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1. Introduction

In these notes, we consider a magnetized plasma (ps. < 1 and w/Q, < 1 for all species
s) with magnetic energy of the order of the thermal energy,

2p0p
Thus, the plasma has sufficient energy to modify the background magnetic field.

To simplify the derivation as much as possible, we know consider the high flow regime,
where
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In this regime, we will obtain a model that is the kinetic equivalent of Magneto-Hydro-
Dynamics (MHD).

2. Kinetic Magneto-Hydro-Dynamics

To determine the state of the plasma, we need to evolve in time the distribution
functions fs(r,v,t) for all species s, the magnetic field B(r,t) and the electric field
E(r,t). To evolve the electric field, we split it into its parallel component, E, small by
a factor of p;x < 1, and E . The perpendicular component E, determines the E x B
drift,

L. b 2.1

VE = B X D, ( . )
so instead of E | , we can evolve in time vg. Thus, we look for equations to determine f;,
B, E| and vg. These equations are
the high flow drift kinetic equation for f;,
Faraday’s induction law for B,
the quasineutrality equation for £, and
the perpendicular momentum conservation equation for vg.

2.1. High flow drift kinetic equation

For fs(r,v,t) we can use the drift kinetic equation. To lowest order in the expansion in
psx < 1, we know that the distribution function is approximately independent of gy-
rophase, fs(r,v), i1, 0,t) = (fs),(r, v, i1, t). The equation for the gyrophase independent
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piece of the distribution function is

<fs>¢ Zse 1. Db NSy _
+(v”b+vE) V{fs)y + : b + Q&b>< D E—-pub-VB o, =0,
(2.2)
where we have defined the operator
D ~
= =_ V. 2.
Di at“r(v”b-f—VE) \Y% ( 3)

We can rewrite equation (2.2) such that F) and vg appear instead of E,

O(fs)e
ot

+(’UHB+VE)'V<fS>LP+ <7ZneE|+]:1;lt) Vg — BVB> a<8f1j|>¢:0' (2.4)

We will use this equation instead of (2.2).
The approximation fs(r, vy, 1, 0, t) = (fs),(r, v), i1, t) implies that the average flow is

u; :uS”B—&—vE, (2.5)
where
Ug|| = nis/fsvu d3v = 721—7; /B(fs><pv“ dvy dp. (2.6)
2.2. Faraday’s induction law
Due to the orderings (1.2) and (1.3), we find that
E+vpxB=Eb~0. (2.7)

Note that according to (2.5), this equation is equivalent to E + us x B ~ 0, which is one
of the MHD equations.
Taking the curl of (2.7) and using Faraday’s induction law V x E = —9B/0t, we obtain

0B
ot

The initial condition for B, B(r,t = 0) = Bg(r), must satisfy V- By = 0. Equation (2.8)
ensures that if V - B = 0 is satisfied at ¢ = 0, it is satisfied at all times.

=V x (vg x B). (2.8)

2.3. Quasineutrality equation
We start from Gauss’ law

«V-E=> Zen,. (2.9)

Using (1.2), we find that the electric field term is of order
Gov -E (e )\7D
ene cv/B L’
where A\p = \/egT./en, is the Debye length. Thus, the electric field term is negligible
if the Debye length is smaller than L and the velocity vy;/+/B is not relativistic (we will

see that the Alfven speed va ~ vy /+/3 is the speed of propagation of perturbation in the
magnetic field). With these assumptions, we finally obtain the quasineutrality equation

(2.10)

> Zsen, = ZZ e/sz fs)p dvy du = 0. (2.11)
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2.4. Perpendicular momentum conservation equation

According to (2.5), the perpendicular component of the average velocity of species s is
vg. Thus, all species move at the same perpendicular velocity vg. We can calculate that
velocity using the perpendicular momentum equation. We multiply the Vlasov equation

Ofs Zse
ot tveVis Mg

by msv and we integrate over velocity space to find the momentum conservation equation
for species s,

(E+vxB)-V,f, =0 (2.12)

du,
NgMe ( 5; + uy - Vus) =-V -P,+ Z,en,E+ Zs,en,u, x B. (2.13)
Here the pressure tensor is
P, :/fsms(v—us)(v—us)d3v. (2.14)

So far, we have not used the assumption ps, < 1. We use it to simplify P,. Since uy
is given by (2.5) to lowest order, and fs ~ (fs),, we can write

P, ~ /B<f5)<p mg[(v) — uSH)B +w][(v) — uSH)‘E) +w]dydpde, (2.15)
where
w1 = +/2uB(cospé; —sinpés). (2.16)

Integrating first over ¢, we obtain
Py~ 21 / B(fs)o ms[(v) — ug)*bb + pB(I = bb)] = pybb + p,1 (I-bb),  (2.17)

where we have used that &;8; +é,&, = I — bb. The quantities py = [ 27 B(fs),ms (v) —
uSH)2 dvj dp and ps1 = Ik 27TBQ<fS>¢mSM dv| du are known as parallel and perpendicular
pressures.

Using the result for P in (2.17), and employing

V- PS =V- [psLI + (psH - psL)BB] = Vpsl + Bf) . V(ps” —pSL)
+(ps) = Ps1)(V - B)b + (poj — ps1)b - Vb, (2.18)

we find that the parallel and perpendicular components of (2.13) are

du, . )
NgMg < 311 +u - Vus) -b=-b- VpsH + (ps1L — psH)V -b+ ZsensEH (2.19)
and
oug,
NgMg ot + ug - vus - *lesL + (pSL 7ps\|)K+ZsensEL +Zsensus x B. (220)
1

Equation (2.19) is an identity because it can be deduced from the conservative form of the
drift kinetic equation (2.4), as we showed in the notes about the drift kinetic equation.
Thus, only (2.20) contains new information. In fact, the sum over all species of (2.20)
gives the equation for vg. Summing over species, we obtain

0 due to quasineutrality

> ngmg <8Buts + u, - Vus) :Wl ~V.iP +(PL-P)k+J xB, (2:21)
S L S
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where P = > py, PL = > ,ps1 and J = ) Z.en,u, is the current density. To
see that equation (2.21) gives the time evolution of vg, we use ug ~ uSHB + vg and
b- Ovg/ot+ vE -85/81? =0=Vvg b+ Vb-vg to write

Ju, OvE b ~\ -
(8t —|—us-Vu5)L W—i—us VVE+VE~<8t+uS-Vb>b

+ ug) (aab +u, - VB) : (2.22)

Equation (2.21) for the total perpendicular momentum of the plasma can also be
obtained using the drift kinetic formalism. Equation (2.21) can be understood as an
equation for the perpendicular component of the current density,

Znsms ( > +u, - Vus>

This same result could be obtained from drift kinetics,

—bx T R 7 i B R (2.23)

JJ_:ZZSQ/fSVJ_dS'U:ZZSG/BfS(WJ_‘FVE)d'U”d/,LdQD

0 due to quasineutrality

—ZZ e/BfSWJ_dU” dud(p-i-Z,den/{’
_ZZ e/27TB fSWJ_ o dvydp ~ ZZ 6/271'3 fs 1W1 ), doy dp. (2.24)

Using the lowest order gyrophase dependent piece fs 1, we find (2.23).
We need to close (2.21) by finding an equation for J. We use Ampere’s law,

V xB=po <J + 60%?) (2.25)

Here €q is the vacuum permittivity and po is the vacuum permeability. From Ampere’s
law we can solve for J, J = (V x B) /o — €9 (0E/0t). Using this expression for J in (2.21),
and employing the usual manipulation to find Maxwell’s stress,

B2
(VxB)xB=B-VB-VB:B=B% — VL<2> (2.26)

we finally obtain

s B? B?
Znsms(all+us-Vus) VL<+PL)+<+PLP|>K,
ot L 2 Mo

Ho

P B P
~T ~woL T

(2.27)

For the order of magnitude estimates, we have used S ~ 1. Note that for non-relativistic
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plasmas (vy;/c < 1), equation (2.27) becomes

du, B? B?
3 ngm, (“ +u, - Vus> =-V, ( + PL> + ( + P - P|) K,| (2.28)
S ot n 210 Ho

where the term in the left side of the equation can be evaluated using equation (2.22).

Note that the pressure force due to the plasma takes the same form as the J x B force:
part of it is in the direction of a perpendicular gradient, and the other is in the direction
of the curvature k. In figure 1 we consider a flux tube around a magnetic field line. The
flux tube is parallel to the magnetic field in most of its surface, and it is perpendicular to
it at its bases. Integrating equation (2.13) over the volume of the flux tube and summing
over all species, we find

i (S, e r )4 3 f o
— nemsug d°r | + nems(ug - N)u,d“A =
(55t 5 frm
—Z/ Ps~f1d2A+/ J x Bd®r, (2.29)
T JA v

where V' is the volume of the flux tube, A is the area of its boundary surface, and n is
the normal to that surface pointing outwards of the flux tube. The left side of equation
(2.29) is the change of total momentum in the flux tube, and the right side is the force
on the flux tube, F. We use (2.17) and (2.26) to write Y P, = Py I+ (P — P, )bb and
J x B =V-[(B2/u)bb — (B2/240)1]. We use these results and the fact that the bases
of the flux tube, A;, are perpendicular to the magnetic field, (f) . fl)f) =1, to rewrite the
right side of equation (2.29) as

B2 ~ 2 32 ~ 2
F = —+ P (71’1)dA+ 7+PL*P” nd-A. (2.30)
A 240 A, \ Mo
——— —_—
Effective pressure Tension

Thus, we find that the forces are the ones depicted in figure 1: an effective pressure against
the whole of the surface of the flux tube, and a tension at the bases. In the limit of the
flux tube becoming infinitely short, the tension force becomes the term proportional to
K in (2.28).

3. Alfven waves and compressional modes in kinetic MHD

Low frequency (w < €25) perturbations to the magnetic field (generated, for example,
by an antenna) propagate as Alfven waves and compressional modes. We study this
propagation in a simple system: a uniform, constant plasma composed of an ion species
of charge Ze and mass m,; and electrons of charge —e and mass m,. in a uniform, constant
magnetic field B = Bz. The gyroaveraged distribution function of both ions and electrons
is assumed to be a Maxwellian,

me \ /2 mg(v2 /2 + uB
(£o(0rossB) = Forsog ) = s (2 exp<—('/Ts“)>, (3.1)

where the densities n, and the temperatures T are constants. The densities satisfy
quasineutrality, Zn; = n.. We assume the equilibrium electric field to be negligible, that
iS, vg =0 and EH =0.

To study the waves that propagate in this system, we first linearize and we then solve
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B2
Effective pressure = — + P

240
=
!

Ay

B2 x
Tension = — + P — P
Ho

Fi1GURE 1. Flux tube around a magnetic field line and forces applied to it by a plasma in the
kinetic MHD regime. The flux tube is parallel to the magnetic field in most of its surface, and
it is perpendicular to it at its bases. Thus, the magnetic flux is conserved within the flux tube,
hence its name. The forces applied on the flux tube are a total pressure on all of its surface A,
and tension at its bases Ay.

the resulting linear equations using Fourier analysis in time and space. As a result we will
obtain a homogeneous system of equations whose non-trivial solutions are the waves. We
will consider two of the solutions: the shear Alfven waves and the compressional modes.

3.1. Linearization of kinetic MHD

We linearize the kinetic MHD equations by considering infinitesimal perturbations to the
distribution function, fass + d(fs),, the magnetic field, B + 6B, the E x B drift, dvg,
and the parallel electric field, dE). To linearize the equations, we need to recall that
Vius =0= VB = Vb, ug = (21/ns) [ fusvpdoydp = 0 and dvg - b = 0. We will
also need the perturbations to the magnitude of the magnetic field B and the unit vector
b. Linearizing B? = B B, we find 6B = b - éB = 0B, and linearizing b we obtain
6b = éB/B — (6B/B)b = 6B /B. With these results, equations (2.4), (2.8), (2.28) and
(2.11) give

99 <fs> O fums

Zgse -
=2 b VE(fs ——0E — ub-VéB 3.2
+ob- Vi(fs)y (ms | — bV II) duy (3.2)
0B

% =V x (6vg x B), (3.3)

e/mi K 196 BéB B?. 0B
Wﬂn/ﬂrﬁﬁ) VE _ -V < Ly dpiL + 5peL) +=—b-V ( L) , (3.4)

ot o o B
Z8n; = on,, (3.5)

where

dng = /27rB5<fs>sa du du+/2W5B|\st duy dp, (3.6)
Opst = /27B25<f5>¢msudv“ dp + /47TBJBHfMSmSu dv) dp. (3.7)

It is convenient to use the perpendicular plasma displacement &, instead of the per-
turbed E x B drift,

_ 08,
§VE— ot . (38)

The vector &, indicates how far the plasma has moved in the direction perpendicular
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FIGURE 2. Perturbed magnetic field lines and plasma displacement & | . The perturbed magnetic

field lines r(l) satisfy the equation dr/dl = b, where [ is the magnetic field line arc length. Thus,
the perturbed magnetic field lines r(z) = 2z + dr(z) must satisfy dr/dl = z + éB, /B. This
equation gives z = [ and ddr/dz = 6B, /B. The equation for dr is the same as equation (3.10)
for £, . Thus, dr = & |, proving that magnetic field lines follow the plasma displacement.

to B. It is a very useful quantity in fluid MHD. The plasma displacement simplifies the
linearized induction equation (3.3),

ooB 0 0

0
= 5V x (€1 xB) =5 [B-VE, —(V-£,)B ¢, - VB (3.9)

Integrating in time, this equation gives the components of 0B parallel and perpendicular
to the background magnetic field B as functions of & |,

5BL:B-V£l:B8§%, (3.10)

5By =—-B(V-£,). (3.11)

The magnetic field lines move with the plasma displacement £ | , as shown in figure 2.
Wherever the perturbed field lines converge, the magnitude B must increase due to
V - B = 0. Similarly, where they diverge, B decreases. This effect is the reason for
5BH x —V - £J_.

3.2. Fourier analysis of the linearized equations
To obtain an analytical solution, we can Fourier analyze in time and space,
5<fs><p(xﬂ 205 Ky t) - gs(v\l ) N) eXp(fth +ik- I‘),
€, (z,2,t) = €, exp(—iwt + ik - 1), (3.12)
OB (v, 2,t) = EH exp(—iwt + ik - r).
Using equations (3.1), (3.10), (3.11) and (3.12), equations (3.2), (3.4) and (3.5) become

) . B Zsev E kjoymsuB ~
(—iw +ikjvy)gs = ( TJ - ”Ts ki 'h) fars, (3.13)
. B2 - k‘ﬁB2 -
—nimw?€ | = —iky (Pi1 + Per) — %(kL &)k — o £, (3.14)

Zi; = e, (3.15)
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where
s = /2773575 doydp —i(kL - € )ns, (3.16)
Pl = / 21 B2gsmspdoy dp — 2i(k - € )nsT. (3.17)

To find non-trivial solutions, we first solve for g, using equation (3.13),

Ejoj —w

_ ik ZSeE~” _ mspuB
- BT, T

ki £L> fus- (3.18)

The distribution function g, is then used to calculate the ion and electron densities,
and the ion and electron perpendicular pressures. The part of the integral over u is
straightforward. For the integral over v||, we change to the variable u = (k) /|k|)(v) /vts),
where v;s = /2T /mg, and we recall that we need to use the Landau contour for the
integral over u (Schekochihin 2015). Using the plasma dispersion function

2(¢) = \} . exf(__g)du (3.19)
and
1 wexp(—u?) .
NG o T@du =1+ G2(G), (3.20)
the perturbed densities and pressures become
ng = _i[l + Cs (Cs)] kHT ns + iCSZ(Cs)(kL ! éL)nm (3'21)
ﬁsL = _i[l + CS (CS)] k’HT sTs + QiCSZ(Cs)(kL 'éL)nsTs- (3'22)
Using (3.21) and (3.22) in (3.14) and (3.15), we find
i £ 41620 - G2 i,
poneT. ZT LT B TNy T
B? 2T; -
e S GE(G) ~ 262 (6) | (e £k =0, (3.23)

{ZT 1+ GEQ]+1+62 <<e)} kET FIZ(C) ~ G2 (kL -1 =0, (3.24)

T,

The solutions to equations (3.23) and (3.24) become clearer if we project the vector
equation (3.23) onto the directions k; x b and k, . Then, we find

W 0 0 - (ko x b) 0
0 Wao  Was ki -& =
0 —W23 W33 eEH/k}HTe 0

o

(3.25)
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where

B2 min

= e, ~ 2Tk (3.26)
B® K’ miw’ 2T;

- K — g7 @2 G) — %2 2
W= w2~ 7T~ 21,02 (%) ~ 262(), (3.27)
Was = GZ(G) — CZ(Ce), (3.28)
ZT.
Was = == [1+ GZ(G)] + 1+ C2(C)- (3.29)

We proceed to find solutions to (3.25).

3.3. Shear Alfven waves

One obvious solution to (3.25) isk €, =0 = E”. Then, the wave has to satisfy Wy, = 0,
giving

w = kHUA, (3'30)
where
B2
va = (3.31)
HoT; 1y

is the Alfven speed. This solution is known as the shear Alfven wave. One of its striking
features is that it is not damped. The reason for this lack of damping is that the Alfven
wave does not induce a parallel electric field or a perturbation to the magnitude of the
magnetic field, B = —iB(ky - £,) = 0.

3.4. Compressional modes

The other solutions to equation (3.25) satisfy €, - (k. x b) = 0. The equations for these

mode are
Wiy Was ki -&, > ( 0 )
- = . 3.32
< —Was Wi > < eEy/kT. 0 (3:32)

Since the matrix must be singular, the frequency is determined by setting the determinant
of the matrix to zero, that is,

WooWs3s + W223 =0. (333)

The least damped solutions of equation (3.33) are known with various names. Here we
call them non-propagating modes and magnetosonic waves.

We can solve the dispersion relation (3.33) numerically. In figure 3, for a hydrogen
plasma (Z = 1, m;/m. = 1836) with T. = T;, we plot the complex frequency w = w,. +1ivy
of non-propagating modes and magnetosonic waves as a function of 3; = 2un;T;/ B>
for several values of kj/kL. The real frequency of the non-propagating mode is zero,
that is, the fluctuations due to this mode damp without oscillating. These modes are
non-propagating because their phase velocity w,/k is zero. The magnetosonic wave is a
damped wave that is the equivalent of a sound wave in hydrodynamics. In kinetic MHD,
sound waves are due to compressions and expansions of both the plasma and the magnetic
field. Note that the damping rate of the non-propagating modes and the magnetosonic
waves increases with the size of k.

We proceed to obtain analytical solutions for both modes in some interesting limits.
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FIGURE 3. Real frequency w, and growth rate « for non-propagating modes (red) and magne-
tosonic waves (blue lines) with k/k. = 1/2(dash-dot lines), 1(dashed lines), 2(solid lines) as a
function of §; in a a hydrogen plasma (Z = 1, m;/m. = 1836) with T, = T;.

3.4.1. Non-propagating modes

The non-propagating modes are solutions with purely imaginary frequency, w = ivy.
These modes are solutions of the dispersion relation (3.33) because the plasma dispersion
function Z((;) evaluated for a purely imaginary (, is purely imaginary, and as a result,
(sZ((s) is purely real, leading to a purely real dispersion relation for the growth rate ~.

It is possible to find analytical solutions for the non-propagating modes in the limits
B> 1and g <« 1. We start with 8 > 1. In this limit, and assuming that T; ~ T, and
k ~ k1, we look for waves that satisfy

Me 1
Ce ~ ,/EQ <L G~ 3 < 1. (3.34)

The plasma dispersion function in the limit |(s] < 1 is (see Appendix A)

4 4
Z(Cs)——2(S+3C§’+...+i\/7?<1—cf+%+...). (3.35)
Then, to lowest order, the coeflicients that enter in equation (3.33) become
) ) small
B k m; 2T .
Woo — r o S Ve 3.36
22 onoT, ki ek/’i 7T, iG; \/7?7 ( )
—_—— —
~BTINGKT N2k
Waz = i/, (3.37)
7T,
W33 = — + 1. (338)
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With these results, equation (3.33) becomes to lowest order Way ~ 0, that is,
i B2 k2 |
W ————— kv
VT 2poni Ty k3 e

This result satisfies the condition (; ~ 37! < 1 that we assumed at the start of the
calculation. The damping arises from the magnetic bottling force, represented in this
calculation by the ion perpendicular pressure, given by equation (3.22). The perturbations
in the magnetic field strength, dB), cause a magnetic bottling force —miuf) - VB that
acts as a parallel electric field, and like the parallel electric field in electrostatic waves,
it can lead to Landau damping. When it is caused by the magnetic bottling force, it is
called Barnes damping.

For B < 1, and assuming that T; ~ T, and k) ~ k., we search for solutions of the form
w = iy, where v is a negative number that satisfies ||/|k||vi; > 1. Then, §; = w/|kj|ve
is a very large imaginary number and the largest contribution to the plasma dispersion
function is the exponentially large piece

(3.39)

2
Z(6) ~ 2iv/mexp(—C?) = 2iy/Texp <k2| 2 ) . (3.40)
The electron contribution is smaller because (. ~ (;v/me/m; < (;. Using these results,

the coefficients that enter in equation (3.33) can be approximated by

, , small )
B2 k m; N Y
Woy = ——— 2 3.41
22 toneTe ki * Eki - ZTe |k‘||1)n P <k|2 th ’ ( )
—

T; Q\fV 72
Was = ——W33 = . 3.42
23 7T, 33 ‘kl\ |v“ €Xp ( ( )

Then, equation (3.33) becomes Wag + (T;/ZT.)Was ~ 0,

el v? 1 B> K
ex = — . 3.43
|k|||vti P kﬁ t21 \/E 2uon; T kf_ ( )

Solving this equation, we find

w = iry ~ —1 (344)

k2 1
n ki lv i
(kiﬁ@: NG f&))l i
Thus, our assumption |y|/|k|ve; > 1 is satisfied because |y|/|k) vy ~ /In(1/5).

3.4.2. Magnetosonic waves

To obtain an analytical solution for the magnetosonic waves, we consider the limit

f <1 < — (3.45)

Note that this limit could be achieved in systems with either 3 < 1, k) /k1 < 1 or both
at the same time.
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The magnetosonic waves will have a frequency w ~ kv 4. Thus, assuming T; ~ T,

me 1 ]ﬂ_ me 1 k’J_
1< e~ EW?HN’/EQ(QNﬁkT" (3.46)

We will find that the imaginary part of w is much smaller than the real part. Taking
this into account and using |(s| > 1, the plasma dispersion function becomes (see Ap-
pendix B)

1 1 3
2@ =~z ~5m g oo TiVAeR(=C). 3.47
(Cs) AT e Vexp(—(;) (3.47)
Using this expansion, the coefficients that enter in equation (3.33) become
32 k2 ZE min
- k2 - — 2y, 4
ez poneTe k2 ton T ZT.k2 Cz iv/mCe exp(—(2), (3.48)
~ﬁ71>1
Was o~ —Ws3 ~ 242 —iv/mC,e exp(—(¢, ) (3.49)
With these results, equation (3.33) becomes to lowest order Was — Wa3 ~ 0,
B2 k2 2711 miw2
k2 2- 0 3.50
poneTe k7 +ZTE + ZT.k2 2(2 — i/ exp(—(2) = (3.50)
— \_v_/
~B-12>1 ~B-121

This equation can be solved order by order in (;! < 1. The frequency is of the form
w ~ w® 4+ w® + iy, where w® /w® ~ (72 <« 1 and 7/w® ~ exp(—¢?) << 1. To

lowest order, we find
282 (T; + Z1
(c ,(O))Q kQUE‘ 1( ;n e) k;%i [

2
L) e

where 8. = 2uon.T./B?. To next order, neglecting the exponentially small imaginary
piece, we find

272
w 2Tk 1 KLk mi e (3.52)
w(©) 4mi(w(0))2(4§0))2 8 (k2 + k2 (Bi + Be)]> me Z°
k2 k2
kg“ e ﬁ2~k2” gl
where Céo) = w(o)/|k:” |vte. Finally, the imaginary part is given by
VT ZT, kL 0) 2 \F me k%
= —kv — \ ZBe
Qmw C ( CE) va m; ]{3|k”| 5
Pe ki k? + k3 (B + Be) me 1
X e - - — . 3.53
Xp( 4 K2+ (B + Be) i m; fe (3.5
~B<1

k2
Bt
Il

Note that we had to keep the higher order correction to w given in (3.52) inside the
exponential because it contributes a number of order unity to the damping rate.
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Im(w)

FIGURE 4. Landau contour for the integral (A 1).

Appendix A. Plasma dispersion function in the limit |(;| < 1

For the limit |(s| < 1, we change the integration variable to w = u — (5. Then,

Z(C) =

L ep(u?) exp(C?)/ exp(—w?® = 26w) (A1)
ﬁ Cr u— CS ﬁ Cr w

The pole for the integral in w is at the origin, and for it we have to use the Landau
contour shown in figure 4 with a semi-circunference SC around w = 0. This contour

gives

Z(¢s) =

exp(—¢?) exp(—w? — 2¢w) exp(—¢2) [~ exp(—w? — 2(w)

L v du+ S22 w e
exp(—C2) [ exp(—w? — 2, w)

NG /T ” dw.

(o9}

+

(A2)

The semi-circumference SC is described by w = rexp(if). The parameter 6 goes from
—m to 0 (counter-clockwise). Then, using that dw = ir exp(if) dé,

exp(—¢3) [ exp(—w® — 2{w)
VT /SC w dw

. ) 0
— le’(p(\/;s) /_7r exp(—r? exp(2if) — 2¢,r exp(if)) df. (A3)

We can take the limit r» — 0, leading to

eXp(—Cf)/ exp(—w? — 2¢;w)
VT SC w

dw = iy exp(—C2)
<4
:1ﬁ(1—<§+25+...). (A4)
For the rest of the integral in (A 2), we have
_ (2 -r a2 _ 2 0o 2
iy (S [T —2m) L esp) [ oot 2w,
NZ3 o w LS - w

_exp(=¢?) * exp(—w® - 2Gw)

r—0

)

(AD)
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where PV indicates that we have to take the Principal Value of the integral. We can use

exp(—w? — 2¢,w) = exp(—w?) Z M. (A6)

q=0 ¢

Then,

eXp PV/ exp(—w? — 2¢ w )
w

ep(=¢2) = gy
= g /_OO exp(_wQ)dew, (AT)

where the integral over the odd powers of w vanishes due to symmetry. Taking the

integrals over w, we find
92D (p 1 1/2)20 !

exp( Cz) < exp(—w? — 2¢,w) B 9
\/7T' [00 w dw = _eXp(_Cs)Z::O (2p+1)| ’

’ (A8)

p=0

where I'(v fo 2"~ exp(—z) dx is the gamma function.
Comblmng equations (A 4) and (A 8), we find the approximation (3.35).

Appendix B. Plasma dispersion function in the limit (| > 1
Using the Landau contour, we find that the plasma dispersion function for Im(¢s) = 0
is
1 < exp(—u?)
Z(Cs :—PV/ —— Zdu +iymexp(—(?), B1
)= —pv [ S (-¢3) B1)
where the last term is due to the integral over the semicircle SC. The integral over the
real axis

exp
Ava/ u,gg du (B2)

can be simplified for |(s] > 1. For most of the integration interval, |u| ~ 1 < |(s|, and
the resonant denominator becomes

Q
1 1 1 1 ud
—_— =~ —— —, B3
u— (s G 1—u/Cs qugo H (B3)
leading to the simplified expression
P 2P
exp(—u*)
—PV / ~ —55 du, B4
= | Y (B4)

where the integrals that included odd powers of u have vanished due to symmetry. Inte-
grating in u, we find

exp(— - p+1/2)
—PV/ ufgg du ~ — Csfz : (B5)

6

Note that the series is an asymptotic expansion (i.e. it diverges for P — co0) and hence
only a few terms must be kept. Combining the result in equation (B5) with equation
(B1), we find the formula for the plasma dispersion function given in equation (3.47).
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Even though we have deduced this formula only for Im(¢;) = 0, we expect it to be valid
for sufficiently small Im((s). We proceed to argue that this is the case.

The most striking feature of the expansion in equation (3.47) is that we keep the
exponentially small term i/7exp(—(?) even though we have neglected terms that are
much larger (of order 1/|(s|>P*3). The apparently incongruous decision of keeping the
exponentially small term iy/7 exp(—(?) is justified in cases in which the imaginary part
of (s is also exponentially small, that is,

[Im(Cs)| ~ [Re(Cs)|* exp(—[Re(Cs)]*) < 1 < [Re(Gs)| == G, (B6)

where « is a constant that depends on the problem. When Im(({;) is exponentially small,
the term i,/ exp(—(2) is comparable to the other terms in the imaginary part of the
plasma dispersion function, Im(Z(({s)). Using the Landau contour, we write the imaginary
part of Z((,) for Im(¢s) # 0 as

n(2(6)) = 7= [ Hw)du+ oyAReexp(~)). (B7)
where o = 0 for Im(¢s) > 0 and o = 2 for Im((,) < 0, and the integrand I(u) is
Im(Gs) exp(—u®)

[u = Re(¢s)]* + [Im(C)]*

The function I(u) is sketched in figure 5 for Re(¢s;) = 3 and various values of Im((s).
Note that for sufficiently small Im((,) there are two clear peaks: one around u = 0 and
the other around u = Re((;). We can study both peaks by looking for the minima and
maxima of I(u), located at the points where dI/du = 0. The equation dI/du = 0 gives
the cubic polynomial

u{fu — Re(Co)]” + [Im(¢)]*} + [u — Re(¢s)] = 0. (B9)

I(u) = (B8)

We proceed to find the three roots of this polynomial when |Im((,)] < 1 < |Re(¢s)]-
In the region |u| < 1, equation (B9) is approximately [Re((s)]?u — Re((s) = 0, leading
to an extremum at ug; ~ 1/Re((s). The value of I(u) at this extremum is I(ugi) ~
Im(¢s)/[Re(¢s)]?, and the function decays exponentially away from it. The other two roots
of the polynomial (B9) are in the region |u — Re({s)| < 1. In this limit, equation (B9)
becomes Re((,){[u — Re((s)]? + [Im(¢s)])?} + [u — Re(¢s)] = 0, and the roots are

+4/1 — 4[Re(()Im((,)]? — 1
2Re(¢s) '
Note that for |[Re(¢s)Im({s)| > 1/2 there are no extrema (see the blue curves in figure 5).

However, in the limit (B 6), the parameter |Re((s)Im((,)| is very small, |Re({s)Im((s)| <
1, leading to

upor =~ Re((s) + (B10)

1
Re(Cs)”

The root uge corresponds to the peak, and the value of I(u) in this peak is I(ugaq) ~
exp(—[Re((s)]?)/Im(¢,). The root upe— corresponds to the valley between the two peaks,
where the function is I(ugs—) = [Re({s)]*Im(s) exp(2 — [Re(¢s)]?).

Therefore, in the limit (B 6), both peaks are well separated. The peak at ug; scales as
[Tm(¢s)|/[Re(¢s)]? ~ |Re(Cs)|* 2 exp(—[Re(¢s)]?), and it extends to the region |u| ~ 1.

upay ~ Re(Cs) — Re(C)[Im(&)]%,  upa— =~ Re((s) — (B11)
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u

FIGURE 5. Integrand I(u), given in (B 8), plotted agains the integration variable u for
Re(¢s) = 3 and several values of Im((s).

For |u| ~ 1, we can Taylor expand the resonant denominator,

1 ! 1 EQ: g+ u
[~ Re(C)P + Mm(G)2 ~ Re(CI? [L— u/Re(C)P  [Re( Cs P = [Re( Ca
(B12)
Thus, the integral around the peak at ug; gives
P
1 Cs / (2p+ Du
— I(u)du ~ exp(— du. B13
VT <t (®) [Re IRV ;) [Re(¢s)]? (B13)
Taking the integrals in u, we obtain
1 Im((s) 2p+1 p+1/2)
— I(u)du ~ . B14
VT St ) [Re((s)]? \fz (B1Y

Around the peak ugy, it is convenient to use the variable v = (v — ug24)/[Im(¢s)|. In
this variable, the function I(u) becomes

exp(=[Re(,)]?) exp(=2Re(C)[Tm () |v)

I(u) ~ B1
() Im(¢) 1 +0? (B15)
Since |Re({s)Im((s)| < 1, we can simplify this equation even further to
2
— , 1
) o P RE(CIP) B

Im(¢s) 1402’

Then, the peak around ugsy scales as exp(—[Re((s)]?)/[Im(¢s)| ~ 1/|Re(¢s)|%, and it is
much higher than the peak at ug1, but it is confined to the region |u — ugat| < [Im({s)|
(equivalent to |v| < 1). Taking an integral over this peak using the integration variable
v = (u— upzs)/Tm(C,)], we find

1 Im(Gs) exp(—[Re(C,)]?) /°° dv

— I(u)du ~
VT Jju—upay | <Im(c)| [Tm ()| VT o 1+ 02

W) e
= (e VTP RGP (BID)
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Adding the two contributions (B 14) and (B 17), equation (B 7) finally becomes

nG) 5 Dl el
Im(2(C) ~ oy fz Rl dut VAexp(~[Re(C)).  (B18)

The dependence on the sign of Im( (s) has disappeared because o/7TRe(exp(—(?)) +
(Im(C,)/Tm(Cs) ) v/ exp(—[Re((s)]?) = v/ exp(—[Re(Cs)]?).-

The first term in equation (B18) is the imaginary part of the expansion given in
equation (B5) for [Im({s)| < [Re(¢s)],

T+ 1/2) (2p + )Im ()T (p + 1/2)
Im< ;) CQ”*l\f) Z R (B19)

Thus, equation (B 18) is the correct lowest order approximation to the imaginary com-
ponent of Z({s) when assumption (B 6) is satisfied, justifying the use of equation (3.47).
Note that, in deriving this result, we have used repeatedly the fact that under assump-
tion (B6), |Re({s)Im(¢s)| < 1. For this reason, the result in equation (3.47) is sometimes
referred to as the |Re((s)Im((s)| < 1 limit even though it is only really valid in the more
stringent limit (B 6).

p=0



