For the Bessel functions, it is
very useful to know several properties.
• The Bessel functions with negative m can be deduced from the ones with positive

m by using the change of variables ϕ′ = π − ϕ, giving

J−m(λs) =
1

2π

∫ π

−π
exp(iλs sinϕ+ imϕ) dϕ

=
exp(imπ)

2π

∫ π

−π
exp(iλs sinϕ′ − imϕ′) dϕ′ = (−1)mJm(λs), (4.23)

where m = 1, 2, 3, . . .
• The values of the Bessel function for negative arguments can be deduced from its

values for positive arguments by using the change of variables ϕ′ = ϕ− π, giving

Jm(−λs) =
1

2π

∫ π

−π
exp(−iλs sinϕ− imϕ) dϕ

=
exp(−imπ)

2π

∫ π

−π
exp(iλs sinϕ′ − imϕ′) dϕ′ = (−1)mJm(λs). (4.24)
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Hence, for m even, Jm(λs) is even, and for m odd, Jm(λ) is odd.
• The Bessel functions are bounded oscillatory functions with a decreasing amplitude.

We show a few of them in figure 3.
• The derivatives of Bessel functions can also be written in terms of Bessel functions

by using sinϕ = [exp(iϕ)− exp(−iϕ)]/2i,

J ′m(λs) =
i

2π

∫ π

−π
sinϕ exp(iλs sinϕ− imϕ) dϕ =

1

2
[Jm−1(λs)− Jm+1(λs)] . (4.25)

• The Bessel functions can be expanded for small and large λs. For λs � 1, the Bessel
functions with positive m become (see Appendix A)

Jm(λs) =

(
λs
2

)m ∞∑
p=0

(−1)p

(m+ p)! p!

(
λs
2

)2p

. (4.26)

For λs � 1, the Bessel functions with positive m become (see Appendix B)

Jm(λs) '
√

2

πλs
cos
(
λs −

mπ

2
− π

4

)
. (4.27)

The resonant denominator ω−k‖v‖−mΩs can be expanded as well (Schekochihin 2015).

5. Cold plasma limit

The cold plasma limit is recovered when we assume kvts/ω � 1 and λs ∼ k⊥vts/Ωs �
1. In this limit, the Bessel functions are given by (4.23) and (4.26). Thus, to lowest
order in λs � 1, J0(λs) ' 1, J1(λs)/λs ' 1/2, J−1(λs)/λs ' −1/2, J ′1(λs) ' 1/2 and
J ′−1(λs) ' −1/2 are the only non-zero contributions. As a result, of all the vectors um
defined in (4.17), only the vectors

u−1 =
1

2

k⊥
k⊥

+
i

2

b̂× k⊥
k⊥

, u0 =
v‖
v⊥

b̂, u1 =
1

2

k⊥
k⊥
− i

2

b̂× k⊥
k⊥

(5.1)

contribute to lowest order in λs � 1. Using this result and kvts/ω � 1, equation (4.22)
becomes

ε ' I +
∑
s

2πω2
ps

nsω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥

{
v⊥v‖

∂fs
∂v‖

b̂b̂ + v2
⊥
∂fs
∂v⊥

(
ωu−1u

∗
−1

ω + Ωs
+
ωu1u

∗
1

ω − Ωs

)}
.

(5.2)
Since

u−1u
∗
−1 =

1

4k2
⊥

[k⊥k⊥ + (b̂× k⊥)(b̂× k⊥)] +
i

4k2
⊥

[(b̂× k⊥)k⊥ − k⊥(b̂× k⊥)]

=
1

4
(I− b̂b̂) +

i

4
b̂× I (5.3)

and

u1u
∗
1 =

1

4k2
⊥

[k⊥k⊥ + (b̂× k⊥)(b̂× k⊥)]− i

4k2
⊥

[(b̂× k⊥)k⊥ − k⊥(b̂× k⊥)]

=
1

4
(I− b̂b̂)− i

4
b̂× I, (5.4)
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equation (5.2) can be rewritten as

ε ' I +
∑
s

2πω2
ps

nsω2

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥

{
v⊥v‖

∂fs
∂v‖

b̂b̂ +
v2
⊥
2

∂fs
∂v⊥

[
ω2

ω2 − Ω2
s

(I− b̂b̂)

− iωΩs
ω2 − Ω2

s

b̂× I

]}
. (5.5)

Finally, integrating by parts in v‖ and v⊥, and using

2π

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥fs = ns, (5.6)

the dielectric tensor becomes the cold plasma dielectric tensor

ε = ε‖b̂b̂ + ε⊥(I− b̂b̂)− igb̂× I, (5.7)

where

ε⊥ = 1−
∑
s

ω2
ps

ω2 − Ω2
s

, ε‖ = 1−
∑
s

ω2
ps

ω2
, g = −

∑
s

ω2
psΩs

ω(ω2 − Ω2
s)
. (5.8)

6. Dispersion relation for Maxwellian distribution functions

In this section, we consider waves for stationary Maxwellian distribution functions,

fs = fMs ≡ ns
(
ms

2πTs

)3/2

exp

(
−
ms(v

2
‖ + v2

⊥)

2Ts

)
. (6.1)

With these distribution functions and the integration variables w = v⊥/vts and u =
(k‖/|k‖|)(v‖/vts), where vts =

√
2Ts/ms, the dielectric tensor in (4.22) becomes

ε = I +
∑
s

ω2
ps

ω|k‖|vts
4√
π

∫
CL

du exp(−u2)

∫ ∞
0

dww3 exp(−w2)

∞∑
m=−∞

umu∗m
u− ζs,m

, (6.2)

where

ζs,m =
ω −mΩs
|k‖|vts

, (6.3)

um =

(
Zs
|Zs|

)m−1
mJm(w

√
2bs)

w
√

2bs

k⊥
k⊥
− i

(
Zs
|Zs|

)m−1

J ′m(w
√

2bs)
b̂× k⊥
k⊥

+
k‖
|k‖|

(
Zs
|Zs|

)m
u

w
Jm(w

√
2bs)b̂ (6.4)

and

bs =
k2
⊥v

2
ts

2Ω2
s

=
k2
⊥Ts

msΩ2
s

. (6.5)

Note that we had to keep track of the sign of Ωs, which is the same as the sign of Zs,
because

√
2bs is alway positive.

Equation (6.2) can be expressed in terms of known special functions. Using the plasma
dispersion function Z(ζs,m), we find

1√
π

∫
CL

exp(−u2)

u− ζs,m
du = Z(ζs,m), (6.6)
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1√
π

∫
CL

u exp(−u2)

u− ζs,m
du = 1 + ζs,mZ(ζs,m) (6.7)

and
1√
π

∫
CL

u2 exp(−u2)

u− ζs,m
du = ζs,m[1 + ζs,mZ(ζs,m)]. (6.8)

We will also need several integrals of the Bessel functions of the first kind. We calculate
these integrals in Appendix C, where we obtain

2

∫ ∞
0

J2
m(w

√
2bs)w exp(−w2) dw = Im(bs) exp(−bs), (6.9)

4

∫ ∞
0

Jm(w
√

2bs)J
′
m(w

√
2bs)w

2 exp(−w2) dw =
√

2bs [I ′m(bs)− Im(bs)] exp(−bs)
(6.10)

and

4

∫ ∞
0

[J ′m(w
√

2bs)]
2w3 exp(−w2) dw =

[
m2Im(bs)

bs
+ 2bs (Im(bs)− I ′m(bs))

]
exp(−bs),

(6.11)
where

Im(bs) =
1

2π

∫ π

−π
exp(bs cosϕ− imϕ) dϕ. (6.12)

are the m-th order modified Bessel function of the first kind and I ′m(bs) = dIm/dbs is
the derivative of the modified Bessel function with respect to its argument.

Using all the results above, the dielectric tensor in (6.2) in the basis shown in figure 1
is

ε =

 εxx iεxy εxz
−iεxy εyy iεyz
εxz −iεyz εzz

 , (6.13)

where

εxx = 1 +
∑
s

∞∑
m=−∞

ω2
ps

ω|k‖|vts
m2Im(bs)

bs
exp(−bs)Z(ζs,m), (6.14)

εyy = 1 +
∑
s

∞∑
m=−∞

ω2
ps

ω|k‖|vts

[
m2Im(bs)

bs
+ 2bs (Im(bs)− I ′m(bs))

]
exp(−bs)Z(ζs,m),

(6.15)

εzz = 1 +
∑
s

∞∑
m=−∞

2ω2
ps

ω|k‖|vts
Im(bs) exp(−bs) ζs,m [1 + ζs,mZ(ζs,m)] , (6.16)

εxy =
∑
s

∞∑
m=−∞

ω2
ps

ω|k‖|vts
m [I ′m(bs)− Im(bs)] exp(−bs)Z(ζs,m), (6.17)

εxz =
∑
s

∞∑
m=−∞

ω2
ps

ωk‖vts

Zs
|Zs|

√
2

bs
mIm(bs) exp(−bs) [1 + ζs,mZ(ζs,m)] (6.18)

and

εyz = −
∑
s

∞∑
m=−∞

ω2
ps

ωk‖vts

Zs
|Zs|

√
2bs [I ′m(bs)− Im(bs)] exp(−bs) [1 + ζs,mZ(ζs,m)] .

(6.19)
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Figure 4. Functions Im(bs) exp(−bs) as a function of their argument bs for m = 0 (black),
m = 1 (blue), m = 2 (red) and m = 3 (green).

As in the case of a general distribution function fs(v‖, v⊥), this dielectric tensor can
be simplified in various limits. For the modified Bessel functions, it is very useful to know
several properties.
• The modified Bessel functions with negative m can be deduced from the ones with

positive m by using the change of variables ϕ′ = −ϕ, giving

I−m(bs) =
1

2π

∫ π

−π
exp(bs cosϕ+ imϕ) dϕ

=
1

2π

∫ π

−π
exp(bs cosϕ′ − imϕ′) dϕ′ = Im(bs), (6.20)

where m = 1, 2, 3, . . .
• The modified Bessel functions are functions that diverge exponentially for large

arguments. In figure 4, we show Im(bs) exp(−bs) for a few m. We multiply Im(bs) by
the exponential because this is the combination in which the modified Bessel functions
appear in the dispersion relation.
• The derivatives of the modified Bessel functions can also be written in terms of

modified Bessel functions by using cosϕ = [exp(iϕ) + exp(−iϕ)]/2,

I ′m(bs) =
1

2π

∫ π

−π
cosϕ exp(bs cosϕ− imϕ) dϕ =

1

2
[Im−1(bs) + Im+1(bs)] . (6.21)

• The modified Bessel functions of the first kind are the Fourier coefficients of the
function exp(bs cosϕ),

exp(bs cosϕ) =

∞∑
m=−∞

Im(bs) exp(imϕ). (6.22)

This Fourier series is useful to calculate infinite sums of modified Bessel functions.
• The modified Bessel functions can be expanded for small and large bs. For bs � 1,

the Bessel functions with positive m become (see Appendix A)

Im(bs) =

(
bs
2

)m ∞∑
p=0

1

(m+ p)! p!

(
bs
2

)2p

. (6.23)
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For bs � 1, the modified Bessel functions become (see Appendix D)

Im(bs) =
exp(bs)√

2πbs

(
1− 4m2 − 1

8bs
+O(b−2

s )

)
. (6.24)

The plasma dispersion function can also be expanded for ζs,m small and large.

We proceed to solve three examples in which we use the hot plasma dispersion relation
for Maxwellian distribution functions. In these examples, the plasma is composed of an
ion species with charge Ze and mass mi, and electrons with charge −e and mass me.
The electron gyrofrequency Ωe = eB/me is defined to be positive, that is, Ωs → −Ωe
when s = e. We also assume that ωpe ∼ Ωe and that the temperatures of electrons and
ions are of the same order, Ti ∼ Te.

6.1. Electron cyclotron damping

We study the damping of the the electron cyclotron wave. We discussed this wave in
the notes on cold plasma waves. This wave propagates parallel to the magnetic field line
(k̂ = b̂, k = k‖), its polarization is right-handed circular, and its dispersion relation is

Ωe − ω '
ω2
peΩe

k2
‖c

2
� 1. (6.25)

To study how this wave damps, we consider the limit

ω ' Ωe ∼ ωpe � |ω − Ωe| & |k‖|vte, (6.26)

and we ignore the ions because they do not respond to high frequencies. In the limit (6.26),
the wave damping is small, and the wave is very close to the cold plasma limit. To simplify
(6.13), we use that terms that contain Z(ζe,−1), with ζe,−1 = (ω − Ωe)/|k‖|vte & 1,
are much larger than the rest of the terms because for m 6= −1, ζe,m � 1 and hence
Z(ζe,m) ' −1/ζe,m � 1. Moreover, be = 0 because k⊥ = 0, giving

• Im(be) = 0 for m 6= 0 and I0(be) = 1,
• m2Im(be)/be = 0 for m 6= ±1 and I−1(be)/be = 1/2 = I1(be)/be, and
• I ′m(be) = 0 for m 6= ±1 and I ′−1(be) = 1/2 = I ′1(be).

Using these approximations, the dielectric tensor (6.13) simplifies to

ε =

 εxx iεxy 0
−iεxy εyy 0

0 0 εzz

 , (6.27)

where

εxx ' εyy ' −εxy '
ω2
pe

2Ωe|k‖|vte
Z(ζe,−1) +O

( |ω − Ωe|
Ωe

)
. (6.28)

In the subsidiary limit (ω − Ωe)/|k‖|vte = ζe,−1 � 1,

Z(ζe,−1) ' − 1

ζe,−1
− 1

2ζ3
e,−1

+ i
√
π exp(−ζ2

e,−1). (6.29)

Thus, equation (6.28) becomes

εxx ' εyy ' −εxy ' −
ω2
pe

2Ωe(ω − Ωe)

(
1 +

1

2ζ2
e,−1

− i
√
πζe,−1 exp(−ζ2

e,−1)

)
. (6.30)
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Substituting (6.27) into (3.4) and assuming that Ẽ·b̂ = Ẽz = 0, we obtain the solutions

k2
‖c

2

ω2
=
εxx + εyy

2
±
√(

εxx − εyy
2

)2

+ ε2xy. (6.31)

The electron cyclotron wave is the solution corresponding to the plus sign,

k2
‖c

2

Ω2
e

' 2εxx = − ω2
pe

Ωe(ω − Ωe)

(
1 +

1

2ζ2
e,−1

− i
√
πζe,−1 exp(−ζ2

e,−1)

)
. (6.32)

The last term in equation (6.32) is exponentially small when |ζe,−1| � 1, but we keep
it because it is fundamentally different from other terms: it is imaginary and it will give
wave damping. The term small by ζ−2

e,−1 � 1 is kept because it is needed to obtain the
correct factor of order unity for the exponentially small correction. To lowest order we
find the cold plasma wave solution

ω(0) ' Ωe −
ω2
peΩe

k2
‖c

2
. (6.33)

We can find the correction to this dispersion relation by using ω = ω(0) +ω(1) +iγ, where
γ � ω(1) � ω(0). We find

ω(1)

Ωe − ω(0)
' − 1

2(ζ
(0)
e,−1)2

' −
k6
‖Tec

4

meΩ2
eω

4
pe

, (6.34)

where ζ
(0)
e,−1 = (ω(0) − Ωe)/|k‖|vte, and

γ

Ωe − ω(0)
' √πζ(0)

e,−1 exp
(
−ζ2

e,−1

)
' −√πΩe − ω(0)

|k‖|vte
exp

(
− (Ωe − ω(0))2

k2
‖v

2
te

+ 1

)
. (6.35)

Thus, the resonance with the electron cyclotron motion damps the wave. In this case,
where we have assumed |ω − Ωe| � |k‖|vte, the damping is small, but the damping
becomes large for |ω − Ωe| ∼ |k‖|vte.

6.2. Electron Bernstein waves

We now consider perpendicular propagation (k‖ = 0). To simplify the problem, we assume
that the index of refraction is very large, that is, k⊥c/ω � 1. We showed in the cold
plasma waves notes that waves with very large index of refraction are electrostatic and
have to satisfy the dispersion relation k̂ ·ε · k̂ ' 0. In the perpendicular propagation case,
this dispersion relation becomes εxx = 0. This condition gives the lower and upper hybrid
resonance in the cold plasma dispersion relation. In the hot plasma dispersion relation,
using that k‖ = 0 implies that (|k‖|vti)−1Z(ζs,m) = −(ω −mΩs)

−1, we find

εxx = 1−
∑
s

∞∑
m=−∞

ω2
ps

ω(ω −mΩs)

m2Im(bs)

bs
exp(−bs) = 0. (6.36)

This is the dispersion relation for Bernstein waves.
We consider only frequencies of the order of the electron gyrofrequency Ωe. Then, the

ion contribution can be neglected, leading to

εxx ' 1−
∞∑
m=1

ω2
pe

ω2 −m2Ω2
e

2m2Im(be)

be
exp(−be) = 0, (6.37)
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Figure 5. Frequency ω as a function of the perpendicular wavenumber k⊥ for electron
Bernstein waves with ωpe/Ωe = 2.

where we have used the fact that Im(bs) = I−m(bs). The dispersion relation (6.37) can
be solved numerically.

We show the dispersion relation for ωpe/Ωe = 2 in figure 5. The dispersion relation
is multivalued, giving several possible frequencies at each value of k⊥. It is easy to see
why there are multiple solutions in the limits k⊥vte/Ωe � 1 and k⊥vte/Ωe � 1. For
k⊥vte/Ωe � 1, be is small and the functions Im(be)/be become small for m > 2. Thus,
one possible way to satisfy equation (6.37) is that one of the denominators become
small, that is, ω ' qΩe for some integer q > 2. Similarly, for k⊥vte/Ωe � 1, the functions
Im(be) exp(−be)/be become small, and the frequency must be close to one of the multiples
of Ωe to ensure that at least one of the denominators is small. Interestingly, the frequencies
ω = qΩe with q > 2 are not the only possible solutions when k⊥vte/Ωe � 1. In this limit,
m2Im(be)/be = 0 for m 6= 1, and I1(be)/be = 1/2, giving

εxx ' 1− ω2
pe

ω2 − Ω2
e

= 0. (6.38)

The solution to this dispersion relation is the upper-hybrid frequency ωUH =
√
ω2
pe + Ω2

e

that can be seen in figure 5.
The electrostatic approximation used to obtain equation (6.37) fails for sufficiently

small k⊥ because the index of refraction k⊥c/ω becomes sufficiently small. Thus, the
region of small k⊥vte/Ωe is not exact.

We finish by pointing out that these waves are not damped because of the restrictive
assumption k‖ = 0.

6.3. Low frequency modes: linear gyrokinetics

We consider modes with frequencies much lower than the gyrofrequencies, ω � Ωs. In this
limit, we recover drift kinetic results when bs � 1. By keeping finite gyroradius effects,
bs ∼ 1, we obtain gyrokinetics. We assume ω ∼ k‖vts and at the same time k⊥vts/Ωs ∼ 1.
These two assumptions imply that k‖/k⊥ ∼ ω/Ωs � 1. These requirements can be
summarized in the following orderings

bs ∼ ζs,0 ∼
ωps
Ωs
∼ 1� ζs,m6=0 ∼

k⊥
k‖
∼ Ωs

ω
. (6.39)
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Note that we are not making a distinction between electrons and ions, that is, we are
assuming that

√
me/mi � ω/Ωs. The assumptions in (6.39) imply that, for m 6= 0,

Z(ζs,m) = − 1

ζs,m
+O

(
1

ζ3
s,m

)
=
|k‖|vts
mΩs

1

1− ω/mΩs
+O

(
ω3

Ω3
s

)
' |k‖|vts

mΩs︸ ︷︷ ︸
∼ω/Ωs

+
ω|k‖|vts
m2Ω2

s︸ ︷︷ ︸
∼ω2/Ω2

s

,

(6.40)

1 + ζs,mZ(ζs,m) = O

(
1

ζ2
s,m

)
= O

(
ω2

Ω2
s

)
(6.41)

and

ζs,m[1 + ζs,mZ(ζs,m)] = − 1

2ζs,m
+O

(
1

ζ3
s,m

)
' |k‖|vts

2mΩs
+
ω|k‖|vts
2m2Ω2

s

. (6.42)

With these results, the coefficients of the dielectric tensor in equations (6.14) - (6.19)
become

εxx = 1 +
∑
s

∞∑
m=1

2ω2
ps

Ω2
s

Im(bs)

bs
exp(−bs) = O(1), (6.43)

εyy =
∑
s

ω2
ps

ω|k‖|vts
2bs [I0(bs)− I ′0(bs)] exp(−bs)Z(ζs,0) = O

(
Ω2
s

ω2

)
, (6.44)

εzz =
∑
s

2ω2
ps

ω|k‖|vts
I0(bs) exp(−bs) ζs,0 [1 + ζs,0Z(ζs,0)] = O

(
Ω2
s

ω2

)
, (6.45)

εxy =
∑
s

∞∑
m=1

2ω2
ps

ωΩs
[I ′m(bs)− Im(bs)] exp(−bs) = O

(
Ωs
ω

)
. (6.46)

and

εyz = −
∑
s

ω2
ps

ωk‖vts

Zs
|Zs|

√
2bs [I ′0(bs)− I0(bs)] exp(−bs) [1 + ζs,0Z(ζs,0)] = O

(
Ω2
s

ω2

)
,

(6.47)
where we have used I−m(bs) = Im(bs) in εxx and εxy. Note that the components of the
dielectric tensor with m = 0 are the largest. We do not give the component εxz = O(1)�
Ωi/ω because its contribution to the determinant of n2(k̂k̂−I)+ε is small. The elements
εxx and εxy can be simplified by evaluating (6.22) and its derivative with respect to bs
at ϕ = 0 to obtain

exp(bs) =

∞∑
m=−∞

Im(bs) = I0(bs) + 2

∞∑
m=1

Im(bs) (6.48)

and

exp(bs) =

∞∑
m=−∞

I ′m(bs) = I ′0(bs) + 2

∞∑
m=1

I ′m(bs). (6.49)

Thus, equations (6.43) and (6.46) become

εxx = 1 +
∑
s

ω2
ps

Ω2
s

1− I0(bs) exp(−bs)
bs

= O(1) (6.50)
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and

εxy =
∑
s

ω2
ps

ωΩs
[I0(bs)− I ′0(bs)] exp(−bs) = O

(
Ωs
ω

)
. (6.51)

Using equations (6.44), (6.45), (6.47), (6.50) and (6.51), and assuming

k‖c

ω
∼ 1� k⊥c

ω
∼ Ωs

ω
, (6.52)

the dispersion relation finally becomes

[n2(k̂k̂− I) + ε] · Ẽ = εxx − k2
‖c

2/ω2 iεxy k‖k⊥c2/ω2

−iεxy εyy − k2
⊥c

2/ω2 iεyz
k‖k⊥c2/ω2 −iεyz εzz − k2

⊥c
2/ω2

 Ẽx
Ẽy
Ẽz

 =

 0
0
0

 .

(6.53)

This is the simplest linear gyrokinetic model. Note that large factors such as Ωs/ω or
k⊥/k‖ appear in equation (6.53). To eliminate these factors, we normalize the equations.

We use the normalized electric field (Ẽx, (k⊥c/ω)Ẽy, (k⊥/k‖)Ẽz), and we multiply the
second equation by (ω/k⊥c) and the third equation by k‖/k⊥. With these operations, we
obtain Dxx − k2

‖c
2/ω2 iDxy k2

‖c
2/ω2

−iDxy Dyy − 1 iDyz

k2
‖c

2/ω2 −iDyz Dzz − k2
‖c

2/ω2

 Ẽx
(k⊥c/ω)Ẽy
(k⊥/k‖)Ẽz

 =

 0
0
0

 , (6.54)

where

Dxx = εxx = 1 +
∑
s

c2βs
v2
ts

1− I0(bs) exp(−bs)
bs

, (6.55)

Dyy =
ω2

k2
⊥c

2
εyy =

∑
s

βs [I0(bs)− I ′0(bs)] exp(−bs)ζs,0Z(ζs,0), (6.56)

Dzz =
k2
‖
k2
⊥
εzz =

∑
s

c2βs
v2
ts

1

bs
I0(bs) exp(−bs) [1 + ζs,0Z(ζs,0)] , (6.57)

Dxy =
ω

k⊥c
εxy =

∑
s

cβs
vts

1√
2bs

[I0(bs)− I ′0(bs)] exp(−bs). (6.58)

and

Dyz =
k‖
k⊥

ω

k⊥c
εyz = Dxy +

∑
s

cβs
vts

1√
2bs

[I0(bs)− I ′0(bs)] exp(−bs)ζs,0Z(ζs,0), (6.59)

Here βs = 2µ0nsTs/B
2 is the β parameter for species s.

As an example of the use of these equations, we study kinetic Alfven waves. We first
expand in

√
me/mi � 1 assuming that vti ∼ vA � vte � c, i.e. βi = 2µ0niTi/B

2 is

of order unity. Here vA = vti/
√
βi =

√
B2/µ0nimi is the Alfven velocity. We use the

ordering

be ∼
me

mi
� ζe,0 ∼

√
me

mi
� ζi,0 ∼ bi ∼ βi ∼ βe ∼

c

vte
∼ 1� c

vti
∼ k‖c

ω
∼
√
mi

me
.

(6.60)
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Figure 6. Real frequency ωr and growth rate γ as a function of the perpendicular wavenumber
k⊥ for kinetic Alfven waves with ZTe/Ti = 1 and βi = 0.2(black), 1(red), 5(blue). The growth
rate of the case with βi = 0.2 is barely visible.

Then, Z(ζe,0) ' i
√
π, I0(be) ' 1, [1− I0(be) exp(−be)]/be ' 1 and I ′0(be) ' 0. With these

results, equations (6.55)-(6.59) become

Dxx '
c2

v2
A

1− I0(bi) exp(−bi)
bi

, (6.61)

Dyy ' βi [I0(bi)− I ′0(bi)] exp(−bi)ζi,0Z(ζi,0), (6.62)

Dzz '
c2

v2
A

1

bi

[
Ti
ZTe

+ I0(bi) exp(−bi) (1 + ζi,0Z(ζi,0))

]
, (6.63)

Dxy '
c

vA

√
βi
2bi

[(I0(bi)− I ′0(bi)) exp(−bi)− 1] (6.64)

and

Dyz ' Dxy +
c

vA

√
βi
2bi

[I0(bi)− I ′0(bi)] exp(−bi)ζi,0Z(ζi,0). (6.65)

Substituting these results into (6.54) and setting the determinant of the matrix equal
to zero, one obtains the frequency of the kinetic Alfven wave. In figure 6, the complex
frequency ω = ωr+iγ of the kinetic Alfven wave is shown as a function of bi for ZTe/Ti =
1 and several values of βi.

The dispersion relation (6.61)-(6.65) gives the shear Alfven wave in the limit bi � 1
because in this limit, the dispersion relation reduces to Dxx−k2

‖c
2/ω2 = 0, where Dxx '

c2/v2
A. Thus, ω = k‖vA. Keeping higher order terms in bi � 1 gives the small damping

of the shear Alfven wave.
In the limit bi � 1, the dispersion relation (6.61)-(6.65) becomes

Dxx '
c2

v2
A

1

bi
, Dzz '

c2

v2
A

Ti
ZTe

1

bi
, Dxy ' Dyz ' −

c

vA

√
βi
2bi

. (6.66)

The coefficient Dyy ∼ βi/b
3/2
i can be neglected for βi ∼ 1. Thus, the dispersion relation

(6.54) becomes Dxx − k2
‖c

2/ω2 iDxy k2
‖c

2/ω2

−iDxy −1 iDxy

k2
‖c

2/ω2 −iDxy Dzz − k2
‖c

2/ω2

 Ẽx
(k⊥c/ω)Ẽy
(k⊥/k‖)Ẽz

 =

 0
0
0

 . (6.67)
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Setting the determinant of the matrix equal to zero gives

ω =

√
1 + ZTe/Ti

1 + (1 + ZTe/Ti)βi/2
k‖vA

√
bi. (6.68)

The polarization corresponding to this solution is

Ẽy

Ẽx
=

ik‖
k⊥

(
1 +

ZTe
Ti

)3/2
√

βi
2 + (1 + ZTe/Ti)βi

,
Ẽz

Ẽx
= − k‖

k⊥

ZTe
Ti

. (6.69)

Note that this wave, like the shear Alfven wave for bi � 1, is not strongly damped
even though we have assumed that ζi,0 ∼ 1. Unlike in the shear Alfven wave, this wave
induces a parallel electric field and a perturbation to the magnitude of the magnetic
field, B̃ = B̃z = k⊥Ẽy/ω. However, due to finite ion gyroradius effects, the combination
of parallel electric field and perturbation to the magnetic field magnitude in (6.69) does
not cause damping.
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Appendix A. Bessel functions and modified Bessel functions for
small argument

For λs � 1,

Jm(λs) =
1

2π

∫ π

−π
exp(iλs sinϕ− imϕ) dϕ =

∞∑
q=0

1

2π

∫ π

−π

1

q!
iqλqs sinq ϕ exp(−imϕ) dϕ.

(A 1)
Using

iq sinq ϕ =
1

2q
[exp(iϕ)− exp(−iϕ)]q =

1

2q

q∑
r=0

(
q

r

)
(−1)q−r exp(i(2r − q)ϕ), (A 2)

and
1

2π

∫ π

−π
exp(imϕ) dϕ = δ0m, (A 3)

where δij is the Kronecker delta, equation (A 1) with m > 0 becomes equation (4.26).
A similar calculation for the modified Bessel functions gives (6.23).

Appendix B. Bessel functions for large argument

For λs � 1, the integral in (4.15) is dominated by the values of ϕ around the maxima
and minima of the phase λs sinϕ, that is, by the values of ϕ around π/2 and −π/2. To
obtain the integral, we follow the stationary phase method (Bender & Orszag 1999). The
integrand of (4.15) is

exp(iλs sinϕ− imϕ) ' exp

(
iλs −

imπ

2
− iλs(ϕ− π/2)2

2

)
(B 1)

around ϕ = π/2 and

exp(iλs sinϕ− imϕ) ' exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
(B 2)

around ϕ = −π/2. For |ϕ − π/2| � 1/
√
λs and |ϕ + π/2| � 1/

√
λs, the integrand is

highly oscillatory and it does not contribute much to the integral in (4.15), as we will
show below.

For λs � 1, we write

Jm(λs) =
1

2π

∫ π

−π
exp(iλs sinϕ− imϕ) dϕ

' 1

2π

∫ −π/2+A/
√
λs

−π/2−A/√λs

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

+
1

2π

∫ π/2+A/
√
λs

π/2−A/√λs

exp

(
iλs −

imπ

2
− iλs(ϕ− π/2)2

2

)
dϕ

+
1

2π

∫
rest

exp(iλs sinϕ− imϕ) dϕ, (B 3)

where A is a large positive number that satisfies

1� A�
√
λs. (B 4)

We will show that the exact value of A is not important. The last integral in (B 3) (the



Hot plasma waves 19

integral over the “rest”) is the integral over what is left of the interval [−π, π] after
subtracting the intervals [−π/2 − A/

√
λs,−π/2 + A/

√
λs] and [π/2 − A/

√
λs, π/2 +

A/
√
λs],∫

rest

exp(iλs sinϕ− imϕ) dϕ =

∫ −π/2−A/√λs

−π
exp(iλs sinϕ− imϕ) dϕ

+

∫ π/2−A/√λs

−π/2+A/
√
λs

exp(iλs sinϕ− imϕ) dϕ+

∫ π

π/2+A/
√
λs

exp(iλs sinϕ− imϕ) dϕ.

(B 5)

We will show at the end of this appendix that these integrals are negligible.
To take the first two integrals in equation (B 3), we use the complex plane. The first

integral in (B 3) is equal to the integrals over the paths shown in figure 7(a): C (the
straight line through ϕ = −π/2 at a π/4 angle with respect to the real axis), C−∞ and
C∞ (the two circumference sectors at large |ϕ+ π/2|). Thus,

1

2π

∫ −π/2+A/
√
λs

−π/2−A/√λs

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ =

1

2π

∫
C

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

+
1

2π

∫
C−∞

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

+
1

2π

∫
C∞

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ. (B 6)

The integral over C dominates. We take this integral using ϕ = −π/2+t
√

2/λs exp(iπ/4)

1

2π

∫
C

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

=
1

π
√

2λs
exp

(
−iλs +

imπ

2
+

iπ

4

)∫ A/
√

2

−A/
√

2

exp(−t2) dt. (B 7)

Since we have chosen A � 1, we find
∫ A/√2

−A/
√

2
exp(−t2) dt '

∫∞
−∞ exp(−t2) dt =

√
π,

leading to

1

2π

∫
C

exp

(
−iλs +

inπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ ' 1√

2πλs
exp

(
−iλs +

inπ

2
+

iπ

4

)
.

(B 8)
We proceed to show that the integrals over C−∞ and C∞ are negligible. For the integral
over C−∞ we use ϕ = −π/2 + (A/

√
λs) exp(i(θ − π)),

1

2π

∫
C−∞

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

=
Ai

2π
√
λs

exp

(
−iλs +

imπ

2

)∫ π/4

0

exp

(
A2i

2
exp(2iθ) + i(θ − π)

)
dθ. (B 9)

Using that in the interval 0 < θ < π/4,∣∣∣∣exp

(
A2i

2
exp(2iθ) + i(θ − π)

)∣∣∣∣ = exp

(
−A

2

2
sin 2θ

)
6 exp

(
−2A2

π
θ

)
, (B 10)
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Figure 7. Contours in the complex plane used to take the integrals in equation (B 3).

we find

1

2π

∣∣∣∣∣
∫
C−∞

exp

(
−iλs +

inπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

∣∣∣∣∣
6

A

2π
√
λs

∫ π/4

0

exp

(
−2A2

π
θ

)
dθ = O

(
1

A
√
λs

)
� 1√

λs
. (B 11)

Thus, the integral over the path C−∞ is negligible compared to (B 8). Using a similar
method, we can show that the integral over C∞ is negligible as well, leaving

1

2π

∫ −π/2+A/
√
λs

−π/2−A/√λs

exp

(
−iλs +

imπ

2
+

iλs(ϕ+ π/2)2

2

)
dϕ

' 1√
2πλs

exp

(
−iλs +

imπ

2
+

iπ

4

)
(B 12)

We can take the second integral in (B 3) using the path shown in figure 7(b). Following
the procedure that we used to obtain (B 12), we find

1

2π

∫ π/2+A/
√
λs

π/2−A/√λs

exp

(
iλs −

imπ

2
− iλs(ϕ− π/2)2

2

)
dϕ

' 1√
2πλs

exp

(
iλs −

imπ

2
− iπ

4

)
(B 13)

Adding the integrals in (B 12) and (B 13), we find equation (4.27).

We finish by arguing that the integrals in (B 5) are negligible. We can prove it by
integrating by parts. We show the procedure for the first integral in the right side of
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(B 5). Integrating by parts this integral, we find∫ −π/2−A/√λs

−π
exp(iλs sinϕ− imϕ) dϕ = − i

λs

[
exp(iλs sinϕ− imϕ)

cosϕ

]−π/2−A/√λs

−π

+
i

λs

∫ −π/2−A/√λs

−π
exp(iλs sinϕ)

d

dϕ

(
exp(−imϕ)

cosϕ

)
dϕ.

(B 14)

In the first term of this equation, the limit ϕ = −π/2 − A/
√
λs dominates because

cosϕ ' ϕ+ π/2 around ϕ = −π/2, giving

− i

λs

[
i exp(iλs sinϕ− imϕ)

cosϕ

]−π/2−A/√λs

−π
= O

(
1

A
√
λs

)
. (B 15)

The second integral in the right side of (B 14) can be bounded. The integrand of the
second integral in the right side of (B 14) goes as 1/(ϕ+π/2)2 for ϕ near −π/2. Thus, we
will find its maximum value in this region. Taking this into consideration, in the interval
[−π,−π/2−A/

√
λs], there is a constant K ∼ 1 such that∣∣∣∣exp(iλs sinϕ)

d

dϕ

(
exp(−imϕ)

cosϕ

)∣∣∣∣ 6 K

(ϕ+ π/2)2
, (B 16)

leading to ∣∣∣∣∣ i

λs

∫ −π/2−A/√λs

−π
exp(iλs sinϕ)

d

dϕ

(
exp(−imϕ)

cosϕ

)
dϕ

∣∣∣∣∣
6

1

λs

∫ −π/2−A/√λs

−π

K

(ϕ+ π/2)2
dϕ = O

(
1

A
√
λs

)
. (B 17)

This bound is not very accurate, and it can be made better by integrating by parts again.
However, to prove that the integral is negligible, this bound is sufficient. Estimates (B 15)
and (B 17) give∫ −π/2−A/√λs

−π
exp(iλs sinϕ− imϕ) dϕ = O

(
1

A
√
λs

)
� 1√

λs
. (B 18)

Thus, this integral is much smaller than the main contribution (4.27). All the integrals
in (B 5) are of the same order and hence the integrals in (B 5) are negligible,∫

rest

exp(iλs sinϕ− imϕ) dϕ = O

(
1

A
√
λs

)
� 1√

λs
. (B 19)

Appendix C. Useful integrals of Bessel functions

In this Appendix, we calculate the integrals in (6.9), (6.10) and (6.11). To calculate
these integrals, we will use the auxiliary function

F (ξ, η) = 2

∫ ∞
0

Jm(ξw)Jm(ηw)w exp(−w2) dw =
1

2π2

∫ ∞
0

dw

∫ π

−π
dϕ

∫ π

−π
dϕ′ w

× exp(−w2 + iξw sinϕ+ iηw sinϕ′ − im(ϕ+ ϕ′)). (C 1)
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Using the integration variables wx = w cosϕ, wy = w sinϕ and θ = ϕ+ ϕ′, we find

F (ξ, η) =
1

2π2

∫ ∞
−∞

dwx

∫ ∞
−∞

dwy

∫ π

−π
dθ

× exp(−w2
x − w2

y + iηwx sin θ + iwy(ξ − η cos θ)− imθ). (C 2)

Integrating over wx by completing the square, we obtain

F (ξ, η) =
1

2π3/2

∫ ∞
−∞

dwy

∫ π

−π
dθ exp

(
−η

2

4
sin2 θ − w2

y + iwy(ξ − η cos θ)− imθ

)
.

(C 3)

Integrating over wy gives

F (ξ, η) =
1

2π

∫ π

−π
exp

(
−η

2

4
sin2 θ − (ξ − η cos θ)2

4
− imθ

)
dθ. (C 4)

After a few manipulations, this integral becomes

F (ξ, η) = Im(ξη/2) exp

(
−ξ

2 + η2

4

)
. (C 5)

Noting that 2
∫∞

0
J2
m(w
√

2bs)w exp(−w2) dw = F (
√

2bs,
√

2bs), we obtain (6.9). Using
that

4

∫ ∞
0

Jm(w
√

2bs)J
′
m(w

√
2bs)w

2 exp(−w2) dw = 2
∂F

∂η

∣∣∣∣
ξ=
√

2bs,η=
√

2bs

, (C 6)

we find (6.10). Finally, employing that

4

∫ ∞
0

[J ′m(w
√

2bs)]
2w3 exp(−w2) dw = 2

∂2F

∂ξ∂η

∣∣∣∣
ξ=
√

2bs,η=
√

2bs

, (C 7)

we obtain

4

∫ ∞
0

[J ′m(w
√

2bs)]
2w3 exp(−w2) dw =

[I ′m(bs) + bs (I ′′m(bs)− 2I ′m(bs) + Im(bs))] exp(−bs). (C 8)

Since the modified Bessel functions satisfy the differential equation

b2sI
′′
m + bsI

′
m −

(
b2s + n2

)
Im = 0, (C 9)

equation (C 8) can be written as (6.11).

Appendix D. Modified Bessel functions for large argument

For bs � 1, the integral

Im(bs) =
1

2π

∫ π

−π
exp(bs cosϕ− imϕ) dϕ. (D 1)

is dominated by a small region around ϕ = 0. Indeed, at ϕ = 0 the argument of the
exponential is maximum and it can be approximated by

bs cosϕ− imϕ = bs −
bs
2
ϕ2 +

bs
24
ϕ4 +O(bsϕ

6) + imϕ. (D 2)
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Thus, since the argument of the exponential exp(bs cosϕ − imϕ) is very negative for
ϕ� 1/

√
bs, the integrand of the integral in (D 1) is only significantly different from zero

in an interval of size 1/
√
bs around ϕ = 0.

To calculate the integral, we change to the integration variable α = ϕ
√
bs/2 and we

use the approximation (D 2) to write

Im(bs) =
exp(bs)

π
√

2bs

∫ π
√
bs/2

−π
√
bs/2

exp(−α2) exp

(
−
√

2

bs
imα+

1

6bs
α4 +O(b−2

s )

)
dα. (D 3)

Since bs � 1, we can approximate the the limits of the integral to be −∞ and ∞, and
we can Taylor expand one of the exponentials to find

exp

(
−
√

2

bs
imα+

1

6bs
α4 +O(b−2

s )

)
=1−

√
2

bs
imα− m2

bs
α2 +

1

6bs
α4

+
im3
√

2

3b
3/2
s

α3 +O(b−2
s ). (D 4)

With these approximations, equation (D 3) gives

Im(bs) =
exp(bs)

π
√

2bs

∫ ∞
−∞

exp(−α2)

(
1−

√
2

bs
imα− m2

bs
α2 +

1

6bs
α4

+
im3
√

2

3b
3/2
s

α3 +O(b−2
s )

)
dα

=
exp(bs)

π
√

2bs

[
Γ(1/2)− 6m2Γ(3/2)− Γ(5/2)

6bs
+O(b−2

s )

]
, (D 5)

where Γ(ν) =
∫∞

0
xν−1 exp(−x) dx is the Euler Gamma function. Equation (D 5) leads

to expression (6.24).


