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1. Introduction

In the first set of notes, we demonstrated that if a particle is magnetized, its motion
can be split into a fast gyration and the motion of its guiding center. The fast gyration
around the guiding center is ignorable if we choose the right coordinates. In particular,
we choose to describe the particle motion using its position r, its parallel velocity v‖ and
the magnetic moment of the particle µ.

In this set of notes, we will learn how to derive the kinetic theory for guiding cen-
ters, known as drift kinetics. We will follow the pioneering derivation of drift kinetics in
(Hazeltine 1973).

We consider a system is of size L with a characteristic frequency

ω ∼ vts
L
, (1.1)

where vts is the thermal speed of species s. We assume that

ρs∗ =
ρs
L
� 1,

ω

Ωs
∼ ρs∗ � 1. (1.2)

Here ρs = vts/Ωs and Ωs = ZseB/ms are the characteristic gyroradius and gyrofrequency
of species s, ms and Zse are the mass and charge of species s (Zs = −1 for electrons),
and e is the proton charge. We assume that the thermal energy of the particles is similar
for all species, that is,

msv
2
ts ∼ T (1.3)

for all s. Here T is the characteristic temperature of the plasma.
The electric field is ordered as in the first set of notes:
• In the high flow regime, the parallel electric field is

E‖ ∼
T

eL
(1.4)

and the perpendicular electric field is

E⊥ ∼ vtsB ∼
1

ρs∗

T

eL
. (1.5)

• In the low flow regime or drift ordering, the electric field is of order

E ∼ T

eL
. (1.6)

We proceed to derive the drift kinetic equation in both the high flow and the low flow
regimes.
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2. High flow drift kinetics

We describe the plasma using the distribution functions fs(r,v, t). The probability
of finding a particle of species s at time t in a differential phase space volume d3r d3v
centered around the phase space position (r,v) is fs(r,v, t) d3r d3v. Ignoring collisions,
the time evolution of the distribution functions fs(r,v, t) is well described by the Vlasov
equation

∂fs
∂t︸︷︷︸

∼fsvts/L

+ v · ∇fs︸ ︷︷ ︸
∼fsvts/L

+
Zse

ms
(E + v ×B) · ∇vfs︸ ︷︷ ︸
∼fsρ−1

s∗ vts/L

= 0. (2.1)

There are terms of very different size in the equation. The reason for these different sizes
is the existence of the two very different time scales: the Larmor gyration time Ω−1s ,
and the longer time scale L/vts. In magnetized plasmas, the most interesting time scale
is L/vts, and it corresponds to the motion of the guiding center. We will manipulate
equation (2.1) to extract the effects of the guiding center motion on the distribution
function.

To obtain the guiding center motion, we first change to a convenient set of phase space
coordinates and then we expand in ρs∗ � 1. Once we have a kinetic equation for guiding
centers, we will take moments of it to obtain fluid equations valid for a magnetized
plasma.

2.1. Change of phase space coordinates

In the previous set of notes, we could separate the guiding center motion from the fast
gyration by choosing an appropriate set of phase space coordinates. To develop the kinetic
theory for guiding centers, we use the same convenient coordinates: the parallel velocity

v‖ = v · b̂(r, t), (2.2)

the magnetic moment

µ =
w2
⊥

2B(r, t)
=
|v − vE |2 − [v · b̂(r, t)]2

2B(r, t)
(2.3)

and the gyrophase

ϕ = − arctan

(
(v − vE) · ê2(r, t)

(v − vE) · ê1(r, t)

)
, (2.4)

where the unit vectors ê1 and ê2 form an orthonormal basis with b̂ such that ê1× ê2 = b̂.
Note that we use the E×B drift

vE(r, t) =
1

B(r, t)
E(r, t)× b̂(r, t). (2.5)

To change phase space coordinates from {r,v} to {r, v‖, µ, ϕ}, we use the chain rule.
The derivatives in (2.1) become

∂fs
∂t

∣∣∣∣
r,v

=
∂fs
∂t

∣∣∣∣
r,v‖,µ,ϕ

+
∂v‖
∂t

∣∣∣∣
r,v

∂fs
∂v‖

∣∣∣∣
r,µ,ϕ,t

+
∂µ

∂t

∣∣∣∣
r,v

∂fs
∂µ

∣∣∣∣
r,v‖,ϕ,t

+
∂ϕ

∂t

∣∣∣∣
r,v

∂fs
∂ϕ

∣∣∣∣
r,v‖,µ,t

, (2.6)
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∇fs|v,t = ∇fs|v‖,µ,ϕ,t +∇v‖|v,t
∂fs
∂v‖

∣∣∣∣
r,µ,ϕ,t

+∇µ|v,t
∂fs
∂µ

∣∣∣∣
r,v‖,ϕ,t

+∇ϕ|v,t
∂fs
∂ϕ

∣∣∣∣
r,v‖,µ,t

(2.7)

and

∇vfs|r,t = ∇vv‖|r,t
∂fs
∂v‖

∣∣∣∣
r,µ,ϕ,t

+∇vµ|r,t
∂fs
∂µ

∣∣∣∣
r,v‖,ϕ,t

+∇vϕ|r,t
∂fs
∂ϕ

∣∣∣∣
r,v‖,µ,t

. (2.8)

With these results, equation (2.1) becomes an equation for fs(r, v‖, µ, ϕ, t),

∂fs
∂t

+ ṙ · ∇fs + v̇‖
∂fs
∂v‖

+ µ̇
∂fs
∂µ

+ ϕ̇
∂fs
∂ϕ

= 0, (2.9)

where we have used the operator

Q̇ =
∂Q

∂t

∣∣∣∣
r,v

+ v · ∇Q|v,t +
Zse

ms
(E + v ×B) · ∇vQ|r,t. (2.10)

We had to calculate the coefficients ṙ, v̇‖ and ϕ̇ in the first set of notes about particle
motion in magnetized plasmas. The coefficient µ̇ is obtained in a very similar way. The
final result is

ṙ = v‖b̂ + vE + w⊥, (2.11)

v̇‖ =

[
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

]
·w⊥ + w⊥ · ∇b̂ ·w⊥ + w⊥ · ∇b̂ · vE

+
Zse

ms

[
b̂ +

1

Ωs
b̂×

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)]
·E, (2.12)

µ̇ = − µ
B

[
∂B

∂t
+ (v‖b̂ + vE) · ∇B

]
− µ

B
w⊥ · ∇B −

1

B
w⊥ · (v‖∇b̂ +∇vE) ·w⊥

− v‖
B

[
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

]
·w⊥ −

1

B

[
∂vE
∂t

+ (v‖b̂ + vE) · ∇vE

]
·w⊥, (2.13)

ϕ̇ = Ωs +O(vts/L), (2.14)

where

w⊥ =
√

2µB(r, t)[cosϕ ê1(r, t)− sinϕ ê2(r, t)]. (2.15)

Importantly, the volume in velocity space is not a trivial function of {t, r, v‖, µ, ϕ}.
The infinitesimal element of volume in velocity space is given by

d3v =

∣∣∣∣det

(
∂v

∂(v‖, µ, ϕ)

)∣∣∣∣dv‖ dµdϕ, (2.16)

where the determinant of the Jacobian of the transformation (v‖, µ, ϕ)→ v is

det

(
∂v

∂(v‖, µ, ϕ)

)
=

1

∇vv‖ · (∇vµ×∇vϕ)
= −B. (2.17)

Then,

d3v = B(r, t) dv‖ dµdϕ, (2.18)

and the probability of finding a particle of species s at a time t, within a volume
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d3r around the point r, within the range dv‖ of the parallel velocity v‖, within the
range dµ of the magnetic moment µ, and within the range dϕ of the gyrophase ϕ is
B(r, t)fs(r, v‖, µ, ϕ) d3r dv‖ dµdϕ.

The determinant of the Jacobian is also needed to obtain a useful relation: the conserva-
tion of phase space volume. In the usual coordinates X = (X0, X1, X2, X3, X4, X5, X6) =
(t, r,v) (note that we have added the time to the coordinates), the conservation of phase
space volume is

∇ · ṙ +∇v · v̇ = 0. (2.19)

This is a divergence in the 7-dimensional space X, and it can be written in Einstein’s
index notation as

∂Vi
∂Xi

= 0, (2.20)

where V = (V0, V1, V2, V3, V4, V5, V6) = (1, ṙ, v̇). To change to other coordinates Q =
(Q0, Q1, Q2, Q3, Q4, Q5, Q6) = (t, r, v‖, µ, ϕ), we use the formula for the coordinate trans-
formation of a divergence (see Appendix A),

∂

∂Qi

[
det

(
∂X

∂Q

)
Vj
∂Qi
∂Xj

]
= 0, (2.21)

where ∂X/∂Q is the Jacobian of the transformation Q→ X. In this case,

det

(
∂X

∂Q

)
= det

(
∂(t, r,v)

∂(t, r, v‖, µ, ϕ)

)
= det

(
∂v

∂(v‖, µ, ϕ)

)
= −B. (2.22)

Note also that

Vj
∂Qi
∂Xj

=
∂Qi
∂t

+ ṙ · ∇Qi + v̇ · ∇vQi = Q̇i. (2.23)

Thus, equation (2.21) gives

∂B

∂t
+∇ · (Bṙ) +

∂

∂v‖
(Bv̇‖) +

∂

∂µ
(Bµ̇) +

∂

∂ϕ
(Bϕ̇) = 0. (2.24)

This expression is the conservation of phase space volume in the coordinates {r, v‖, µ, ϕ}.
Using this expression, we can rewrite equation (2.9) in conservative form,

∂

∂t
(Bfs) +∇ · (Bṙfs) +

∂

∂v‖
(Bv̇‖fs) +

∂

∂µ
(Bµ̇fs) +

∂

∂ϕ
(Bϕ̇fs) = 0. (2.25)

This form is useful when we want to take moments of the Vlasov equation to obtain fluid
equations, as we will see in subsection 2.3.

2.2. Expansion in ρs∗ � 1

Equation (2.9) can be written as

Ωs
∂fs
∂ϕ︸ ︷︷ ︸

∼fsρ−1
s? vts/L

+ L[fs]︸ ︷︷ ︸
∼fsvts/L

= 0, (2.26)

where the linear operator L is

L[f ] =
∂f

∂t
+ ṙ · ∇f + v̇‖

∂f

∂v‖
+ µ̇

∂f

∂µ
+ (ϕ̇− Ωs)

∂f

∂ϕ
. (2.27)
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Here it will be useful to split the distribution function into its gyrophase independent
piece, 〈fs〉ϕ, where

〈g〉ϕ =
1

2π

∫ 2π

0

g(r, v‖, µ, ϕ, t) dϕ (2.28)

is the gyroaverage, and its gyrophase dependent piece,

f̃s = fs − 〈fs〉ϕ. (2.29)

Using this separation, equation (2.26) becomes

Ωs
∂f̃s
∂ϕ

+ L[〈fs〉ϕ] + L[f̃s] = 0. (2.30)

This equation, in turn, can be split into its gyrophase independent and dependent pieces,

〈L[〈fs〉ϕ]〉ϕ︸ ︷︷ ︸
∼〈fs〉ϕvts/L

+ 〈L[f̃s]〉ϕ︸ ︷︷ ︸
∼f̃svts/L

= 0 (2.31)

and

Ωs
∂f̃s
∂ϕ︸ ︷︷ ︸

∼f̃sρ−1
s∗ vts/L

+ L̃[f̃s]︸ ︷︷ ︸
∼f̃svts/L

= − ˜L[〈fs〉ϕ]︸ ︷︷ ︸
∼〈fs〉ϕvts/L

, (2.32)

where we have used the fact that f̃s is periodic in ϕ to find 〈∂f̃s/∂ϕ〉ϕ = 0.

We use equation (2.32) to obtain the gyrophase dependent piece f̃s as a functional of
〈fs〉ϕ. Equation (2.32) can be solved by expanding f̃s as a power series in ρs∗, that is,

f̃s = f̃s,1 + f̃s,2 + . . . , (2.33)

where f̃s,n ∼ ρns∗〈fs〉ϕ. Note that f̃s � 〈fs〉ϕ. Using the expansion (2.33), equation (2.32)
gives

Ωs
∂f̃s,1
∂ϕ

= − ˜L[〈fs〉ϕ] = −˜̇r · ∇〈fs〉ϕ − ˜̇v‖ ∂〈fs〉ϕ
∂v‖

− ˜̇µ∂〈fs〉ϕ
∂µ

(2.34)

to lowest order, and

Ωs
∂f̃s,2
∂ϕ

= −L̃[f̃s,1] (2.35)

to next order. Continuing the expansion, we can calculate f̃s,n+1 from f̃s,n,

Ωs
∂f̃s,n+1

∂ϕ
= −L̃[f̃s,n]. (2.36)

We calculate f̃s,1 as an example. Integrating (2.34) only requires writing ˜L[〈fs〉ϕ] as a
Fourier series of sines and cosines of ϕ, and then integrating. This is what we show in
Appendix B, although done in a more elegant manner. The final answer is

f̃s,1 = −r̃1 · ∇〈fs〉ϕ − ṽ‖,1
∂〈fs〉ϕ
∂v‖

− µ̃1
∂〈fs〉ϕ
∂µ

, (2.37)
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where

r̃1 =
1

Ωs

∫ ϕ ˜̇r(ϕ′) dϕ′ =
1

Ωs
b̂×w⊥, (2.38)

ṽ‖,1 =
1

Ωs

∫ ϕ ˜̇v‖(ϕ′) dϕ′

=
1

Ωs

[
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂ +∇b̂ · vE

]
· (b̂×w⊥)

+
1

4Ωs
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : ∇b̂, (2.39)

µ̃1 =
1

Ωs

∫ ϕ ˜̇µ(ϕ′) dϕ′

= − 1

BΩs

[
µ∇B + v‖

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)

+
∂vE
∂t

+ (v‖b̂ + vE) · ∇vE

]
· (b̂×w⊥)

− 1

4BΩs
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : (v‖∇b̂ +∇vE). (2.40)

In these expressions, the indefinite integrals
∫ ϕ ˜̇Qi(ϕ′) dϕ′ are chosen such that 〈Q̃i,1〉ϕ =

0. Note that we are using the double contraction of two matrices, M : N. This operation
gives a scalar, and in Einstein’s index notation, it corresponds to

M : N = MijNji. (2.41)

The tensor w⊥(b̂×w⊥)+(b̂×w⊥)w⊥ is just a convenient way to write the second order
harmonics in ϕ. Using (2.15), we obtain

w⊥(b̂×w⊥)+(b̂×w⊥)w⊥ = 2µB[sin 2ϕ ê1ê1+cos 2ϕ(ê1ê2+ê2ê1)−sin 2ϕ ê2ê2]. (2.42)

In the orthonormal basis {ê1, ê2, b̂}, the tensor in (2.42) is the matrix

w⊥(b̂×w⊥) + (b̂×w⊥)w⊥ = 2µB

 sin 2ϕ cos 2ϕ 0
cos 2ϕ − sin 2ϕ 0

0 0 0

 . (2.43)

Since we have calculated f̃s as a functional of 〈fs〉ϕ using (2.32), equation (2.31)
becomes an equation for the gyrophase independent piece 〈fs〉ϕ. This is the drift kinetic
equation. We can choose the order of accuracy of the drift kinetic equation by deciding to
what order we calculate f̃s. If we choose to neglect f̃s, the drift kinetic equation is missing
terms of order 〈L[f̃s,1]〉ϕ ∼ 〈fs〉ϕρs∗vts/L. The drift kinetic equation to this order is

〈L[〈fs〉ϕ]〉ϕ =
∂〈fs〉ϕ
∂t

+ 〈ṙ〉ϕ · ∇〈fs〉ϕ + 〈v̇‖〉ϕ
∂〈fs〉ϕ
∂v‖

+ 〈µ̇〉ϕ
∂〈fs〉ϕ
∂µ

= 0. (2.44)

We calculated the quantities 〈ṙ〉ϕ and 〈v̇‖〉ϕ when we derived the guiding center motion.
We can deduce that 〈µ̇〉ϕ ' 0 from the quantities 〈ṙ〉ϕ, 〈v̇‖〉ϕ and 〈ẇ⊥〉ϕ calculated for
the guiding center motion equations, or it can be directly shown by gyroaveraging (2.13)
and by using ∇·B = 0 and Faraday’s induction law ∇×E = −∂B/∂t (see Appendix C).
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The final result is that equation (2.44) becomes

∂〈fs〉ϕ
∂t

+ (v‖b̂ + vE) · ∇〈fs〉ϕ +

[
Zse

ms

(
b̂ +

1

Ωs
b̂× Db̂

Dt

)
·E− µb̂ · ∇B

]
∂〈fs〉ϕ
∂v‖

= 0,

(2.45)
where we have defined the operator

D

Dt
=

∂

∂t
+ (v‖b̂ + vE) · ∇. (2.46)

Equation (2.45) is the lowest order high flow drift kinetic equation. The coefficients in
the equation are clearly related to the guiding center motion equations.

In this course we do not consider the high flow equation to higher order than this. To
see how to go to next order, we will use the low flow ordering because the next order
terms tend to be more important in the low flow regime.

2.3. Moments of the drift kinetic distribution function

According to (2.37), f̃s ∼ ρs∗〈fs〉ϕ and hence

fs = 〈fs〉ϕ + f̃s ' 〈fs〉ϕ. (2.47)

This is important for the lowest order moments of the distribution function. For example,
the density and the average flow are

ns =

∫
fs d3v =

∫ ∞
−∞

dv‖

∫ ∞
0

dµ

∫ 2π

0

dϕBfs = 2π

∫ ∞
−∞

dv‖

∫ ∞
0

dµB〈fs〉ϕ (2.48)

and

nsus =

∫
fsv d3v =

∫
Bfs(v‖b̂ + vE + w⊥) dv‖ dµdϕ

'
∫
B〈fs〉ϕ(v‖b̂ + vE + w⊥) dv‖ dµdϕ = 2π

∫
B〈fs〉ϕv‖b̂ dv‖ dµ+ nsvE .

(2.49)

Thus, the average velocity is, to lowest order in ρs∗ � 1,

us ' us‖b̂ + vE , (2.50)

where

us‖ =
1

ns

∫
fsv‖ d3v =

2π

ns

∫
B〈fs〉ϕv‖ dv‖ dµ. (2.51)

As we will see, there are other interesting quantities, such as the parallel and perpendic-
ular pressures,

ps‖ =

∫
fsms(v‖ − us‖)2 d3v = 2π

∫
B〈fs〉ϕms(v‖ − us‖)2 dv‖ dµ (2.52)

and

ps⊥ =

∫
fs
ms|v⊥ − us⊥|2

2
d3v '

∫
fs
msw

2
⊥

2
d3v = 2π

∫
B2〈fs〉ϕmsµdv‖ dµ. (2.53)

The factor of 2 dividing ms|v⊥ − us⊥|2 in the perpendicular pressure is due to the fact
that there are two spatial dimension perpendicular to the magnetic field.

Taking moments of (2.45), we can obtain fluid equations that relate the different mo-
ments of fs. To take moments, we need to write equation (2.45) in what is known as
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“conservative form”. Gyroaveraging equation (2.24), we obtain

∂B

∂t
+∇ · (B〈ṙ〉ϕ) +

∂

∂v‖
(B〈v̇‖〉ϕ) = 0, (2.54)

where we have used that 〈µ̇〉ϕ ' 0 (see Appendix C). With (2.44) and (2.54), we obtain

∂

∂t
(B〈fs〉ϕ) +∇ · (B〈ṙ〉ϕ〈fs〉ϕ) +

∂

∂v‖
(B〈v̇‖〉ϕ〈fs〉ϕ) = 0. (2.55)

A more explicit version of the equation is

∂

∂t
(B〈fs〉ϕ) +∇ · [B(v‖b̂ + vE)〈fs〉ϕ] +

∂

∂v‖

{
B

[
Zse

ms

(
b̂ +

1

Ωs
b̂× Db̂

Dt

)
·E

−µb̂ · ∇B
]
〈fs〉ϕ

}
= 0. (2.56)

We can integrate equation (2.56) over v‖ and µ (the integral over ϕ is just a factor of
2π) to find the drift kinetic continuity equation. For the term under the partial derivative
with respect to v‖, we assume that 〈fs〉ϕ vanishes for sufficiently large v‖ so that∫ ∞

−∞

∂

∂v‖

(
B〈v̇‖〉ϕ〈fs〉ϕ

)
dv‖ =

[
B〈v̇‖〉ϕ〈fs〉ϕ

]v‖=∞
v‖=−∞

= 0. (2.57)

Then, the drift kinetic continuity equation is

∂ns
∂t

+∇ · [ns(us‖b̂ + vE)] = 0. (2.58)

We can also multiply equation (2.56) by msv‖ and integrate over v‖ and µ to find the
parallel momentum conservation equation. For the term under the partial derivative with
respect to v‖, we integrate by parts and we assume that v‖〈fs〉ϕ vanishes for sufficiently
large v‖ so that∫ ∞

−∞
v‖

∂

∂v‖
(B〈v̇‖〉ϕ〈fs〉ϕ) dv‖ = −

∫ ∞
−∞

B〈v̇‖〉ϕ〈fs〉ϕ dv‖. (2.59)

Then, the parallel momentum conservation equation becomes

∂

∂t
(nsmsus‖) +∇ ·

[
b̂

∫
〈fs〉ϕmsv

2
‖ d3v + nsmsus‖vE

]
+ ps⊥b̂ · ∇ lnB

−Zsens
[
b̂ +

1

Ωs
b̂×

(
∂b̂

∂t
+ (us‖b̂ + vE) · ∇b̂

)]
·E = 0. (2.60)

This equation can be rewritten using (2.52) to obtain
∫
〈fs〉ϕmsv

2
‖ d3v = ps‖ + nsmsu

2
s‖.

Moreover, employing (2.58), b̂ · ∇ lnB = −∇ · b̂ (deduced from ∇ ·B = 0) and

1

B

[
b̂×

(
∂b̂

∂t
+ (us‖b̂ + vE) · ∇b̂

)]
·E = −

(
∂vE
∂t

+ (us‖b̂ + vE) · ∇vE

)
· b̂, (2.61)

equation (2.60) can be manipulated to become the final drift kinetic parallel momentum
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equation,

nsms

[
∂

∂t
(us‖b̂ + vE) + (us‖b̂ + vE) · ∇(us‖b̂ + vE)

]
· b̂

= −b̂ · ∇ps‖ + (ps⊥ − ps‖)∇ · b̂ + ZsensE‖. (2.62)

Note that the magnetic bottling force appears as a term proportional to the perpendicular
pressure ps⊥, and that part of 〈v̇‖〉ϕ becomes part of the inertial term. We will discuss
the parallel momentum equation further when we formulate kinetic MHD.

3. Low flow drift kinetics

In the low flow regime, the electric field is ordered as (1.6), and the E ×B drift is of
order

vE ∼ ρs∗vts � vts. (3.1)

Using Faraday’s induction law, we find

∂B

∂t
= −∇×E ∼ ρs∗

vts
L
B � vts

L
B, (3.2)

that is, the time derivative of the magnetic field is much smaller than the other time
derivatives in the problem. As a result, the time derivatives of quantities related to B,
such as B, b̂, ê1 and ê2, are small,

∂

∂t
lnB ∼ ∂b̂

∂t
∼ ∂ê1

∂t
∼ ∂ê2

∂t
∼ ρs∗

vts
L
� vts

L
. (3.3)

Using (1.6), (3.1) and (3.3) in (2.45), and neglecting the terms of order 〈fs〉ϕρs∗vts/L,
we obtain

∂〈fs〉ϕ
∂t

+ v‖b̂ · ∇〈fs〉ϕ +

(
Zse

ms
b̂ ·E− µb̂ · ∇B

)
∂〈fs〉ϕ
∂v‖

= 0. (3.4)

This equation does not include the perpendicular component of the gradient ∇〈fs〉ϕ be-
cause particles only move along magnetic field lines to lowest order. In reality, particles
drift slowly across magnetic field lines. This small perpendicular drift is important be-
cause it is the only drift in this direction, and it is the only mechanism by which different
magnetic field lines communicate. Thus, we need to obtain the drift kinetic equation to
next order in ρs∗.

To obtain the next order drift kinetic equation, we use the lowest order approximation
to f̃s, f̃s ' f̃s,1, in (2.31) to find

〈L[〈fs〉ϕ]〉ϕ + 〈L[f̃s,1]〉ϕ = 0. (3.5)

In this equation, we are missing terms of order 〈L[f̃s,2]〉ϕ ∼ 〈fs〉ϕρ2s∗vts/L. We proceed
to evaluate the two terms in (3.5).

3.1. Evaluation of 〈L[〈fs〉ϕ]〉ϕ
Using the formulas for 〈ṙ〉ϕ and 〈v̇‖〉ϕ that we obtained in the notes for particle motion,
Appendix C (equation (C 10) in particular), and equations (1.6), (3.1) and (3.3), we find

〈L[〈fs〉ϕ]〉ϕ =
∂〈fs〉ϕ
∂t

+ 〈ṙ〉ϕ · ∇〈fs〉ϕ + 〈v̇‖〉ϕ
∂〈fs〉ϕ
∂v‖

+ 〈µ̇〉ϕ
∂〈fs〉ϕ
∂µ

, (3.6)



10 Felix I. Parra



ds = Rcd✓

db̂ =


||d✓
b̂ + db̂

b̂

 =
1

Rc



|| =
d✓

ds

db̂

d✓
=

db̂

ds
= b̂ · rb̂

Magnetic	field	line

Point	A
d✓

Point	A

Fcf = �msv
2
k

Figure 1. Definition of the curvature of a magnetic field line, and its relation to the local
centrifugal force. The curvature κ of a magnetic field line at a point A is a vector whose
magnitude is the inverse of the radius of the circle that best fits the line at point A (radius of
curvature Rc), and whose direction is the direction that points from point A to the center of
said circle. The direction and magnitude of the curvature is given by the infinitesimal change in

direction of the unit vector b̂ along the curve. In the sketch, the angle dθ between b̂ at point A

and b̂+db̂ at an infinitesimal distance ds away from A is related to the angular separation in the
circle that best fits the curve at point A. Using this relation, we find that the curvature vector

is κ = db̂/ds = b̂ · ∇b̂. Note that according to the definition of curvature, the centrifugal force
felt in a frame moving with the particle along the line is Fcf = −(msv

2
‖/Rc)(κ/|κ|) = −msv

2
‖κ.

where

〈ṙ〉ϕ = v‖b̂ + vE , (3.7)

〈v̇‖〉ϕ =
Zse

ms

(
b̂ +

v‖
Ωs

b̂× κ

)
·E− µb̂ · ∇B +O(ρ2s∗v

2
ts/L), (3.8)

〈µ̇〉ϕ =
E‖µ

B
b̂ · ∇ × b̂. (3.9)

Here

κ = b̂ · ∇b̂ (3.10)

is the curvature of the magnetic field line (see figure 1).

3.2. Evaluation of 〈L[f̃s,1]〉ϕ
The function f̃s,1 is given in equation (2.37) for the high flow ordering. Using (1.6), (3.1)

and (3.3), and neglecting terms of order ρ2s∗〈fs〉ϕ, the function f̃s,1 is of the form (2.37),
but ṽ‖,1 and µ̃1 become

ṽ‖,1 =
v‖
Ωs

b̂ · ∇b̂ · (b̂×w⊥) +
1

4Ωs
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : ∇b̂, (3.11)

µ̃1 = − 1

BΩs
(µ∇B + v2‖b̂ · ∇b̂) · (b̂×w⊥)

− v‖
4BΩs

[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : ∇b̂. (3.12)

Using the low flow f̃s,1, we can directly calculate 〈L[f̃s,1]〉ϕ. It is a tedious operation,
but there are some useful tricks that make it bearable. We start by realizing that in
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Einstein’s index notation,

〈L[f̃s,1]〉ϕ =
〈˜̇r · ∇f̃s,1〉

ϕ
+

〈˜̇v‖ ∂f̃s,1
∂v‖

〉
ϕ

+

〈˜̇µ∂f̃s,1
∂µ

〉
ϕ

+

〈˜̇ϕ∂f̃s,1
∂ϕ

〉
ϕ

≡
〈˜̇Qi ∂f̃s,1∂Qi

〉
ϕ

,

(3.13)
where Q = (Q1, Q2, Q3, Q4, Q5, Q6) = (r, v‖, µ, ϕ). Before continuing, we use the gy-
rophase dependent piece of (2.24) to write

∂

∂Qi

(
B ˜̇Qi) ≡ ∇ · (B˜̇r) +

∂

∂v‖
(B˜̇v‖) +

∂

∂µ
(B˜̇µ) +

∂

∂ϕ
(B ˜̇ϕ) = 0. (3.14)

Using this result, equation (3.13) becomes

〈L[f̃s,1]〉ϕ =
1

B

∂

∂Qi

(
B
〈˜̇Qif̃s,1〉

ϕ

)
. (3.15)

Note that equation (2.37) can be written as

f̃s,1 = −Q̃i,1
∂〈fs〉ϕ
∂Qi

, (3.16)

where Q̃1 = (Q̃1,1, Q̃2,1, Q̃3,1, Q̃4,1, Q̃5,1, Q̃6,1) = (r̃1, ṽ‖,1, µ̃1, ϕ̃1), and

Ωs
∂Q̃i,1
∂ϕ

= ˜̇Qi. (3.17)

Using (3.16) and (3.17), equation (3.15) becomes

〈L[f̃s,1]〉ϕ = − 1

B

∂

∂Qi

BΩs

〈
Q̃j,1

∂Q̃i,1
∂ϕ

〉
ϕ

∂〈fs〉ϕ
∂Qj

 . (3.18)

Finally, integrating by parts in ϕ, we find that〈
Q̃j,1

∂Q̃i,1
∂ϕ

〉
ϕ

= −
〈
Q̃i,1

∂Q̃j,1
∂ϕ

〉
ϕ

, (3.19)

leading to the expression

〈L[f̃s,1]〉ϕ =
1

B

∂

∂Qi

BΩs
2

〈
Q̃i,1

∂Q̃j,1
∂ϕ

− Q̃j,1
∂Q̃i,1
∂ϕ

〉
ϕ

∂〈fs〉ϕ
∂Qj



=

���
���

���
���

���
���

�:
0 because ∂2

∂Qi∂Qj
= ∂2

∂Qj∂Qi

Ωs
2

〈
Q̃i,1

∂Q̃j,1
∂ϕ

− Q̃j,1
∂Q̃i,1
∂ϕ

〉
ϕ

∂2〈fs〉ϕ
∂Qi∂Qj

+ Q̇DKj,1
∂〈fs〉ϕ
∂Qj

, (3.20)

where we have defined the coefficients

Q̇DKj,1 =
1

B

∂

∂Qi

BΩs
2

〈
Q̃i,1

∂Q̃j,1
∂ϕ

− Q̃j,1
∂Q̃i,1
∂ϕ

〉
ϕ

 . (3.21)

Using expression (3.20), and after many tedious vector manipulations (see Appendix D),
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Positive	ion

Large	gyration	
radius	due	 to	
energy	gained	
from	Fcf

Small	gyration	radius	due	
to	energy	 lost	to	Fcf

B

Fcf = �msv
2
k

Figure 2. The curvature drift is the result of the centrifugal force (see figure 1) accelerating
and decelerating the particle in its gyration, and consequently changing the radius of gyration.

we find

〈L[f̃s,1]〉ϕ = ṙDK1 · ∇〈fs〉ϕ + v̇DK‖,1
∂〈fs〉ϕ
∂v‖

+ µ̇DK1

∂〈fs〉ϕ
∂µ

, (3.22)

where the coefficients are

ṙDK1 = vBb̂ + vκ + v∇B , (3.23)

v̇DK‖,1 = −v‖µ
Ωs

(b̂× κ) · ∇B − µ1b̂ · ∇B − v‖b̂ · ∇vB , (3.24)

µ̇DK1 = −v‖b̂ · ∇µ1 + µb̂ · ∇B∂µ1

∂v‖
. (3.25)

Here

vκ =
v2‖
Ωs

b̂× κ, v∇B =
µ

Ωs
b̂×∇B (3.26)

are the curvature and ∇B drifts. They will be very important for low flow plasmas. The
Baños parallel drift, vB = (msµ/Zse)b̂·∇×b̂, and the correction to the magnetic moment

µ1 = −(v‖µ/Ωs)b̂ · ∇ × b̂ hardly ever matter. We give them here for completeness.

3.3. Low flow drift kinetic equation

Summing (3.6) and (3.22), we find the first order, low flow, drift kinetic equation

∂〈fs〉ϕ
∂t

+ ṙDK · ∇〈fs〉ϕ + v̇DK‖
∂〈fs〉ϕ
∂v‖

+ µ̇DK
∂〈fs〉ϕ
∂µ

= 0, (3.27)

where

ṙDK = 〈ṙ〉ϕ + ṙDK1 = (v‖ + vB)b̂ + vE + vκ + v∇B , (3.28)

v̇DK‖ = 〈v̇‖〉ϕ + v̇DK‖,1 = b̂ ·
[
Zse

ms
E− (µ+ µ1)∇B

]
+
v‖
Ωs

(b̂× κ) ·
(
Zse

ms
E− µ∇B

)
− v‖b̂ · ∇vB , (3.29)

µ̇DK = 〈µ̇〉ϕ + µ̇DK1 = −v‖b̂ · ∇µ1 −
(
Zse

ms
b̂ ·E− µb̂ · ∇B

)
∂µ1

∂v‖
. (3.30)

As explained at the beginning of this section, equation (3.27) is missing terms of order
〈fs〉ϕρ2s∗vts/L.

Equation (3.27) contains two new perpendicular drifts, the curvature and ∇B drifts,
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Positive	ion

Large	gyration	
radius	due	 to	
weaker	B

Small	gyration	radius	due	
to	stronger	B

B

rB

Figure 3. The ∇B drift is the result of the radius of gyration changing because of the
magnetic field magnitude variations along the path of the particle.

the Baños parallel drift vB , and the correction to the magnetic moment µ1. The correc-
tions vB and µ1 are rarely useful, and we discuss them in Appendix E. The curvature
and ∇B drifts, vκ and v∇B , are important in the low flow regime because they are
comparable to the small E×B drift.

The curvature drift is the result of the parallel motion of the particle. The particle
follows the magnetic field line, even if it is curved. When the magnetic field line curves,
the particle’s trajectory does as well, and that implies that a force is being applied, in this
case by the magnetic field. The magnetic field requires a perpendicular velocity to exert a
force. The curvature drift is the perpendicular velocity that gives the necessary magnetic
force, that is, Zsevκ×B is the force that turns the particle when the magnetic field turns.
A different way to understand the force is to move with the particle along the magnetic
field line. In this frame, the particle is feeling the centrifugal force shown in figure 1. This
force accelerates and decelerates the particle in its gyration, and consequently, it changes
the radius of gyration. The net result of these changes in the radius of gyration is the
curvature drift, as shown in figure 2.

The ∇B drift is the result of the radius of gyration changing along the path of the
particle. Due to the gradient in the magnitude of the magnetic field, the magnetic force is
smaller in one half of the orbit than in the other half. The region with smaller magnetic
field will have a larger radius of gyration, whereas the region with larger magnetic field
will have a smaller radius of gyration. The net result of these changes in the radius of
gyration is the ∇B drift, as shown in figure 3.

3.4. Conservative low flow drift kinetic equation

Equation (3.27) can be written in conservative form. According to (3.6) and (3.20), the
coefficients ṙDK , v̇DK‖ and µ̇DK are

Q̇DKi = 〈Q̇i〉ϕ + Q̇DKi,1 = 〈Q̇i〉ϕ +
1

B

∂

∂Qj

BΩs
2

〈
Q̃j,1

∂Q̃i,1
∂ϕ

− Q̃i,1
∂Q̃j,1
∂ϕ

〉
ϕ

 . (3.31)

Since ∂2/∂Qi∂Qj is symmetric, we find

∂

∂Qi
(BQ̇DKi,1 ) =

∂2

∂Qi∂Qj

BΩs
2

〈
Q̃j,1

∂Q̃i,1
∂ϕ

− Q̃i,1
∂Q̃j,1
∂ϕ

〉
ϕ

 = 0, (3.32)
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and hence
∂B

∂t
+

∂

∂Qi
(BQ̇DKi ) =

∂B

∂t
+

∂

∂Qi
(B〈Q̇i〉ϕ). (3.33)

Equation (2.54) implies ∂B/∂t+ ∂(B〈Q̇i〉ϕ)/∂Qi = 0, leading to

∂B

∂t
+∇ · (BṙKD) +

∂

∂v‖
(Bv̇DK‖ ) +

∂

∂µ
(Bµ̇DK) = 0. (3.34)

With equations (3.34) and (3.27), we obtain

∂

∂t
(B〈fs〉ϕ) +∇ · (BṙDK〈fs〉ϕ) +

∂

∂v‖
(Bv̇DK‖ 〈fs〉ϕ) +

∂

∂µ
(Bµ̇DK〈fs〉ϕ) = 0. (3.35)

REFERENCES
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Drift kinetics 15

Appendix A. Change of coordinates of a divergence

In this appendix, we prove that a change from coordinates X to coordinates Q changes
expression (2.20) to (2.21). We consider a general n-dimensional space (in the main
text, the space has seven dimensions: time, three spatial dimensions and three velocity
dimensions).

Using the chain rule in (2.20), we find

∂Vi
∂Xi

=
∂Qj
∂Xi

∂Vi
∂Qj

= 0. (A 1)

To show that this equation gives (2.21), we need to prove

∂

∂Qj

[
det

(
∂X

∂Q

)
∂Qj
∂Xi

]
= 0. (A 2)

The left side of this expression can be written as

∂

∂Qj

[
det

(
∂X

∂Q

)
∂Qj
∂Xi

]
=

∂

∂Qj

[
det

(
∂X

∂Q

)]
∂Qj
∂Xi

+ det

(
∂X

∂Q

)
∂

∂Qj

(
∂Qj
∂Xi

)
. (A 3)

We proceed to evaluate these two terms.
To evaluate the derivative of the determinant of the Jacobian, we make it explicit that

the Jacobian is composed of n row vectors,

det

(
∂X

∂Q

)
= det

(
∂X

∂Q1
,
∂X

∂Q2
, . . . ,

∂X

∂Qn−1
,
∂X

∂Qn

)
. (A 4)

Considering the determinant as a linear function of each of the rows of the matrix within
the determinant, the derivative of the determinant can be written as a sum of n terms,

∂

∂Qj

[
det

(
∂X

∂Q

)]
= det

(
∂2X

∂Qj∂Q1
,
∂X

∂Q2
, . . . ,

∂X

∂Qn−1
,
∂X

∂Qn

)
+ det

(
∂X

∂Q1
,

∂2X

∂Qj∂Q2
, . . . ,

∂X

∂Qn−1
,
∂X

∂Qn

)
+ . . .+ det

(
∂X

∂Q1
,
∂X

∂Q2
, . . . ,

∂X

∂Qn−1
,

∂2X

∂Qj∂Qn

)
. (A 5)

We define the family of linear operators

Lk(a) ≡ lkmam = det

(
∂X

∂Q1
,
∂X

∂Q2
, . . . ,

∂X

∂Qk−1
, a︸︷︷︸
k−th row

,
∂X

∂Qk+1
, . . . ,

∂X

∂Qn−1
,
∂X

∂Qn

)
(A 6)

to rewrite (A 5) as

∂

∂Qj

[
det

(
∂X

∂Q

)]
= L1

(
∂2X

∂Qj∂Q1
,

)
+ L2

(
∂2X

∂Qj∂Q2

)
+ . . .+ Ln

(
∂2X

∂Qj∂Qn

)
= Lk

(
∂2X

∂Qj∂Qk

)
≡ lkm

∂2Xm

∂Qj∂Qk
. (A 7)

The operator Lk(a) satisfies

Lk

(
∂X

∂Qp

)
≡ lkm

∂Xm

∂Qp
= det

(
∂X

∂Q

)
δkp (A 8)

because for k = p, we obtain the determinant of the Jacobian, and for k 6= p, we repeat
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one of the rows of the matrix within the determinant, and the result is zero. Since
the vectors {∂X/∂Q1, ∂X/∂Q2, . . . , ∂X/∂Qn} form a basis of the n-dimensional space,
condition (A 8) is sufficient to determine the operators Lk(a). Based on (A 8), we find
that

Lk(a) ≡ lkmam = det

(
∂X

∂Q

)
∂Qk
∂Xm

am (A 9)

because

∂Qk
∂Xm

∂Xm

∂Qp
= δkp. (A 10)

Then,

lkm = det

(
∂X

∂Q

)
∂Qk
∂Xm

. (A 11)

Substituting (A 11) into (A 7), we find

∂

∂Qj

[
det

(
∂X

∂Q

)]
= det

(
∂X

∂Q

)
∂Qk
∂Xm

∂2Xm

∂Qj∂Qk
. (A 12)

We proceed to calculate the term

∂

∂Qj

(
∂Qj
∂Xi

)
. (A 13)

Differentiating (A 10) with respect to Qk, we find

∂

∂Qk

(
∂Qk
∂Xm

)
∂Xm

∂Qp
+
∂Qk
∂Xm

∂2Xm

∂Qp∂Qk
= 0. (A 14)

Multiplying by ∂Qp/∂Xj , and using (A 10) again, we find

∂

∂Qk

(
∂Qk
∂Xj

)
= − ∂Qk

∂Xm

∂Qp
∂Xj

∂2Xm

∂Qp∂Qk
. (A 15)

Using equations (A 12) and (A 15), equation (A 3) becomes

∂

∂Qj

[
det

(
∂X

∂Q

)
∂Qj
∂Xi

]
= det

(
∂X

∂Q

)(
∂Qk
∂Xm

∂2Xm

∂Qj∂Qk

∂Qj
∂Xi

− ∂Qk
∂Xm

∂Qp
∂Xi

∂2Xm

∂Qp∂Qk

)
= 0,

(A 16)
proving (A 2).

Using (A 1) and (A 2), we recover (2.21).

Appendix B. Derivation of the gyrophase dependent piece f̃s,1

Integrating equation (2.34), we obtain (2.37) with

r̃1 =
1

Ωs

∫ ϕ ˜̇r(ϕ′) dϕ′, ṽ‖,1 =
1

Ωs

∫ ϕ ˜̇v‖(ϕ′) dϕ′, µ̃1 =
1

Ωs

∫ ϕ ˜̇µ(ϕ′) dϕ′, (B 1)

where the indefinite integrals are taken such that 〈r̃1〉ϕ = 0, 〈ṽ‖,1〉ϕ = 0 and 〈µ̃1〉ϕ = 0.
We proceed to find the indefinite integrals.
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To obtain the functions r̃1, ṽ‖,1 and µ̃1, we need the functions ˜̇r, ˜̇v‖ and ˜̇µ, given by

˜̇r = w⊥, (B 2)

˜̇w‖ =

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂ +∇b̂ · vE

)
·w⊥ + (w⊥w⊥ − 〈w⊥w⊥〉ϕ) : ∇b̂, (B 3)

˜̇µ = − 1

B

[
µ∇B + v‖

(
∂b̂

∂t
+ (v‖b̂ + vE) · ∇b̂

)
+
∂vE
∂t

+ (v‖b̂ + vE) · ∇vE

]
·w⊥

− 1

B
(w⊥w⊥ − 〈w⊥w⊥〉ϕ) : ∇(v‖b̂ + vE). (B 4)

Before integrating over ϕ, we rewrite w⊥w⊥ − 〈w⊥w⊥〉ϕ in a convenient form. We first
note that using (2.15), we can write

w⊥w⊥ = 2µB[cos2 ϕ ê1ê1 − sinϕ cosϕ(ê1ê2 + ê2ê1) + sin2 ϕ ê2ê2] (B 5)

and

(b̂×w⊥)(b̂×w⊥) = 2µB[sin2 ϕ ê1ê1 + sinϕ cosϕ(ê1ê2 + ê2ê1) + cos2 ϕ ê2ê2]. (B 6)

In the basis {ê1, ê2, b̂}, the tensors w⊥w⊥ and (b̂×w⊥)(b̂×w⊥) are the matrices

w⊥w⊥ = 2µB

 cos2 ϕ − sinϕ cosϕ 0
− sinϕ cosϕ sin2 ϕ 0

0 0 0

 (B 7)

and

(b̂×w⊥)(b̂×w⊥) = 2µB

 sin2 ϕ sinϕ cosϕ 0
sinϕ cosϕ cos2 ϕ 0

0 0 0

 . (B 8)

Summing (B 5) and (B 6), we obtain

w⊥w⊥ + (b̂×w⊥)(b̂×w⊥) = 2µB(ê1ê1 + ê2ê2) = 2µB

 1 0 0
0 1 0
0 0 0


= 2µB(I− b̂b̂). (B 9)

Using this result and the fact that

〈w⊥w⊥〉ϕ = µB(I− b̂b̂), (B 10)

we find

〈w⊥w⊥〉ϕ =
1

2
[w⊥w⊥ + (b̂×w⊥)(b̂×w⊥)] (B 11)

and

w⊥w⊥ − 〈w⊥w⊥〉ϕ =
1

2
[w⊥w⊥ − (b̂×w⊥)(b̂×w⊥)]

= µB[cos 2ϕ ê1ê1 − sin 2ϕ(ê1ê2 + ê2ê1)− cos 2ϕ ê2ê2]

= µB

 cos 2ϕ − sin 2ϕ 0
− sin 2ϕ − cos 2ϕ 0

0 0 0

 . (B 12)
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The form (B 12) is useful because it is easy to integrate. Using (2.15), we find

∂

∂ϕ
(b̂×w⊥) = w⊥ (B 13)

and
∂w⊥
∂ϕ

= −b̂×w⊥. (B 14)

Using these two expressions, we find

∂

∂ϕ
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] = 2[w⊥w⊥ − (b̂×w⊥)(b̂×w⊥)]. (B 15)

Employing (B 12), (B 13) and (B 15), we find∫
w⊥ dϕ = b̂×w⊥ (B 16)

and ∫
(w⊥w⊥ − 〈w⊥w⊥〉ϕ) dϕ =

1

4
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥], (B 17)

and we can integrate (B 2), (B 3) and (B 4) in ϕ to obtain (2.38), (2.39) and (2.40).

Appendix C. Derivation of 〈µ̇〉ϕ
In this appendix, we derive 〈µ̇〉ϕ from (2.13). From (2.13), we obtain

〈µ̇〉ϕ = − µ
B

[
∂B

∂t
+ (v‖b̂ + vE) · ∇B

]
− v‖
B
〈w⊥w⊥〉ϕ : ∇b̂− 1

B
〈w⊥w⊥〉ϕ : ∇vE . (C 1)

Using (B 10), I : ∇b̂ = ∇ · b̂ and I : ∇vE = ∇ · vE , equation (C 1) becomes

〈µ̇〉ϕ = − µ
B

[
∂B

∂t
+ (v‖b̂ + vE) · ∇B

]
− v‖µ∇ · b̂− µ(∇ · vE − b̂ · ∇vE · b̂). (C 2)

Using ∇ ·B = 0 to write

B∇ · b̂ = −b̂ · ∇B, (C 3)

we rewrite equation (C 2) as

〈µ̇〉ϕ = − µ
B

(
∂B

∂t
+ vE · ∇B

)
− µ(∇ · vE − b̂ · ∇vE · b̂). (C 4)

To simplify equation (C 4) further, we use that

E + vE ×B = E‖b̂. (C 5)

Taking the curl of this equation, we obtain

∇×E +∇× (vE ×B) = ∇× (E‖b̂). (C 6)

Using Faraday’s induction law ∇×E = −∂B/∂t, and

∇× (vE ×B) = B · ∇vE − (∇ · vE)B− vE · ∇B, (C 7)

equation (C 6) becomes

B · ∇vE − (∇ · vE)B =
∂B

∂t
+ vE · ∇B +∇× (E‖b̂). (C 8)
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Projecting this equation on b̂, and using that (∂B/∂t)·b̂ = ∂B/∂t and that∇B·b̂ = ∇B,
we finally get

b̂ · ∇vE · b̂−∇ · vE =
1

B

(
∂B

∂t
+ vE · ∇B

)
+
E‖
B

b̂ · ∇ × b̂. (C 9)

Using this expression, equation (C 4) becomes

〈µ̇〉ϕ =
E‖µ

B
b̂ · ∇ × b̂. (C 10)

Since the parallel electric field is ordered as in (1.4), 〈µ̇〉ϕ ∼ ρs∗µvts/L and the con-
tribution of 〈µ̇〉ϕ to equation (2.45) is as small as other terms that we have neglected.
Then, for equation (2.45), we can use

〈µ̇〉ϕ ' 0. (C 11)

Appendix D. Derivation of 〈L[f̃s,1]〉ϕ in the low flow regime

Equation (3.20) gives

〈L[f̃s,1]〉ϕ = ṙDK1 · ∇〈fs〉ϕ + v̇DK‖,1
∂〈fs〉ϕ
∂v‖

+ µ̇DK1

∂〈fs〉ϕ
∂µ

, (D 1)

where we have defined the coefficients

ṙDK1 =
1

B

[
∇×

(
BΩs

2

〈
∂r̃1
∂ϕ
× r̃1

〉
ϕ

)
+

∂

∂v‖

(
BΩs

2

〈
ṽ‖,1

∂r̃1
∂ϕ
− r̃1

∂ṽ‖,1
∂ϕ

〉
ϕ

)

+
∂

∂µ

(
BΩs

2

〈
µ̃1
∂r̃1
∂ϕ
− r̃1

∂µ̃1

∂ϕ

〉
ϕ

)]
, (D 2)

v̇DK‖,1 =
1

B

[
∇ ·
(
BΩs

2

〈
r̃1
∂ṽ‖,1
∂ϕ

− ṽ‖,1
∂r̃1
∂ϕ

〉
ϕ

)
+

∂

∂µ

(
BΩs

2

〈
µ̃1

∂ṽ‖,1
∂ϕ

− ṽ‖,1
∂µ̃1

∂ϕ

〉
ϕ

)]
,

(D 3)

µ̇DK1 =
1

B

[
∇ ·
(
BΩs

2

〈
r̃1
∂µ̃1

∂ϕ
− µ̃1

∂r̃1
∂ϕ

〉
ϕ

)
+

∂

∂v‖

(
BΩs

2

〈
ṽ‖,1

∂µ̃1

∂ϕ
− µ̃1

∂ṽ‖,1
∂ϕ

〉
ϕ

)]
.

(D 4)

We use r̃1 in (2.38), ṽ‖,1 in (3.11) and µ̃1 in (3.12) to calculate ṙDK1 , v̇DK‖,1 and µ̇DK1 .
Employing〈

[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : ∇b̂
∂

∂ϕ

{
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : ∇b̂

}〉
ϕ

=
1

2

〈
∂

∂ϕ

{
[w⊥(b̂×w⊥) + (b̂×w⊥)w⊥] : ∇b̂

}2
〉
ϕ

= 0,

(D 5)

we obtain

BΩs
2

(
∂r̃1
∂ϕ
× r̃1

)
=

ms

2Zse
w⊥ × (b̂×w⊥) =

ms|w⊥|2
2Zse

b̂ =
msµB

Zse
b̂, (D 6)
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BΩs

〈
ṽ‖,1

∂r̃1
∂ϕ

〉
ϕ

= −BΩs

〈
r̃1
∂ṽ‖,1
∂ϕ

〉
ϕ

= −msv‖µB

Zse
b̂× (b̂ · ∇b̂), (D 7)

BΩs

〈
µ̃1
∂r̃1
∂ϕ

〉
ϕ

= −BΩs

〈
r̃1
∂µ̃1

∂ϕ

〉
ϕ

=
msµ

Zse
b̂× (v2‖b̂ · ∇b̂ + µ∇B) (D 8)

and

BΩs

〈
µ̃1

∂ṽ‖,1
∂ϕ

〉
ϕ

= −BΩs

〈
ṽ‖,1

∂µ̃1

∂ϕ

〉
ϕ

= −msv‖µ2

Zse
[b̂× (b̂ · ∇b̂)] · ∇B. (D 9)

Substituting these results into equations (D 2), (D 3) and (D 4), we get

ṙDK1 =
v2‖
Ωs

b̂× (b̂ · ∇b̂) +
µ

Ωs
b̂×∇B +

msµ

Zse
[∇× b̂− b̂× (b̂ · ∇b̂)], (D 10)

v̇DK‖,1 = −v‖µ
Ωs

[b̂× (b̂ · ∇b̂)] · ∇B +
msv‖µ

Zse
∇ · [b̂× (b̂ · ∇b̂)], (D 11)

µ̇DK1 = −
v2‖µ

Ωs
∇ · [b̂× (b̂ · ∇b̂)]− µ2

Ωs
[∇× b̂− b̂× (b̂ · ∇b̂)] · ∇B. (D 12)

Finally, using

∇× b̂ = b̂b̂ · ∇ × b̂ + b̂× [(∇× b̂)× b̂] = b̂b̂ · ∇ × b̂ + b̂× (b̂ · ∇b̂) (D 13)

and

∇·[b̂× (b̂ · ∇b̂)] = ∇ · (∇× b̂− b̂b̂ · ∇ × b̂) = −∇ · (b̂b̂ · ∇ × b̂)

= −B · ∇
(

1

B
b̂ · ∇ × b̂

)
=

1

B
(b̂ · ∇ × b̂)(b̂ · ∇B)− b̂ · ∇(b̂ · ∇ × b̂), (D 14)

we find

ṙDK1 =
v2‖
Ωs

b̂× (b̂ · ∇b̂) +
µ

Ωs
b̂×∇B +

msµ

Zse
b̂b̂ · ∇ × b̂, (D 15)

v̇DK‖,1 = −v‖µ
Ωs

[b̂× (b̂ · ∇b̂)− b̂b̂ · ∇ × b̂] · ∇B − msv‖µ

Zse
b̂ · ∇(b̂ · ∇ × b̂), (D 16)

µ̇DK1 =
msv

2
‖µ

Zse
b̂ · ∇

(
1

B
b̂ · ∇ × b̂

)
− µ2

Ωs
(b̂ · ∇ × b̂)(b̂ · ∇B). (D 17)

Substituting these values into (D 1), we obtain (3.22).

Appendix E. The Baños parallel drift and the correction to the
magnetic moment

The Baños parallel drift

vB =
msµ

Zse
b̂ · ∇ × b̂ (E 1)

and the correction to the magnetic moment

µ1 = −v‖µ
Ωs

b̂ · ∇ × b̂ (E 2)

originate from b̂ ·∇× b̂ 6= 0. The quantity b̂ ·∇× b̂ is proportional to the current density
parallel to the magnetic field,

J‖ =
1

µ0
(∇×B) · b̂ =

B

µ0
b̂ · ∇ × b̂, (E 3)
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b̂ at the guiding center

b̂ at the particle’s position

�b̂ ⇠ w?
⌦s

b̂ · r ⇥ b̂

vk

w?

w

Figure 4. Sketch of the magnetic field direction at the position of the particle and at the
position of the guiding center.

where µ0 is the vacuum permeability. For non-zero parallel current, the circulation of B
over any curve around the magnetic field line will be non-zero, and in particular, this
implies that there is a small magnetic field component along the gyromotion that changes
the direction b̂ by an amount

δb̂ ∼ µ0ρJ‖
B

∼ w⊥
Ωs

b̂ · ∇ × b̂ (E 4)

(see figure 4). This magnetic field along the gyromotion means that the direction of the
magnetic field at the real position of the particle is different from the direction of the
magnetic field at the guiding center. This difference is important because the parallel and
perpendicular velocities should be defined with respect to the direction of the magnetic
field at the guiding center. According to figure 4, the component of the velocity parallel
to the magnetic field at the guiding center is

v‖ ∼ w · [b̂ at particle’s position− δb̂] = v‖ +O

(
w2
⊥

Ωs
b̂ · ∇ × b̂

)
(E 5)

and the component of the velocity perpendicular to the magnetic field at the guiding
center is

w⊥ ∼ |w − v‖b̂| = w⊥ −O
(
v‖w⊥

Ωs
b̂ · ∇ × b̂

)
. (E 6)

From w⊥, we obtain µ = w2
⊥/2B. The exact definitions of v‖ and µ are

v‖ = v‖ + vB = v‖ +
msµ

Zse
b̂ · ∇ × b̂ (E 7)

and

µ = µ+ µ1 = µ− v‖µ

Ωs
b̂ · ∇ × b̂. (E 8)

Equation (3.27) is more intuitive in the new coordinates v‖ and µ. We transform (3.27)
to these new coordinates to demonstrate it. We use the chain rule and (1.6), (3.1) and
(3.3) to write

∂〈fs〉ϕ
∂t

∣∣∣∣
r,v‖,µ

=
∂〈fs〉ϕ
∂t

∣∣∣∣
r,v‖,µ

+
∂v‖
∂t

∣∣∣∣
r,v‖,µ

∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

+
∂µ

∂t

∣∣∣∣
r,v‖,µ

∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

=
∂〈fs〉ϕ
∂t

∣∣∣∣
r,v‖,µ

+O
(
ρ2s∗

vts
L
〈fs〉ϕ

)
, (E 9)
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∇〈fs〉ϕ|v‖,µ,t = ∇〈fs〉ϕ|v‖,µ,t +∇v‖|v‖,µ,t
∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

+∇µ|v‖,µ,t
∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

= ∇〈fs〉ϕ|v‖,µ,t +∇vB |v‖,µ,t
∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

+∇µ1|v‖,µ,t
∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

, (E 10)

∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

=
∂v‖
∂v‖

∣∣∣∣
r,µ,t

∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

+
∂µ

∂v‖

∣∣∣∣
r,µ,t

∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

=
∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

+
∂µ1

∂v‖

∣∣∣∣
r,µ,t

∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

(E 11)

and

∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

=
∂v‖
∂µ

∣∣∣∣
r,v‖,t

∂〈fs〉ϕ
∂v‖

∣∣∣∣
r,µ,t

+
∂µ

∂µ

∣∣∣∣
r,v‖,t

∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

=
∂〈fs〉ϕ
∂µ

∣∣∣∣
r,v‖,t

+O
(
ρs∗

vts
L
〈fs〉ϕ

)
. (E 12)

Substituting these expressions into (3.27), we find the equation

∂〈fs〉ϕ
∂t

+ ṙDK · ∇〈fs〉ϕ + v̇
DK
‖

∂〈fs〉ϕ
∂v‖

= 0 (E 13)

for 〈fs〉ϕ(r, v‖, µ, t). Here,

ṙDK ' v‖b̂ + vE + vκ + v∇B , (E 14)

v̇
DK
‖ ' v̇DK‖ + v‖b̂ · ∇vB '

(
b̂ +

v‖
Ωs

b̂× κ

)
·
(
Zse

ms
E− µ∇B

)
. (E 15)

To prove that the coefficient in front of ∂〈fs〉ϕ/∂µ vanishes to the relevant order, we have
used

µ̇DK + v‖b̂ · ∇µ1 +

(
Zse

ms
b̂ ·E− µb̂ · ∇B

)
∂µ1

∂v‖
= 0. (E 16)


