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1. Introduction

In these notes, we study collisional transport in tokamak plasmas. To simplify the
problem, we only study electron transport and we consider a tokamak that is sufficiently
collisional to obey Braginskii equations. This collisional regime is known as Pfirsch-
Schliiter regime (Pfirsch & Schliiter 1962).

In these notes, we consider a Braginskii plasma composed of one ion species with charge
e and mass m;, and electrons with charge —e and mass m.. To simplify the derivation,
we assume that the plasma flow is small,

%’Uti S U; ~ Ue K Vg, (11)
where L is the characteristic size of the tokamak. Hence, the electric field satisfies
|EJ_| < vy B. (1.2)

We also assume that the parallel current is small and comparable to the perpendicular
current,

|ui|| — uenl ~ \uu - ueL| ~ %Uti ~ %Um. (13)
We will see that assumption (1.3) is equivalent to assuming that the ratio 5 between the
thermal energy and the tokamak energy is of order unity,

2/1,0P
B=—"Fs~1 (1.4)
where P is the total pressure. Finally, we order the mass ratio as
Me Pe
~ Fe 1.5

to ensure that the collisional energy exchange between electron and ions is of the order
of the rest of the terms in the electron energy equation, thus keeping as much physical
effects as is possible. Note that (1.5) implies that p;/L ~ 1, and hence it is not relevant to
a real tokamak. When p;/L < 1, p./L < /m./m; and the collisional energy exchange
will dominate, forcing the ion and electron temperatures to be equal to each other.

Assumptions (1.1), (1.2), (1.3) and (1.5) are different from Braginskii’s ordering wu; ~
Ue ~ Vi, |BL| ~ vyB, Juy — e ~ vy and \/me/mi ~ Aee/L > pe/L, but we can
use Braginskii’s equations if we neglect some of the terms proportional to u;, ue| and
me/m;.

2. Tokamak electromagnetic fields

A tokamak is an axisymmetric toroidal magnetic confinement device (see figure 1(a)).
One can think of the tokamak as a cylinder that is bent so that its top and its bottom
connect to each other.
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FIGURE 1. (a) Three nested tokamak flux surfaces in green, blue and red. The axis of symmetry
of the tokamak is the dash-dot line. A few magnetic field lines tangent to the flux surfaces
are plotted in black. The cylindrical coordinates {R, Z,(} and their corresponding unit vectors

{R,Z,¢} are shown. (b) Cut through a plane of constant ¢ of the same three flux surfaces. Both
the cylindrical coordinates {R, Z,(} and the flux coordinates {1, 0, (} are shown. The toroidal
angle ¢ increases towards the reader.

2.1. Tokamak magnetic field
To describe the magnetic field in a tokamak, we use the cylindrical coordinates {R, Z, (}
centered around the axis of symmetry of the tokamak (see figure 1). The angle ( is the

toroidal angle. The unit vectors R, Z and é’ point in the direction of increase of the
variables R, Z and (.
The magnetic field in a tokamak is axisymmetric, that is, it does not depend on (,

B = Br(R,Z)R + Bz(R, Z)Z + B¢(R, Z)¢. (2.1)
This magnetic field has to satisfy V - B = 0, leading to
19 OBy

-B=—-——(RB —F =0. 2.2
VB = o (RBr) + (22)

This equation implies that there is a flux function ¥(R, Z) such that

1 9y 1 9y

Bp=-—-22 pB,=_%2 2.3
"= "Roz> 77 ROR 23)

According to this result, the component of the magnetic field perpendicular to the (-
direction, known as poloidal magnetic field, can be written as

B,(R,Z) = Br(R,Z)R + Bz (R, Z)Z = V( x Vi), (2.4)

where V¢ = ¢ /R. The surfaces of constant 1) are known as flux surfaces, and they are
parallel to the magnetic field B, that is, B - V¢ = 0. In figure 1, we show three tokamak
flux surfaces. The existence of flux surfaces is a non-trivial property of the tokamak
magnetic field. In general, a magnetic field need not have flux surfaces.
In addition to V - B = 0, the magnetic field needs to satisfy plasma force balance. The
total momentum equation for the plasma is
small in 322

ti

Aii Ui
L Vti

small in

— —V(p. +pi) — A I x B. (2.5)
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Then, using Ampere’s law J =V x B/ug, we find
(VxB)xB=pyVP, (2.6)
where P = p; + p,. is the total pressure. Equation (2.6) imposes several constraints on B
and the total pressure P. Taking the scalar product of equation (2.6) with B, we obtain

0w WOP  0YoP
B-VP=0= oo ot s =0 (2.7)

Thus, P is function of the flux function (R, Z) only,

| P(R,Z) = P(1(R, 2)). | (2.8)

The pressure is constant along flux surfaces because there is no net force along the
magnetic field (recall that we have neglected inertia and viscosity). Note that we can
confine the plasma because P can change with 1) and hence the pressure can be zero at
the external flux surface and different from zero at the magnetic axis, the degenerate flux
surface in the middle of the tokamak that is one single toroidal field line.

Using equation (2.8), we can write equation (2.6) as

dP
(VxB)xB=py—V. (2.9)
dy
Taking the scalar product of equation (2.9) with V x B, we find
(V x B) - Vi) =0, (2.10)

that is, the plasma current has to be parallel to the flux surfaces. This constraint on the
current has important consequences for the toroidal magnetic field B¢. Indeed, using

_ 9B 19

. 0Bz O0BRr)\ 1
we find that (V x B) - Vi) = 0 becomes
oY 0 oY 0 B
@87( 4)—8—2@(1%34)—0. (2.12)
Thus, RB¢, like the total pressure P, is a function of the flux function 1 only,
|RB((R,2) = I(4(R, 2)). | (2.13)

Using equations (2.4) and (2.13), the magnetic field in a tokamak can be written as

| B =V( x Vi +1VC. | (2.14)
and V x B becomes
_Ldl (o 0w, O (1opY 10797,
V*B=31 (aZR 8RZ>+[8R<R8R)+R622 ¢

dy
Using equations (2.14) and (2.15), the force balance equation (2.9) finally becomes

o (VY _ Al adP
RV-(R2>— Iy~ HF g (2.16)

aI [0 [10y\ 10% IdI].
on (3m) |

Ror) " Roz TRaw|© (2.15)
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9 Vi) o (1Y 0%
R*V <R2>_R8R(R8R>+3ZQ‘ (2.17)
This nonlinear equation for (R, Z) is known as the Grad-Shafranov equation, and it
determines the magnetic field in a tokamak given I(v), P() and the shape of one of the
flux surfaces (if we know one of the flux surfaces, we can impose that (R, Z) = 0 on that
flux surface as a boundary condition for equation (2.16)). Combining equations (2.15)
and (2.16), we also obtain the tokamak current

where

V xB B dJ dP _ -
- =22 g 2.18
o mdp  dpe (2.18)

This is a common form for flows in a tokamak: a rigid rotation (piece proportional to

J

R( ) plus a parallel flow without divergence (piece proportional to B).

If we assume that all the terms in equation (2.16) are of the same order, we find that
Y ~ IL ~ L?B and that 8 ~ 1, as we assumed in equation (1.4). Using these estimates in
(2.18), we obtain that J ~ (p;/L)en.vs;, which is consistent with our assumption (1.3).
In general, 8 is small in a tokamak to avoid instabilities (tokamak § ranges from a few
percent to tens of percent), but the results that we will obtain are robust, and we can
perform a subsidiary expansion in 8 < 1 if necessary.

2.2. Tokamak electric field

The tokamak electric field must satisfy V x E = —9B/d¢. In a steady state plasma, this
equation becomes V x E = 0, and its solution is

E = —Vé+ RE:VC, (2.19)

where ¢(R, Z) is the electrostatic potential and Ry and E. are constants. The toroidal
electric field ¢ represents the electric field generated at radius Ry by a solenoid with a
time-varying current wound around the axis of symmetry of the tokamak (see figure 2).
This solenoid is also known as transformer. Applying the induction equation to a toroidal
loop C' of radius R¢ that is inside the plasma, we find

2nRyE = 4/ B. Z.d2%8, (2.20)
d So

where S¢ is the circle whose boundary is the toroidal loop C. The left side of equa-
tion (2.20) is independent of the radius Re due to the 1/R in V(. Physically, the result
is independent of the radius R¢ as long as C' is inside the plasma because we assume that
the change in magnetic flux is confined to the solenoid outside of the plasma (Byyanst()

in figure 2).

3. Flux coordinates

In tokamak theory, we use flux coordinates {1, 6,(}. The flux function v designates
a flux surface, and the angle ¢ a cut of that flux surface with a plane of constant . To
locate a point within the resulting 2D figure, we use a third coordinate 6 (see figure 1(b)).
Since the curve determined by given values of 1 and 6 is a closed curve, it is natural to
define 6 to be an angle, that is, a coordinate that can take values between 0 an 27 and
is periodic.

The variable ¢ is perpendicular to ¢ and 6, that is,

V¢ V=0, V(-V0=0, (3.1)
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Transformer coils

FIGURE 2. Sketch of a tokamak transformer. The axis of symmetry is the dash-dot line. The
current in the transformer coils is directed into the page, and the toroidal electric field (Ro/R)E¢
points towards the reader. The vertical magnetic field inside the transformer is denoted by

Biranst(t). If Beranst(t) - 7 increases in time, E is positive.

but ¢ and 6 need not be perpendicular, Vi - V@ # 0. Thus, one needs to be careful with
the formulas for coordinate changes given in textbooks.
The determinant of the Jacobian matrix of the transformation between r and {v, 0, (}
is
jzdet( d(r) >: 1 1 7
0(v,0,0) V- (VOx V() B-V6
where, to obtain the final result, we have used equation (2.14). With the determinant of
the Jacobian, we can calculate divergences in flux coordinates,

(3.2)

1 0 10
VL= Fap T Vi Fag(IT V)
B o (T -V o (T-Vo
B'waw(B~v9>+B'wae<B-v9>' (3:3)

Using the determinant of the Jacobian, we can also calculate volume integrals in flux
coordinates,

/fd?’r:/Bfw dipdodc. (3.4)

With the volume integral in flux coordinates, we can define the flux surface average.
The flux surface average is a volume average over a volume contained between two flux
surfaces separated by an infinitesimal small Ay. Thus,

2w 2w
wa dwfo defo d¢ B.fvg _ om [ f

(f)yp = lim — — = — do, (3.5)
Ap—0 wa dep f02 a0 f02 ac B‘1v€ V'), B-V0
where
27
dé
!/
14 ™ . B.vo (3.6)

is the derivative with respect to ¢ of V(¢)) = 27 fw dy’ o% df (B - V0)~!, which is the
volume contained by the flux surface 1. The flux surface average of the divergence in
equation (3.3) takes the form

1 d

(V-T)y = Vi d (VAT - Vip)y) - (3.7)
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4. Electron collisional transport in a tokamak

The tokamak magnetic field, density and temperature profiles must be sustained by
injecting particles, momentum and energy. By studying the electrons, we will be able
determine the toroidal electric field E¢, the source of particles S, (¢, ) and the source
of electron energy Sg.(1,0) needed to maintain the tokamak in operation. We will use
the parallel electron momentum equation,

. . . 0.51mevei A
0=—b-Vpe+encb Vo — encRoEch - V¢ + #Ju —0.71nb-VT,,  (4.1)

—Leil

the electron continuity equation,

small in ;’%:—;
5 1 3 ' 3NeMeVei
V. 5p5+*n ele ue—l-qe z—eneue-E—i—ui-FeH—T(T T)+SE€ ( )

The sizes of E¢, S, and Sg. needed to maintain the tokamak in operation are of order

Vej Te Vez pe NeVte

Zer Ze S Vei Pe PeVte
Q. el’ " Q L L’

Q. L L~

E¢ ~ Spe ~ (4.4)

as we will show.
In a tokamak, the density, the electrostatic potential and the temperature depend
mostly on v,

) = neo(¥) + ne1 (4, 0),
) = do(¥) + ¢1(¢,0),

) = Teo(¥) + Te1 (¥, ),
) = Tio() + Tia (¢, 0).

(
o(
e(
i

Using the electron continuity equation, the electron parallel momentum equation and the
electron energy equation, we are going to show that

Ne1 €¢1 Veq Tel Vei

Neo TeO Qe < 1 TeO Qe <l (45)
Using the ion energy equation with a source Sg; ~ (vii/%)(pi/L)(pivyi/L) and fol-
lowing a procedure similar to the one we are going to follow for the electron energy
equation, it is possible to show that Tj;/T;0 ~ vi/9 < 1. Using the total momen-
tum equation (2.5) but keeping the parallel ion viscosity, the ion inertia and a source
Swi ~ (ii/Q)(pi/ L) (wi/ve;)(pi/ L), one can show that the perturbation to the total
pressure P = ne1(Teo + Tio) + neo(Te1 + T31) is smaller than the lowest order total pres-
sure P =~ neo(Te0 + Tio) by a factor of u?/v} < 1 or (Nij/L)(pi/L) < 1, whichever is
larger (the terms of order u? /v are due to inertia, and the terms of order ( «i/L)(pi/L)
are due to viscosity; it may seem that the terms due to the viscosity should be of order
(MNii/L)(ui/ve;), but a lowest order cancelation leads to (A\;;/L)(pi/L)).
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4.1. Parallel electron momentum equation

The parallel momentum equation (4.1) gives to lowest order

Teo ¢ 0 (ne1 ePr Te1 IRy E;
b-Vi— — 1.71 =nod) — . 4.6
€ v o0 <neo Te() + TeO o I R2B ( )
where
O.51meyei0
_ 4.7
Mo I (4.7)
is the lowest order resistivity and
44/2 Moo In Ag;
Veio = TR0 (4.8)

3 (47r60)2mé/2T30/2

is the lowest order electron-ion collision frequency. By dividing equation (4.6) by b- V6
and integrating in 6, we find

0=7m<ﬂl%w—-<;é>wlRoEC (4.9)

This equation indicates that only the transformer electric field can drive an average
current in the parallel direction. The electrostatic potential, the pressure and the tem-
perature are periodic, and hence the forces exerted by their gradients average to zero.
Equation (4.9) can be used to determine the transformer electric field needed to sustain
the tokamak magnetic field. From equation (2.15), we obtain
(VxB)-B |V|? dI I (Vi/))

JyB = - + v (Y
| Ho poR? dy o R?

(4.10)

Flux surface averaging this equation and using equation (3.7), the average parallel current

becomes
=) L A () )
(e ))
Thus, equation (4.9) gives
Rofg = <v/<|7;32|2>¢> L] )

Equation (4.12) is an equation for I(1)) (recall that, according to equation (2.16), ¢ (R, Z)
is a functional of I(v)). Note that equation (4.12) gives the expected order of magnitude
estimate (4.4) for E¢ (recall that we are assuming 8 = 2 P/B? ~ 1). Note as well that
equation (4.12) gives little flexibility for shaping the tokamak magnetic field because E;
is a constant. Moreover, one cannot maintain E; for long times because it would require
an ever increasing transformer magnetic field. For these reasons, current tokamaks use
radiofrequency waves to drive current. The effect of these waves cannot be included as a
simple force in the fluid equations.

But equation (4.6) does not only give RoE,. It also partially determines nei/neo —
ed1/Teo and Te1/Teo. Expression (4.11) emphasizes that the current is the curl of the
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magnetic field, and hence it is a function of the gradients of B. However, according to
equation (2.18), the current is also a function of the pressure gradient. Expression (2.18)
is the preferred choice to determine n.1/neo — ed1/Teo and Te1/Teo for reasons that will
become clear soon. Using equation (2.18), we find

B%dI dP
JB=———-1—. 4.13
: o dy v (419
Hence, equation (4.9) gives
ﬂzi pol dP<1> pol RoE¢ (4.14)
dy (B?)y dy R2 /., mo(B?)y

and the tokamak parallel current can be finally written as

- i IBR0E< 7££ B B2
‘]“<R2>1,, (B2, Bdy <1 <32>w)' (4.15)

Using this result in (4.6), we obtain

0 Ne1 €¢1 Tel 0.51[meuei0 32 d
< _ 171 —_ 1— < (peo + i
90 (neo T, T, epeoB - VO (B2), ) dp (peo + pio)

2
e () )
T,oB Vo \ R2 R? " (B?)y
where we have used P =~ peg + Pio, Peo = NeoTeo and p;o = neoTio-

Equation (4.16) shows why expression (2.18) is the preferred form of the current to
calculate ne1/neg — €d1/Teo and Te1/Teo. Expression (4.16) emphasizes that ney/neo —
ed1/Teo and Te1/Teo are driven by the background pressure gradient and the non-
uniformity of the transformer electric field RgFE¢V (. Physically, the current must satisfy

V -J = 0 so that the charge does not accumulate in parts of the tokamak. However, the
perpendicular current is completely determined by equation (2.5),

1 .
J =enc(ujy —uey) =~ Eb X V(pe + pi), (4.17)

and in general V -J | # 0. Moreover, the divergence of the parallel current driven by the
toroidal electric field, ROECB‘VC/nO, does not vanish either, V'[(ROECBVC/UO)B] # 0. As
a result, the tokamak must establish a parallel current (known as Pfirsch-Schliiter current)
to ensure that V-J = 0. This current is driven by pressure, temperature and electrostatic
potential gradients parallel to the magnetic field, that is, by nei/neo — ep1/Teo and
Tel /T60~

4.2. Continuity equation

We average equation (4.2) over flux surfaces to determine the particle balance in each
flux surface. Flux surface averaging equation (4.2) and using equation (3.7), we find

%% (V'{neue - Vb)) = (Sp) - (4.18)

To calculate the average electron flux (n.u. - Vi), across flux surfaces, we need the
electron velocity ue = u¢b+ucy. The perpendicular electron velocity can be calculated



Tokamak physics: Pfirsch-Schliiter regime 9

using the perpendicular electron momentum equation,

small
neme(e~Vu,), = en.Vo—enc.u. x B—Vp,
L P
2 ~-L Ye Pe ~ Be
o L
,

3 Neleg
2 Q

Yei
Qe

b x VT, — en.RoEVC.  (4.19)

+ NeMeVei (W1 — Uel) —

~

o

<Be

We can use equation (4.19) to solve for u. if we can calculate u;; —u,, . Since u;; —u.,
appears in a small term, we can use the lowest order result in (4.17). Thus,

encu, X B ~en,Vo — Vp, + %B X {V(pe +pi) — ZneVTe} —en.RoE:V(. (4.20)

We can then solve for u.,, finding

1 \ 1 -
Ue | ——EV¢ X b_eneBb X Vpe
—_———
i ~ By
Vei 3 RoE¢ N
— ) — = T. — . 4.21
eneBQe |:VJ_(pe +pz) Qnevl eil + B VC x b ( )

~ i o

Formula (4.21) for the perpendicular electron velocity gives to lowest order

Too(bX V) -V & (na  epr  Ta\ = RoEc .
e’ = an - b) -
v Vw eB 00 Neo TeO + TeO + B (VC x ) V'l/)
Vei0|vw|2 d . 3 dTeO Vei Pe
eneoBO. | dv (Peo + Pio) 30y 0, L Vte| VY. (4.22)
This result can be simplified using equation (2.14) to write
. _ : _ P
(bxVy)-VO=1b-V0, (V{xb) -Vi=-— BRZ (4.23)
Then, the average particle flux across a flux surface becomes
| (neue - Vib)y = neo(u. - V)y, | (4.24)
where
IT /B-VO O (na epr Ta [Vy?
e Vg = & (Ll - E
(e - Vol =— < B2 90 (mo To ' Tw)/, \BR/, ok
Meleio |V'¢|2 d 3 dTeO
- — 0) — =Neg—— | - 4.2
N0 < B2 . dy (peO + sz) 2”60 o ( 5)

From this equation, it is clear that we need to know ne1/neo — ed1/Teo and Te1/Teo
to calculate the particle flux. We will find ne1/neo — ed1/Teo and Te1/Tep and hence
(u - V1b), in subsection 4.4.

To be able to obtain nei/neo — ed1/Teo and Te1/Teo, we need information from the
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continuity equation. To lowest order, equation (4.21) gives

1 depo 1 dpeoy
el MUl = b — b . 4.26
U 2 Ugg B v x Vi cneoB dv x Vi ( )
~Ug ~ By

As a result, the lowest order electron velocity ue >~ u.y = Ueuof) + U, o is of the order
of the ion velocity u; 2 (pe/L)vie, and hence, in equation (4.2), the term V - (neue)
is much larger than the source S, (recall equation (4.4)). Thus, equation (4.2) gives
V - (neouep) =~ 0 to lowest order. We can then write

Odn,
NeoV * Ueo + Ueo—VP (Z/,O

This equation can be used to determine u)g, but we will not need the parallel velocity.
It is sufficient to know that the divergence of the lowest order electron velocity vanishes.

—0=V-um=0 (4.27)

4.3. Energy equation

Flux surface averaging equation (4.3) and using equation (3.7), we find

1 d )
V' ag v <2<peue “Vih)y +(qe - V%/W) ] = (ue - (—encE+Fei))y
Np%%?’e;ti >>%% Pe["jte
J-Fg 3NeoMeVei
+ et + e0lteVei0 (E _ T@O)‘i’ <SE6>¢ (428)
ENe " m; ——
W ~ Yei pe PeVte Nl;if %pﬂzte
"‘sze;pTe pte e L L

The terms on the right side of equation (4.28) (other than Sg.) describe the energy
injected by the transformer and the energy exchange between electrons and ions. This
energy exchange can be due to collisions or the electric field generated by the plasma.
The energy injected by the transformer is given by

Htransf = ROEC <J : VC>1/) (429)

Using equation (2.18) and equation (4.14), the heating due to the transformer becomes

Htf_“”WNP%¥_<Ww3 RoE¢ d

w57, '), B, ap P T (4:30)

After several manipulations (see Appendix A), we rewrite the energy equation (4.28) as

1 d 5 dpio
W@ %4 (2(peue . Vzb}w + <Qe . V¢>’¢J) ] = Hiranst — <ue : VWw dw
3 e eler
B (7 ) 4 (S (431)

The term (u. - V)4 (dpio/dep) is the energy transfer between electrons and ions due to
the electric field.
To find the energy flux, we have to calculate the convective energy flux and the heat



Tokamak physics: Pfirsch-Schliiter regime 11

flux through a flux surface. Using (4.22), we write the convective energy flux as

g<peue : VQ/)>¢ = gp80<ue . VI,ZJ>¢ (432)

To calculate the heat flux, we need the diamagnetic heat flux

5pe A
Qex = _2meer x VT, (4.33)
and the perpendicular heat flux
13 Pelei 3peVei "
el = — 2+ — T. — - b il —Uel). 4.34
Qel <\f+4)mngVL 5 0. X (UL —uel) (4.34)
Using the lowest order result (4.17), the perpendicular heat flux simplifies to
Tel/ei 13 3

Using equations (4.23), (4.33) and (4.35), we find

_5IpeOTeO B- V0 8 Tel 5 |V1/1\2
(de - V) = 2e < B2 90 (Teo>>¢ 2 <BZR2 wpeoRoEg

meveioleo / |V 13\  dT, 3d
_ 24 2 -t = o)l -
2 < B/, V2 reoqy ~ pggPeo o)
(4.36)

As in the case of the particle flux, we need to calculate ney /neo —ed1/Teo and Te1/Teo.
This is done in subsection 4.4. To calculate n.i/ney — ed1/Teo and Te1/Tey, we need
information from the energy equation. To lowest order, the electron heat flux is q. ~
qu}S + gex - The diamagnetic heat flux q.x, defined in (4.33), is to lowest order

5peo dTeo Pe PeVte
ex b ~ 4.37
Qex = —5 0 dp DXV T L (4.37)
The parallel heat flux is
3.16p, »
Qe = — mov b- VT, — 0'71pe(ui\| - ueH) (4.38)
evee

Using equation (4.6) to obtain Jy = enc(u;| — ue|), the parallel heat flux becomes

T20 Q 0 Tel edy T 0~71T601R0E( Pe PeVte
~——=b -Vl [0.71 — 2.83 — ~ —
Qe” 62770 89 |: <neo Te(] + TeO 6770R2B L L ’

(4.39)
where we have used the fact that ve. ~ v,;. Hence q. ~ (pe/L)(pevie/L). We have also
seen that the electron velocity is of order u. >~ ueg ~ u; > (po/L)vie. Thus, the largest
terms in equation (4.3) are

0

5 d
V. (2peoueo> +V-qe > G”eoc%)w (4.40)

Equation (4.27) implies that V - (peoueo) = 0, leaving

o (qeu)_ng [5%0 dTy (b x V) - V6

B

V-(geb)+V dex = B- V5 % | 2 4 BB.v =0. (4.41)
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Using equation (4.23), we finally obtain

0 Ge| 5Ip80 dTeO
B-Vo—|—= — =0. 4.42
v 00 <B 2eB?% dvy 0 ( )
This equation gives
5Ipeo dT,
Gy = Ky() B+ 2 == (4.43)

2B dy

where K, (1) is a function only of 1. We can determine K () by dividing equation (4.39)
by b- V6 and integrating over 6 to obtain

1\ 0.71T.0IRoE,
By=—(—) ———. 4.44
(Ge| B) <R2 >¢ o~ (4.44)
Using this result in equation (4.43), we find
1 0.71T80]R0E< 5[]9@0 dT,o
K =—( = - 4.45
Q(w) <R2 >,¢} 67’]0<B2>¢ 2€<B2>¢ dw ’ ( )
leading to
1 1T 0IRyBE Ipeo dT, B2
Qe = _<2> 0.71Teo ]z“ ¢ 4 e dTeo (1— : > (4.46)
R b 6’170<B >w 2eB diﬁ <B >w

Using result (4.46) in equation (4.39), we obtain

0 Nel €¢1 Tel 128]77%%1‘0 82 dTeO
— (0.71 — 2.83 =— 1-—
89 |: (’neo Te() + Te() €TEQB . VH <Bz>¢ d’l/]

2
_M%Hw%g_<g> D). )
T..B-V6 \ R Rr2 [, (B%)y

4.4. Particle and energy fluzes

In this section, we calculate ngq /neo—ed1 /Teo and Te1 /T and then use them to calculate
the particle and energy fluxes. Solving for

3 TMe1 €¢1 a Tel
% <n60 a TEO) ’ % (TeO> (448)

in equations (4.16) and (4.47), we obtain

0 (ne e Imeve; B? 0.89 d 1.35dT,
( - — (bl):— 0(1—)[ (Peo + Pio) — O}

80 \n.o  T.o eB- V0 (B2)y ) | peo Ao T.o dy
| eIRoBc (1_<1>BZ>, (1.49)
T.B-Vo \ B2 \RZ/ (B,
a (Tel) _Imevei (1_ B2 ) |:—0.22d(p i) + 0.79 dTeo}
86 \ To eB -V (B2), oo dop PO T RO T g |
(4.50)

We could integrate these equations to obtain nei/neo — e¢1/Teo and Teq/Teo, but their
derivative with respect to 8 is sufficient to calculate the particle and energy fluxes.



Tokamak physics: Pfirsch-Schliiter regime 13
Substituting equations (4.49) and (4.50) into equation (4.25), we find

_ Dps+Dq d _ Kpg + Ko dTeo

<u€ V1/)>1/J B neOTeO d'(/} (peo N pZO) N TeO d’(/}
|V¢|2> RoE¢
< R2 [, (B2

where the Pfirsch-Schliiter and classical particle diffusion coefficients are

0.67I2Teomel/€i0 1 1 Teomeyeio |V¢|2
D — —_ R — D = 4.52
P €2 B2/, (BY,) €2 B/, (4.52)

and the Pfirsch-Schliiter and classical thermodiffusion coefficients are

K 20.5612Teomeyei0 L _ 1 K :3Teomel/ei0 |V’(/}|2
P e2 B2/, (BY,) ¢ 2¢2 B/,

(4.53)
The quantity (B~2), — ((B?)y)~! is always positive. To prove it, we use that (B —
(B?)y/B)? > 0. Expanding the square and flux surface averaging it, we find (B=2), >
(B2)g) .
Substituting equations (4.49) and (4.50) into equation (4.36), we obtain

dT,o 1 d
+ + kel) — —(Peo + Pio), 4.54
dyp (rps nl)neo d¢(p0 pio) (4.54)

where the Pfirsch-Schliiter and classical heat diffusion coefficients are

1.9812peomeVeio 1 1 13\ peomeveio / |V]?
— T pedirerel _— - _ 94 2 g
XPsS 62 32 ’ <B2>'¢) s Xel \/7 + 4 62 B2 . )

(4.55)

(de - V)y = —(xps + Xa1)

and

s = 200 peomeveio (/LN L) o Speomeran [IVUEN - )
PS 62 B2 " <BQ>¢ ’ cl 262 B2 v . .

The classical diffusion coefficients D, K¢, Xc1 and k¢ would appear in an infinite cylin-
der that is not “bended” like the tokamak. This would have been the naive expectation
for particle and energy transport, but the transport is enhanced by the Pfirsch-Schliiter
diffusion coefficients. The last term in equation (4.24) is the E x B drift due to the electric
field of the transformer modified by diamagnetic flows driven by n.1, ¢1 and Te;.

5. Summary

To summarize, the tokamak equilibrium is determined in the following way:

e Equations (2.16) and (4.12) determine the magnetic field for given pressure profile
and transformer electric field.

e Equation (4.18) (with equations (4.24) and (4.51)) determines the density profile for
given electron temperature profile, transformer electric field and source of particles.

e Equation (4.31) (with equations (4.30), (4.32), (4.51) and (4.54)) determines the
electron temperature profile for given density profile, ion pressure profile, transformer
electric field and source of energy.



14 Feliz 1. Parra

e The ion equations will determine the ion temperature and the tokamak flows, and
ultimately, the tokamak flows determine the electrostatic potential (note, for example,
that the electron perpendicular flow (4.26) depends on d¢g/dv).

Thus, we have obtained a formulation that determines the particles, momentum and
energy that we need to inject into a tokamak to obtain the desired profiles. This formu-
lation is not adequate to most tokamaks for two reasons: we have assumed that collisions
are very frequent, whereas in most of the tokamak collisions are rare; and what is more
important, tokamak plasmas are not usually quiescent, but turbulent. It is possible to
formulate equations for turbulence in the Braginskii limit. The difference with the Pfirsch-
Schliiter formulation is that one needs to allow the perturbations n.q, ¢1, T,1 and T;; to
be non-axisymmetric, that is, they depend on (. These non-axisymmetric perturbations
are not steady-state solutions and one needs to allow them to depend on time ¢ as well.
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Appendix A. Energy exchange terms in the electron energy equation

In this Appendix, we derive equation (4.31) from equation (4.28).
In equation (4.28), the term (J - F.;/ene)y is of the same order as Sge and hence we
can use the lowest order expressions (2.18) and (4.14) to write,

J-Fg 1 I<BFei|\>wROEC I<Fei”B>w d
— ) = 712 3 - 5 7 (Peo + Pio)
ene /., R2 /., encono(B?)y eneo(B?)y dy
_ (R-Fu)y d 4
Tt diﬂ (peO + sz)- (A 1)

Here, we can use

Fli=b-(Vp. — en,Ve + en Ry Ec V() (A2)

- 0 (ne epr | Tn encol RoE¢
~ peob - VO - — A
Peo v 00 (neO TeO N T€0> * R? ( 3)
to find
1
<Fei\|B>1/1 = <_R2>w €neQIR0E<. (A4)
With this result, equation (A 1) becomes
<J'Fei> _ ((R72)y)*I*R3EE <12> Ro B¢ i( + pio)
ene [y m(By R/, (B, ap 0T
(RC-Fei)y d
-2 20— (pe i0)- A
p— dw(POﬂLpo) (A5)

Finally, multiplying 0 = —Vp, — en.(—=Vé + RyE:V( 4 u. x B) + F,; by R¢ and using
RB x ¢ = Vi, we find RC - Fo; = enco(u. - Voo + RoE¢). Hence, equation (A 5) finally
becomes

d
w@@eo + pio), (A6)

where we have used the energy injected by the transformer Hiyanst, defined in (4.30)
Using —en.E 4+ F.; = enc.u. x B 4+ Vp,, we obtain

eNe

J- Fei
<> = Htransf - <ue : VQ/}>
P

DPelli Vei Pi PeVti
— = . A
L Q. L L (A7)

We need to keep the higher order corrections to p. because this term is much larger than
SEea

(ue - (—eneE+Fe))y = (Ue - Vpe)y ~

dpeO

Using the fact that the divergence of u.o vanishes (see equation (4.27)), we find

<ue : (_eneE + Fei)>1/) = <ue : V¢> + <ue0 : v(nelTeO + neOTel)>¢' (A 8)

<u50 : v(nelTeO + neOTel)>1/1 = <V : [(nelTeO + neOTel)ueobw

1 d 0
W@ (VI<(nelTe(] + ne(]Tel)W¢> =0. (A9)

Hence, equation (A 8) becomes

dpeO

(Ue - (—eneE +Fep))y = (ue - V) (A10)
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With equations (A 6) and (A 10), we convert equation (4.28) in equation (4.31).



