
Collisional Plasma Physics
Problem Set I

Due: Friday 14 May 2021

1.1 (10 points) The Fokker-Planck collision operator is often replaced by simpler model
collision operators. For like particle collisions, one such model operator is the modified
Brownian motion operator

Css[fs] = νss∇v ·
[

Θs

ms

∇vfs + (v −Vs)fs

]
, (1)

where νss is a positive constant, and Θs and Vs are moments of fs that need to be
determined.

(a) Prove that this collision operator conserves particles.

(b) Determine Vs and Θs such that the collision operator conserves momentum and
energy.

(c) For Vs and Θs as defined in (b), prove that the entropy production

σ̇ss = −
∫

ln fsCss[fs] d3v (2)

is positive, σ̇ss ≥ 0, and it is zero only for a Maxwellian distribution function. [Hint:
show first that

∫
ln fsCss[fs] d3v =

∫
(ln fs +ms|v −Vs|2/2Θs)Css[fs] d3v.]

1.2 (15 points) In this problem, we will use the Landau form of the Fokker-Planck collision
operator to calculate the collisional energy exchange

Wss′ =

∫
1

2
msv

2Css′ [fMs, fMs′ ] d3v (3)

between two species s and s′ that have stationary Maxwellian distribution functions with
different temperatures,

fMs(v) = ns

(
ms

2πTs

)3/2

exp

(
−msv

2

2Ts

)
, (4)

fMs′(v) = ns′

(
ms′

2πTs′

)3/2

exp

(
−ms′v

2

2Ts′

)
. (5)

(a) Prove that

Wss′ = γss′

∫
d3v

∫
d3v′fMs(v)fMs′(v

′)v · ∇g∇gg ·
(

v

Ts
− v′

Ts′

)
. (6)

(b) Change from the integration variables v and v′ to the integration variables

U =
msv/Ts +ms′v

′/Ts′

ms/Ts +ms′/Ts′
, g = v − v′, (7)



to find

Wss′ = K

(
1

Ts
− 1

Ts′

)∫
d3U

∫
d3gU · ∇g∇gg ·U exp

(
− U2

2σU
− g2

2σg

)
, (8)

where K, σU and σg are constants that you need to determine. [Hint: show that
d3v d3v′ = d3U d3g.]

(c) Integrate equation (8) to obtain Wss′ . Does your formula agree with the formula for
the energy transfer between electrons and ions in the notes?

1.3 (30 points) In fusion devices, fusion-born alpha particles (Helium ions) are very energetic
and satisfy vti � vα � vte, where vα is the typical alpha particle velocity, and vti and
vte are the ion and electron thermal speeds. Alpha particles slow down due to collisions
with electrons and ions. We study this process by assuming that the ion and electron
distribution function functions are stationary Maxwellians, that is,

fs(v) = fMs(v) ≡ ns

(
ms

2πTs

)3/2

exp

(
−msv

2

2Ts

)
(9)

for s = i, e.

We assume that the alpha particles are produced always with velocity magnitude vα at
a volumetric rate Sα. We assume that the source is isotropic. Then, the slowing down
process is described by the equation

Cαe[fα, fMe] +
∑
i

Cαi[fα, fMi] +
Sα

4πv2α
δ(v − vα) = 0, (10)

where δ(x) is the one-dimensional Dirac delta function. Due to the symmetry of this
equation, the alpha particle distribution function is isotropic, that is, fα(v) only depends
on the magnitude of the velocity v = |v|.
(a) Justify the ordering

vti
vα
�
√
mα

mi

∼ 1, (11)

and use it to show that

Cαi[fα, fMi] '
3
√

2π

2

Z2
i niT

3/2
e ln Λiα

nemim
1/2
e ln Λeα

ναe∇v ·
( v

v3
fα

)
, (12)

where

ναe =
4
√

2π

3

Z2
αe

4ne
√
me ln Λeα

(4πε0)2mαT
3/2
e

. (13)

(b) Justify the ordering √
me

mα

� vα
vte
� 1, (14)

and use it to show that
Cαe[fα, fMe] ' ναe∇v · (vfα). (15)
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[Hint: expand first in the smallest parameter, me/mα ≪ 1, assuming that vα ∼ vte.
After that expansion is performed, proceed to do the subsidiary expansion vα/vte � 1.]

(c) Using (15) and (12), show that equation (10) becomes

ναe
v2

∂

∂v

[
(v3 + v3c )fα

]
= − Sα

4πv2α
δ(v − vα), (16)

where vc is a constant that you need to determine.

(d) Show that the solution to equation (16) with boundary condition fα(v →∞)→ 0 is

fα(v) =

{
Sα

4πναe
1

v3+v3c
for v < vα

0 for v > vα
. (17)

This solution is known as the slowing down distribution function.

1.4 (30 points) The linearized collision operator C
(`)
ss′ [hs;hs′ ] = Css′ [hs, fMs′ ] + Css′ [fMs, hs′ ]

is composed of a differential part, Css′ [hs, fMs′ ], and an integral part, Css′ [fMs, hs′ ]. In
this problem, we study the differential part,

Css′ [hs, fMs′ ] =
γss′

m2
s

∇v ·
[
fMs(v)

∫
fMs′(v

′)∇g∇gg · ∇v

(
hs(v)

fMs(v)

)
d3v′

]
. (18)

Here fMs′(v) is a stationary Maxwellian,

fMs′(v) = ns′
( ms′

2πT

)3/2
exp

(
−ms′v

2

2T

)
. (19)

(a) Show that the differential piece of the linearized collision operator can be written as

Css′ [hs, fMs′ ] =
γss′

m2
s

∇v ·
[
fMs∇v∇vHs′ · ∇v

(
hs
fMs

)]
(20)

where

Hs′(v) =

∫
gfMs′(v

′) d3v′. (21)

In the plasma physics literature, the function Hs′ is one of the Rosenbluth potentials.

(b) Using spherical coordinates with the z-axis aligned with v (see Figure 1), take the
integral over v′ and show that

Hs′(v) = ns′vts′

[(
v +

1

2v

)
erf(v) +

1√
π

exp(−v2)
]
, (22)

where vts′ =
√

2T/ms′ , erf(x) = (2/
√
π)
∫ x
0

exp(−s2) ds is the error function and v =

v/vts′ . [Hint: integrate first over the angles α and β, and recall that
√
x2 = |x| and not

= x.]

(c) Show then that

Css′ [hs, fMs′ ] = ∇v ·
[
νss′,⊥fMs

4
(v2I− vv) · ∇v

(
hs
fMs

)
+
νss′,‖fMs

2
vv · ∇v

(
hs
fMs

)]
,

(23)
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Figure 1: Spherical coordinates for the integral in v′.

where

νss′,⊥ =
8πZ2

sZ
2
s′e

4ns′ ln Λss′

(4πε0)2m2
sv

3

(
erf(v)−Ψ(v)

)
(24)

and

νss′,‖ =
8πZ2

sZ
2
s′e

4ns′ ln Λss′

(4πε0)2m2
sv

3
Ψ(v). (25)

Here

Ψ(x) =
1

2x2

(
erf(x)− 2x√

π
exp(−x2)

)
. (26)

(d) Using spherical coordinates, explain why νss′,⊥ is the pitch-angle scattering frequency
and why νss′,‖ is the energy diffusion frequency.

(e) Argue that for ion-electron collisions, we need to consider the limit v � 1. Expand
equation (23) in the limit v � 1 and compare the result with the ion-electron collision
operator calculated in class. [Hint: erf(x) = 2x/

√
π − 2x3/3

√
π + . . . for x� 1.]

(f) Argue that for electron-ion collisions, we can assume v � 1. Expand equation (23) in
the limit v � 1 and compare the result with the electron-ion collision operator calculated
in class. [Hint: erf(x) ' 1 for x� 1.]

1.5 (15 points) The conductivity σZ of an unmagnetized plasma formed by one ion species
with charge Ze and mass mi and electrons with charge −e and mass me depends on the
ion charge number Z. In this problem, we will evaluate this dependence.

(a) Using quasineutrality, argue that νee = νei/Z.

(b) Solve the Spitzer-Härm problem for a general Z using the truncated form

fe,SH =
[
a0 + a1L

(3/2)
1 (x)

] eE · v
Te

fMe(v). (27)

for the Spitzer-Härm distribution function. Here E is the electric field, Te is the electron

temperature, L
(γ)
p (x) are modified Laguerre polynomials, x = mev

2/2Te, and

fMe(v) = ne

(
me

2πTe

)3/2

exp

(
−mev

2

2Te

)
(28)

is a stationary Maxwellian.
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(c) Plot schematically σZ as a function of Z.

(d) Show that the Spitzer-Härm equation for Z � 1 is

Lei[fe,SH ] =
eE · v
Te

fMe. (29)

This equation can be solved exactly. Find the solution using spherical coordinates. [Hint:
recall that cosα is proportional to the spherical harmonic Y1,0.]

(e) Using the solution in part (c), calculate the conductivity for Z � 1, and show that
it is

σZ→∞ =
32

3π

e2ne
meνei

. (30)

Is this result consistent with the formula obtained in part (b)? Would you expect them
to be exactly equal for Z � 1?
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