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1. Introduction

In these notes we show how MagnetoHydroDynamics (MHD) can be deduced from
Braginskii equations. We then study how keeping some of the small Braginskii terms,
such as resistivity, can be important. Resistivity and other Braginskii (or two-fluid) ef-
fects break the frozen-in law that ties plasma and magnetic field lines together, allowing
magnetic reconnection (breaks in magnetic field lines) to happen. This new effect can
lead to instabilities that cannot be described using MHD.

2. MagnetoHydroDynamics (MHD)

In MHD (Schekochihin 2015) the plasma is modeled as a single fluid characterized by
its density ρ(r, t), its average velocity u(r, t), its pressure p(r, t) and its current density
J(r, t). For a Braginskii plasma composed of one ion species of charge e and mass mi and
electrons with charge −e and mass me, the plasma density is

ρ = nimi + neme = ne(mi +me) ' nemi, (2.1)

the plasma average velocity is

u =
nimiui + nemeue
nimi + neme

' ui, (2.2)

the plasma total pressure is

p = niTi + neTe = ne(Ti + Te), (2.3)

and the plasma current density is

J = ene(ui − ue). (2.4)

To obtain the MHD equations for ρ, u, p and J, we start from the Braginskii equations,
derived using the orderings

ρi
L
� λee

L
∼ λei

L
∼ λii

L
∼
√
me

mi
� 1, (2.5)

|ui| ∼ |ue| ∼ |ui‖ − ue‖| ∼ vti � |ui⊥ − ue⊥| ∼
ρi
L
vti, (2.6)

and

Ti ∼ Te ∼ |Ti − Te|, (2.7)

among other assumptions. To find the MHD equations, we will modify these assumptions
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and perform a subsidiary expansion in

ρi
L
� λee

L
∼ λei

L
∼ λii

L
�
√
me

mi
� 1. (2.8)

In this limit, the parallel collisional friction force and the collisional temperature equili-
bration term, of order

Fei,‖ ∼ nemeνei|ui‖ − ue‖| ∼
√
me

mi

L

λei

|ui‖ − ue‖|
vti

pe
L

(2.9)

and

W̃ie =
3nemeνei

mi
(Te − Ti) ∼

√
me

mi

L

λei

|Te − Ti|
Te

pevti
L

, (2.10)

must be of the same order as the other terms in their respective equations, the parallel
momentum equations and the energy equations of both ions and electrons. Thus, we
assume that Fei,‖ ∼ pe/L, giving

|ui| ∼ |ue| ∼ vti � |ui‖ − ue‖| ∼
√
mi

me

λei
L
vti � |ui⊥ − ue⊥| ∼

ρi
L
vti, (2.11)

and that W̃ie ∼ pevti/L, leading to

Ti ∼ Te � |Ti − Te| ∼
√
mi

me

λei
L
Te. (2.12)

These assumptions are different from Braginskii’s more general ordering in (2.6) and
(2.7). Equations (2.11) and (2.12) imply that

ue ' ui = u (2.13)

and

Ti ' Te = T. (2.14)

The plasma is sufficiently collisional that both electrons and ions move at the same
average velocity and have the same temperature, and can then be treated as a single
fluid.

We proceed to derive the MHD equations from Braginskii equations.
• Multiplying Braginskii’s ion continuity equation bymi, we obtain the MHD continuity

equation,

∂ρ

∂t
+∇ · (ρu) = 0. (2.15)

• The equation for u is Braginskii’s total momentum equation. Note that under the
assumptions in (2.5), we showed that the ion viscosity was small in λii/L� 1, giving

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ J×B, (2.16)

• We also use the electron momentum equation. We have shown that under the as-
sumptions in (2.5), the electromagnetic forces dominate, giving −ene(E + ue ×B) = 0.
Using (2.13), this equation finally becomes

E + u×B = 0. (2.17)
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• Summing the electron and ion thermal energy equations and using (2.13) and (2.14),
we find

3ne

(
∂T

∂t
+ u · ∇T

)
= −2neT∇ · u, (2.18)

where we have neglected the terms ∇·qi and Πi : ∇ui because they are small in λii/L�
1, and the terms ∇·qe and Fei ·(ui−ue) because they are small in

√
mi/me(λee/L)� 1.

Using (2.15) and p = ne(Ti + Te) ' 2neT , equation (2.18) can be rewritten as the usual
MHD energy equation (

∂

∂t
+ u · ∇

)(
p

ρ5/3

)
= 0. (2.19)

In addition to the plasma model in (2.15), (2.16), (2.17) and (2.19), we need Maxwell’s
equations for the evolution of E and B: the induction equation

∇×E = −∂B

∂t
, (2.20)

and Ampere’s law without the displacement current,

∇×B = µ0J. (2.21)

3. Resistive MHD and reconnection

We have neglected several terms to derive the MHD equations. Some of them are in
fact important even though they are small. We will focus on the electron momentum
equation. The electron momentum equation with next order terms is

0 ' −ene(E + ue ×B)−∇pe + 0.51nemeνei(ui‖ − ue‖)b̂− 0.71neb̂b̂ · ∇Te, (3.1)

where we have neglected neme(∂ue + ue ·∇ue), ∇·Πe and Fei,⊥ because they are much
smaller than the electron pressure gradient. We rewrite this equation performing the
following manipulations.
• According to (2.11), |ui‖ − ue‖| � |ui⊥ − ue⊥|, leading to (ui‖ − ue‖)b̂ ' ui − ue.

Hence, we can write

0.51nemeνei(ui‖ − ue‖)b̂ ' 0.51nemeνei(ui − ue) = eneηJ, (3.2)

where

η =
0.51meνei
e2ne

(3.3)

is the plasma resistivity.

• We can rewrite b̂b̂ · ∇Te as

b̂b̂ · ∇Te = ∇Te − (b̂×∇Te)× b̂. (3.4)

Using these results, equation (3.1) becomes

E + uB ×B = −∇pe
ene

+ ηJ− 0.71

e
∇Te, (3.5)

where the velocity uB is

uB = ue︸︷︷︸
∼vti

− 0.71

eB
b̂×∇Te︸ ︷︷ ︸
∼ ρiL vti

' u. (3.6)
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There are two differences between the usual MHD electron momentum equation, E +
u × B = 0, and equation (3.5): the difference between the plasma velocity u and the
new velocity uB , and the terms in the right side of (3.5). Both of these differences are
small, but some of the terms in the right side of (3.5) are important because they change
a fundamental property of MHD: the frozen-in law.

To see what happens to the frozen-in law, we obtain E from (3.5) and substitute it
into the induction equation (2.20) to find

∂B

∂t
= ∇× (uB ×B)− ∇ne ×∇pe

en2
e

−∇× (ηJ). (3.7)

The usual MHD frozen-in law is ∂B/∂t = ∇× (u×B), and it implies that the magnetic
field lines move with the plasma velocity u. Since plasma infinitesimal volume elements
do not split into two (u would have to be discontinuous), a magnetic field line that moves
with the plasma cannot be broken. Conversely, equation (3.7) implies that the magnetic
field lines move with the velocity uB ' u, and in addition to this motion, the magnetic
field changes in time due to two new terms: −∇ne ×∇pe/en2

e and −∇× (ηJ). In these
notes, we focus on the term −∇ × (ηJ) due to resistivity. The term −∇ne × ∇pe/en2

e

is in general as important as the resistivity term, but it can be made zero if we take

the solution p/ρ5/3 = constant to equation (2.19), implying that pe ∝ n
5/3
e and hence

∇ne × ∇pe = 0. Then, in the particular case p/ρ5/3 = constant, and using (2.21) to
obtain J, equation (3.7) becomes

∂B

∂t
= ∇× (uB ×B)−∇×

(
η

µ0
∇×B

)
. (3.8)

Using ∇× [(η/µ0)∇×B] = (η/µ0)∇(∇·B)+µ−1
0 ∇B ·∇η−∇· [(η/µ0)∇B] and ∇·B = 0,

we rewrite (3.8) as

∂B

∂t
= ∇× (uB ×B) +∇ ·

(
η

µ0
∇B

)
− 1

µ0
∇B ·��>

ignore
∇η. (3.9)

Thus, if we ignore ∇η to avoid unnecessary complications, the magnetic field moves with
velocity uB , which is uninteresting because uB is almost the plasma velocity u, and it
diffuses with a diffusion coefficient Dη = η/µ0. The fact that the magnetic field diffuses
implies that magnetic field lines can be broken. The resistivity is not the only term that
can break magnetic field lines, and there is a large area of research that studies the
different physical effects that can lead to magnetic reconnection.

From here on, we only consider resistivity, and instead of (3.5), we consider the simpler
equation

E + u×B = ηJ (3.10)

that contains the necessary terms to obtain (3.9). To simplify the problem even further,
we consider η a constant, i.e. we consider a plasma in which the temperature variation
is small.

We characterize the strength of the resistive term using the characteristic time of the
magnetic field diffusion τη = L2/Dη = µ0L

2/η, where L is the length of the system. We
measure the importance of the resistivity in the plasma by comparing this characteristic
time with the Alfven time, τA = L/vA, where vA = B/

√
ρµ0 is the Alfven speed. This

comparison gives the Lundquist number,

S =
τη
τA

=
µ0vAL

η
=
BL

η

√
µ0

ρ
. (3.11)
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Figure 1. Sketches of By(x) (solid) and Jz(x) (dashed) normalized by their values at x → ∞,
By∞ = By(x→ ∞), and at x = 0, Jz0 = Jz(x = 0), respectively. Figure (a) represents a general
current sheet, and figure (b) is the specific example in equations (4.2) and (4.5).

Since we are assuming that resistivity is a small effect, we are considering the case S � 1.

4. Resistive tearing modes

To study the effect of the magnetic diffusion, we consider a current sheet, which is a
magnetic field configuration that is stable to ideal MHD modes, but unstable to small
but finite resistivity. The unstable mode “reconnects” the magnetic field, converting the
magnetic energy into plasma energy.

In this section, we first describe the equilibrium that we will consider, and we then
study its stability by linearizing the equations.

4.1. Current sheet equilibrium

We consider a simple sheared magnetic field

B = Bz ẑ +By(x)ŷ. (4.1)

The functionBy(x) is of the form shown in figure 1. To simplify the calculation, we assume
in these notes that By(x) is antisymmetric with respect to x = 0, i.e. By(x) = −By(−x),
and hence By = 0 at x = 0. We also assume that By tends to a constant for x → ±∞.
A possible example, shown in figure 1(b), is

By(x) =

{
By0x/L for |x| 6 L
By0 for |x| > L

. (4.2)

Assuming that By(x) is antisymmetric with respect to x = 0 is particularly restrictive
and not necessary for the derivation, but this assumption simplifies the calculation around
x = 0. The sheared magnetic field in (4.1) is similar to the magnetic field used in the
seminal calculation by Furth, Killeen and Rosenbluth (FKR) that we follow in these
notes (Furth et al. 1963).

Using Ampere’s law, given in (2.21), we find the current density corresponding to the
magnetic field in (4.1),

J =
1

µ0
∇×B = Jz(x)ẑ, (4.3)

where

Jz(x) =
1

µ0
B′y(x). (4.4)
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From here on, the prime ′ indicates differentiation with respect to x. The dependence of
J on x is sketched in figure 1. The localization of the current is the reason why this type
of equilibria is called a current sheet. For the magnetic field in (4.2), we find

Jz(x) =

{
By0/µ0L for |x| 6 L
0 for |x| > L

. (4.5)

This current profile is sketched in figure 1(b).
The current must be carried by the plasma. For the plasma equilibrium, we assume that

u = 0. Then, equation (2.16) gives ∇p = J ×B = −(ByB
′
y/µ0)x̂, and we can integrate

in x to obtain the equilibrium pressure p(x). Equation (3.10) gives E = Ez(x)ẑ, with
Ez(x) = ηJz(x). This electric field is externally imposed to drive the current in the
current sheet. Note that the plasma density ρ(x) is undetermined. We assume that it
only depends on x.

The equilibrium that we have just described is stable in the MHD model because the
sheared magnetic field makes moving the magnetic field lines impossible (they cannot
break and cross each other). Including resistivity into the analysis will change the stability
properties.

4.2. Perturbation equations

Linearizing equations (2.16), (3.10), (2.20) and (2.21), we find

ρ
∂u1

∂t
= −∇p1 + J1 ×B + J×B1, (4.6)

E1 + u1 ×B = ηJ1, (4.7)

∇×E1 = −∂B1

∂t
(4.8)

and

∇×B1 = µ0J1. (4.9)

We will not need the continuity equation or the energy equation.
Due to the symmetry of the equilibrium (it only depends on x and Bz is a constant),

we can choose a form of the perturbation that simplifies the derivation. We will assume
that B1(x, y, t), J1(x, y, t), E1(x, y, t), u1(x, y, t) and p1(x, y, t) depend on x and y, but
not on z. Moreover, we will assume that B1 · ẑ = 0. Since the perturbed magnetic field
must satisfy ∇ ·B1 = 0, we choose

B1 = ẑ×∇ψ, (4.10)

where ψ(x, y, t) is the flux function. With this form of B1 and (4.9), we obtain the
perturbed current density

J1 =
1

µ0
∇×B1 =

∇2ψ

µ0
ẑ. (4.11)

The form of B1 in (4.10) gives the form of the electric field E1 and the velocity u1.
Equation (4.8) gives

E1 =
∂ψ

∂t
ẑ−∇φ, (4.12)

where φ(x, y, t) is the electrostatic potential. Using (4.12), the components of the vector
equation (4.7) perpendicular to ẑ give

u1 =
1

Bz
ẑ×∇φ, (4.13)
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where we have assumed u1 · ẑ = 0 to simplify the derivation.
We need equations for ψ and φ. The ẑ-component of (4.7) gives

∂ψ

∂t
− By
Bz

∂φ

∂y
=

η

µ0
∇2ψ. (4.14)

To find an equation for φ, we use (4.6). To eliminate the term ∇p1, we take a curl of this
equation, obtaining the vorticity equation,

∂

∂t
[∇× (ρu1)] = B · ∇J1 −���

��:0
J1 · ∇B + B1 · ∇J−���

��:0
J · ∇B1. (4.15)

Using (4.10), (4.11) and (4.13), equation (4.15) gives

µ0

Bz

∂

∂t
[∇ · (ρ∇φ)] = By∇2

(
∂ψ

∂y

)
−B′′y

∂ψ

∂y
. (4.16)

To simplify the equations even further, we take the forms

ψ(x, y, t) = ψ̃(x) exp(γt+ ikyy) + c.c.,

φ(x, y, t) = φ̃(x) exp(γt+ ikyy) + c.c., (4.17)

where γ is the growth rate of the instability and ky is the mode number in the direction
of symmetry y. With this form of the solution, equations (4.14) and (4.16) become

γψ̃︸︷︷︸
∼γτA ψ

τA

− ikyBy
Bz

φ̃︸ ︷︷ ︸
∼ φ
vAψ

ψ
τA

=
η

µ0

(
ψ̃′′ − k2

yψ̃
)

︸ ︷︷ ︸
∼S−1 ψ

τA

(4.18)

and

µ0γ

ikyBzBy

[
(ρφ̃′)′ − ρk2

yφ̃
]

︸ ︷︷ ︸
∼γτA φ

vAψ
ψ

L2

= ψ̃′′ − k2
yψ̃ −

B′′y
By

ψ̃︸ ︷︷ ︸
∼ ψ

L2

. (4.19)

The order of magnitude estimates in these equations are obtained by assuming that
kyL ∼ 1 and d/dx ∼ 1/L.

The boundary conditions for equations (4.18) and (4.19) are that ψ̃, φ̃ → 0 for x →
±∞. For Lundquist number S � 1, the mode that satisfies these boundary conditions
and equations (4.18) and (4.19) is composed of two very distinct regions: an outer re-
gion in which the resistivity is negligible, and an inner region in which the resistivity is
comparable to other terms. We solve the equations in these two regions and then match
them to find the shape of the mode and the growth rate γ.

4.2.1. Outer region

We will obtain that

S−1 � γτA � 1. (4.20)

Then, the right side of equation (4.18) is small and can be neglected, leading to

φ̃o = − iγBz
kyBy

ψ̃o, (4.21)

where the subindex o indicates that this is only valid in the outer region. According to
this result, the left side of (4.19) is of order (γτA)2ψ/L2 � ψ/L2, and hence, equation
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Figure 2. The functions ψ̃o(x) and φ̃o(x) in the outer region. For ψ̃o(x), we give typical
solutions for kyL small (solid) and kyL large (dashed).

(4.19) becomes

ψ̃′′o − k2
yψ̃o −

B′′y
By

ψ̃o = 0. (4.22)

Note however, that the left side of (4.19) is small only away from x = 0 because at x = 0,
By = 0. Thus, equation (4.22) is only valid for ]−∞, 0[ and ]0,∞[. We solve the equation

with the boundary conditions ψ̃o → 0 for x→ ±∞, and

ψ̃o(0
−) = ψ̃o(0

+) (4.23)

at x = 0. It is not obvious that ψ̃o should be continuous at x = 0, but we will see that
this condition is consistent with the solution in the inner region.

For x→ ±∞, B′′y /By → 0, and equation (4.22) becomes

ψ̃′′o − k2
yψ̃o = 0. (4.24)

Then, the solutions are ψ̃o ∼ exp(±kyx) for x→ ±∞, and we must choose the solution
that goes like exp(kyx) for x < 0, and the solution that goes like exp(−kyx) for x > 0
(here we have assumed without loss of generality that ky > 0). This choice fixes the
derivative at x = 0− and x = 0+. Thus, in general the solution is of the form shown in
figure 2, with a discontinuous derivate at x = 0. Because we have assumed that By(x) is
antisymmetric, the solutions are symmetric in x, giving

ψ̃o(x) ' ψ̃o(0)

(
1 +

∆′

2
|x|
)
. (4.25)

The parameter

∆′ =
ψ̃′o(0

+)− ψ̃′o(0−)

ψ̃o(0)
. (4.26)

is the standard measure of the size of the discontinuity in ψ̃′o.
The function φ̃o(x), given by (4.21), diverges at x = 0 as shown in figure 2 due to

By(x) ' B′y(0)x for x close to zero.
To find an example of outer region solution, we use the magnetic field in (4.2). For this

magnetic field, equation (4.22) becomes

ψ̃′′o − k2
yψ̃o −

1

L
[δ(x+ L)− δ(x− L)]ψ̃o = 0. (4.27)
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Figure 3. The quantity ∆′ as a function of kyL. We have used the particular case in (4.29).

The solution to this equation is

ψ̃o(x)

ψ̃o(0)
=


cosh(kyx) +

1− kyL− kyL tanh(kyL)

kyL− (1− kyL) tanh(kyL)
sinh(ky|x|) for |x| 6 L

kyL

kyL cosh(kyL)− (1− kyL) sinh(kyL)
exp(−ky(|x| − L)) for |x| > L

.

(4.28)
As expected, this solution has a discontinuous derivative at x = 0. We find

∆′ =
2ky[1− kyL− kyL tanh(kyL)]

kyL− (1− kyL) tanh(kyL)
. (4.29)

The quantity ∆′ ranges from +∞ at kyL � 1 to −∞ for kyL � 1, as can be seen
in figure 3. In fact, the quantity ∆′ ranges from −∞ to +∞ when kyL decreases from
∞ to 0 for any profile of By(x) that is of the form shown in figure 1 (see the different

profiles of ψ̃o(x) for different values of kyL in figure 2). We show that this is the case in
Appendix A.

The magnetic field is unknown in a region around x = 0. The discontinuity in ψ̃′o
indicates that near x = 0, the assumptions that we have used to obtain equations (4.21)
and (4.22) fail. For this reason, we need to solve the equations in an inner region in which
the resistivity becomes important.

4.2.2. Inner region

In the outer region solution, the first derivative ψ̃′o is discontinuous. This discontinuity
is indicative of a fast rate of change of ψ̃′i in the inner region, that is, ψ̃′′i is large (see
figure 4). Here the subindex i refers to quantities in the inner region. If the size of the
inner region is of order δ � L,

ψ̃′′i ∼
ψ

δL
. (4.30)

The function φ̃i, given in (4.21) for the outer region, must be of the form shown in
figure 4. Thus, we expect its second derivative to satisfy

φ̃′′i ∼
φ

δ2
. (4.31)
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Figure 4. The functions ψ̃(x) and φ̃(x) in the inner region for ∆′ > 0.

Using the estimates (4.30) and (4.31), and employing By(x) ' B′y(0)x, B′′y (x) ' B′′′y (0)x
and ρ(x) ' ρ(0), equations (4.18) and (4.19) become

γψ̃i︸︷︷︸
∼γτA ψ

τA

−
ikyB

′
y(0)x

Bz
φ̃i︸ ︷︷ ︸

∼ φ
vAψ

δ
L

ψ
τA

=
η

µ0
ψ̃′′i︸ ︷︷ ︸

∼S−1 L
δ
ψ
τA

−
�
�
�
�>

small by δ/L� 1
η

µ0
k2
yψ̃i︸ ︷︷ ︸

∼S−1 ψ
τA

(4.32)

and

µ0γρ(0)

ikyBzB′y(0)x
φ̃′′i︸ ︷︷ ︸

∼γτA φ
vAψ

(Lδ )
3 ψ

L2

−
���

���
���:

small by (δ/L)2 � 1
µ0γρ(0)

ikyBzB′y(0)x
k2
yφ̃i︸ ︷︷ ︸

∼γτA φ
vAψ

L
δ
ψ

L2

= ψ̃′′i︸︷︷︸
∼Lδ

ψ

L2

−
���

���
���:

small by δ/L� 1(
k2
y +

B′′′y (0)

B′y(0)

)
ψ̃i︸ ︷︷ ︸

∼ ψ

L2

. (4.33)

By balancing all the terms in equations (4.32) and (4.33), we find the order of magnitude
of γτA, δ/L and φ/vAψ,

γτA ∼ S−3/5,
φ

vAψ
∼ S−1/5,

δ

L
∼ S−2/5. (4.34)

Note that the result for γ is consistent with our assumption (4.20), needed to solve the
outer region.

According to the estimates in (4.34), δ ∼ S−2/5L, and hence, since ψ̃′i ∼ ψ/L, the total
change in ψ̃i across the inner region is

∆ψ̃i ∼ δψ̃′i ∼
δ

L
ψ ∼ S−2/5ψ � ψ. (4.35)

Thus, to lowest order in S−2/5 � 1, ψ̃i(x) ' ψ̃o(0), where ψ̃o(0) is determined by the
outer region. The fact that ψ̃(x) does not change much across the inner region justifies
the boundary condition (4.23) for the outer region. The approximation ψ̃i(x) ' ψ̃o(0) is
known as constant flux approximation.

Using ψ̃i(x) ' ψ̃o(0), equation (4.32) becomes

γψ̃o(0)−
ikyB

′
y(0)x

Bz
φ̃i =

η

µ0
ψ̃′′i . (4.36)

Using equation (4.33) to obtain ψ̃′′i as a function of φ̃′′i , we can rewrite equation (4.36)
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Figure 5. Sketch showing our choice of γ1/4.

as

γψ̃o(0)−
ikyB

′
y(0)x

Bz
φ̃i = − iηγρ(0)

kyBzB′y(0)x
φ̃′′i . (4.37)

For large x, the solution for φ̃i must match with the outer region solution. The outer
region solution, given in (4.21), is

φ̃o ' −
iγBz

kyB′y(0)x
ψ̃o(0) (4.38)

for x around zero. Thus, the boundary condition for equation (4.37) is that

φ̃i ' −
iγBz

kyB′y(0)x
ψ̃o(0) (4.39)

for x→ ±∞.
Once φ̃i(x) is obtained from equation (4.37) with boundary condition (4.39), we can

find ψ̃′i(x) by using (4.33),

ψ̃′′i = − iµ0γρ(0)

kyBzB′y(0)x
φ̃′′i . (4.40)

We can integrate this equation across the inner region to find the size of the jump in ψ̃′i,

ψ̃′i(∞)− ψ̃′i(−∞) =

∫ ∞
−∞

ψ̃′′i dx = − iµ0γρ(0)

kyBzB′y(0)

∫ ∞
−∞

φ̃′′i
x

dx. (4.41)

This jump in ψ̃′i must be equal to the discontinuity observed in the outer region solution,
characterized by the parameter ∆′. Then,

∆′ = − iµ0γρ(0)

kyBzB′y(0)ψ̃o(0)

∫ ∞
−∞

φ̃′′i
x

dx. (4.42)

This condition is an equation for the growth rate γ.

4.2.3. Final solution

To solve the equation for φ̃i in (4.37), we use the normalized variables

U =
φ̃i
Φ
, X =

x

δ
, (4.43)

where the quantities Φ and δ need to be determined. With this normalization, equation
(4.37) becomes

γψ̃o(0)−
ikyB

′
y(0)δΦ

Bz
XU = − iηγρ(0)Φ

kyBzB′y(0)δ3

1

X

d2U

dX2
. (4.44)
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Imposing

γψ̃o(0) = −
ikyB

′
y(0)δΦ

Bz
= − iηγρ(0)Φ

kyBzB′y(0)δ3
, (4.45)

we obtain the normalization factors

δ =
(ηρ(0))1/4γ1/4

(kyB′y(0))1/2
, Φ =

iγ3/4Bz
(kyB′y(0))1/2(ηρ(0))1/4

ψ̃o(0), (4.46)

and the equation for U(X),

d2U

dX2
= X(1 +XU). (4.47)

With the results in (4.46), the boundary condition in (4.39) becomes

U(X) ' − 1

X
(4.48)

for X → ±∞.
In (4.46), there are four possible choices for γ1/4: |γ|1/4 exp(iθγ/4 + ikπ/2), with k =

0, 1, 2, 3. Here θγ is the argument of γ, defined to be between −π and π. To be consistent
with the solution for U(X) that we will obtain in (4.49), we choose the root of γ1/4 =
|γ|1/4 exp(iθγ/4) with positive real part and the imaginary part with smallest absolute
value, that is, the root with argument between −π/4 and π/4 (see figure 5).

The solution to equation (4.47) with boundary conditions (4.48) is the Rutherford-
Furth solution

U(X) = −X
2

∫ 1

0

exp

(
−µX

2

2

)
(1− µ2)−1/4 dµ. (4.49)

(see Appendix B for a proof). This solution satisfies the boundary condition if X2 has
positive real part, Re(X2) > 0, because then we can change variable of integration to
s = µX2/2 to find that for |X| large

U(X) = − 1

X

∫ X2/2

0

exp (−s)

(
1−
�
�
�7

small when exp(−s) ∼ 1

4s2

X4

)−1/4

ds ' − 1

X

∫ X2/2

0

exp (−s) ds

= − 1

X

[
1−
��

��
�
��*

small for Re(X2) > 0

exp

(
−X

2

2

)]
' − 1

X
. (4.50)

We note that X2 = x2/δ2, and that the argument of δ is the argument of γ1/4. Thus, to
ensure that Re(X2) > 0, we choose the root γ1/4 = |γ|1/4 exp(iθγ/4) as in figure 5. Note
that the root −|γ|1/4 exp(iθγ/4) would also give Re(X2) > 0, but using this root would

be equivalent to a simple change of sign of x, and it would give the same final φ̃i(x).
With (4.46) and (4.49), the condition in (4.42) becomes

∆′ =
µ0(ρ(0))1/4γ5/4

(kyB′y(0))1/2η3/4

∫ ∞
−∞

1

X

d2U

dX2
dX =

µ0ρ
1/4γ5/4

(kyB′y(0))1/2η3/4

√
2[Γ(3/4)]2. (4.51)

where Γ(ν) =
∫∞

0
tν−1 exp(−t) dt is the Euler Gamma function (in Appendix C we show

how to take the integral of the Rutherford-Furth solution). According to (4.51), ∆′ is
proportional to (γ1/4)5. From our choice γ1/4 = |γ|1/4 exp(iθγ/4) (see figure 5), the
argument of ∆′ must be between −5π/4 and 5π/4. Thus, positive ∆′ corresponds to
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Figure 6. Sketch of the perturbed magnetic field B + B1 and perturbed velocity u1 in the
inner region. Note the different scale of x and y.

∆′ exp(i0), and negative ∆′ to |∆′| exp(±iπ). Solving for γ, we obtain

γ =

(
1√

2[Γ(3/4)]2

)4/5 (kyB
′
y(0))2/5η3/5

µ
4/5
0 (ρ(0))1/5

(∆′)4/5. (4.52)

From this formula, we see that the current sheet is unstable for ∆′ > 0 (≡ kyL small)
since γ ∝ exp(i0), and it is stable for ∆′ < 0 (≡ kyL large) since γ ∝ exp(±4iπ/5).

The perturbed magnetic field B + B1 and the perturbed velocity u1, defined in (4.10)
and (4.13), are sketched in figure 6 for the unstable case. For kyL small, the current
sheet breaks into a series of individual current channels. The drive for the instability is
the fact that currents of the same sign attract. Resistivity is necessary because without
it, the magnetic field cannot reconnect and form islands. In the case kyL large, in which
∆′ < 0, the instability is quenched by the tension of the lines that prevents reconnection
from happening by making it hard to bend magnetic field lines.
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Appendix A. Limits of ψ̃o for kyL� 1 and kyL� 1

In this Appendix, we show that ∆′ scales as 1/ky for kyL� 1, and as −ky for kyL� 1,
hence proving that ∆′ ranges from −∞ to ∞ as ky decreases from ∞ to 0..

• For kyL � 1, we solve equation (4.22) by trying solutions of the form ψ̃o =
Ψ exp(−ky|x|). Then, equation (4.22) becomes[

B2
y(x)

(
Ψ

By(x)

)′]′
=

2x

|x|
kyBy(x)Ψ′. (A 1)

The function Ψ must be continuous at x = 0 and it has to become constant for x→ ±∞
(recall that ψ̃o ∼ exp(−ky|x|) for large x). Expanding Ψ in kyL� 1, we find

Ψ(x) = Ψ0(x) + Ψ1(x)︸ ︷︷ ︸
∼kyLΨ0�Ψ0

+ . . . (A 2)

To lowest order, equation (A 1) becomes [B2
y(Ψ0/By)′]′ = 0. One possible solution to this

equation that satisfies the boundary conditions is Ψ0(x) = By(|x|). It will not become ob-
vious why we choose this symmetric form until we solve the next order of equation (A 1),
given by [

B2
y(x)

(
Ψ1

By(x)

)′]′
=

2x

|x|
kyBy(x)Ψ′0 = 2kyBy(x)B′y(x). (A 3)

We can integrate this equation imposing first that Ψ′1 → 0 for x→ ±∞ to find(
Ψ1

By(x)

)′
= −ky

(
B2
y∞

B2
y(x)

− 1

)
, (A 4)

where By∞ = By(x → ∞) is the value of By at infinity. We integrate equation (A 4)
again imposing that Ψ1 → 0 for x→ ±∞ to obtain

Ψ1(x) = kyBy(|x|)
∫ ∞
|x|

(
B2
y∞

B2
y(s)

− 1

)
ds. (A 5)

(we could have chosen that Ψ1 tend to a constant different from zero, but this constant
can be absorbed into Ψ0). The solution (A 5) is continuous at x = 0 because we chose
the lowest order symmetric function Ψ0 = By(|x|). Adding Ψ0 and Ψ1, we find that ψ̃o
is given by

ψ̃o(x) = By(|x|) exp(−ky|x|)

[
1 + ky

∫ ∞
|x|

(
B2
y∞

B2
y(s)

− 1

)
ds+O(k2

yL
2)

]
. (A 6)

The solution in (A 6) gives ∆′ = 2[B′y(0)]2/kyB
2
y∞ → +∞ for ky → 0.

• For kyL� 1, equation (4.22) becomes ψ̃′′o − k2
yψ̃o = 0. The solution to this equation

that goes to zero at x→ ±∞ and is continuous at x = 0 is

ψ̃o = exp(−ky|x|). (A 7)

This solution leads to ∆′ = −2ky → −∞.

We will see shortly that the mode is unstable when ∆′ > 0, and stable when ∆′ < 0.
Thus, the mode will be unstable for small ky, and stable for large ky.
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Appendix B. Rutherford-Furth solution

In this Appendix we check by direct substitution that the function U(X) in (4.49) is
a solution to equation (4.47). By differentiating with respect to X twice, we find

d2U

dX2
=

3X

2

∫ 1

0

exp

(
−µX

2

2

)
µ(1−µ2)−1/4 dµ−X

3

2

∫ 1

0

exp

(
−µX

2

2

)
µ2(1−µ2)−1/4 dµ.

(B 1)
The first integral can be rewritten in a convenient form by integrating by parts in µ,

3X

2

∫ 1

0

exp

(
−µX

2

2

)
µ(1− µ2)−1/4 dµ = −X

[
exp

(
−µX

2

2

)
(1− µ2)3/4

]µ=1

µ=0

− X3

2

∫ 1

0

exp

(
−µX

2

2

)
(1− µ2)3/4 dµ

= X − X3

2

∫ 1

0

exp

(
−µX

2

2

)
(1− µ2)(1− µ2)−1/4 dµ. (B 2)

Using this result in (B 1), we find

d2U

dX2
= X − X3

2

∫ 1

0

exp

(
−µX

2

2

)
(1− µ2)−1/4 dµ = X(1−XU), (B 3)

proving that the function U(X) in (4.49) is a solution to equation (4.47).

Appendix C. Integral of the Rutherford-Furth solution to obtain ∆′

In this Appendix, we take the integral
∫∞
−∞X−1(d2U/dX2) dX. Using (B 1), we find∫ ∞

−∞

1

X

d2U

dX2
dX =

∫ ∞
−∞

dX

∫ 1

0

dµ exp

(
−µX

2

2

)(
3

2
− µX2

2

)
µ(1− µ2)−1/4. (C 1)

We can take the integral in X first. Using the usual Gaussian integrals, we obtain∫ ∞
−∞

1

X

d2U

dX2
dX =

√
2π

∫ 1

0

µ1/2(1− µ2)−1/4 dµ. (C 2)

Changing to the new variable t = µ2, the integral becomes∫ ∞
−∞

1

X

d2U

dX2
dX =

√
π

2

∫ 1

0

t−1/4(1− t)−1/4 dt =

√
π

2
B(3/4, 3/4), (C 3)

where B(ν, µ) =
∫ 1

0
tν−1(1− t)µ−1 dt is the Euler Beta function. Since

B(ν, µ) =
Γ(ν)Γ(µ)

Γ(ν + µ)
, (C 4)

we finally obtain ∫ ∞
−∞

1

X

d2U

dX2
dX =

√
π

2

[Γ(3/4)]2

Γ(3/2)
=
√

2[Γ(3/4)]2. (C 5)


