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1. Introduction

In these notes, we present the Braginskii fluid equations for electrons and ions. We
will consider a plasma composed of one ion species with charge e and mass mi, and elec-
trons with charge −e and mass me. Ions and electrons are assumed to have comparable
temperatures,

Ti ∼ Te, (1.1)

and average flows of the order of the ion thermal speed (high flow ordering),

ui ∼ ue ∼ vti ∼
√
me

mi
vte � vte. (1.2)

To derive the fluid equations we will expand in three different small parameters,

ρi
L
� 1,

λii
L
∼ λee

L
∼ λei

L
� 1,

√
me

mi
� 1, (1.3)

where L is the characteristic size of the system,

ρi ∼
vti
Ωi
∼
√
miTi
eB

(1.4)

is the ion thermal gyroradius, and

λee ∼
vte
νee
∼ (4πε0)2T 2

e

e4ne ln Λee
, λei ∼

vte
νei
∼ (4πε0)2T 2

e

e4ni ln Λei
, λii ∼

vti
νii
∼ (4πε0)2T 2

i

e4ni ln Λii
(1.5)

are the mean free paths for electron-electron, electron-ion and ion-ion collisions. To sim-
plify the derivation, we will assume the following relative ordering

ρi
L
� λii

L
∼
√
me

mi
� 1. (1.6)

For ions, it is common to first expand assuming

ρi
L
∼ λii

L
∼
√
me

mi
� 1, (1.7)

and then perform the subsidiary expansion in

ρi
λii
∼ νii

Ωi
� 1 ∼ L

λii

√
me

mi
. (1.8)

For electrons, which we will examine in detail, we will start expanding in

ρe
L
∼ λee

L
∼ λei

L
∼
√
me

mi
� 1, (1.9)
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and then we will perform the subsidiary expansion in

ρe
λee
∼ νee

Ωe
� 1 ∼ L

λee

√
me

mi
. (1.10)

Importantly, the subsidiary expansions suggested above are not the only ones that give
Braginskii equations. It is possible to obtain them by first expanding in ρi/L � 1 (as-
suming λii/L ∼ 1) to get drift kinetics (Parra 2017), and then performing a subsidiary
expansion in λii/L� 1.

2. Fluid equations

The Fokker-Planck kinetic equation for species s is

∂fs
∂t

+ v · ∇fs +
Zse

ms
(E + v ×B) · ∇vfs =

∑
s′

Css′ [fs, fs′ ]. (2.1)

Before trying to solve this equation, we start by taking moments of it to obtain fluid
equations, as in Kinetic Theory of neutral gases (Dellar 2015). We first calculate the
general conservation equations, and we then particularize them for a plasma formed by
singly charged ions and electrons.

Due to conservation of phase-space volume, equation (2.1) can be written as

∂fs
∂t

+∇ · (vfs) +∇v ·
[
Zse

ms
(E + v ×B)fs

]
=
∑
s′

Css′ [fs, fs′ ]. (2.2)

If we multiply this equation by a function X(v) and we integrate over velocity, we obtain

∂

∂t

(∫
Xfs d3v

)
+∇ ·

(∫
Xfsv d3v

)
=
Zse

ms

∫
(E + v ×B) · ∇vX fs d3v

+
∑
s′

∫
XCss′ [fs, fs′ ] d3v. (2.3)

Three particular functions, X = 1,msv,msv
2/2, are of interest because they give the

conservation equations for particles, momentum and energy.

2.1. Continuity equation

Taking X = 1 and recalling that the Fokker-Planck collision operator conserves particles,
equation (2.3) becomes

∂ns
∂t

+∇ · (nsus) = 0, (2.4)

where

ns =

∫
fs d3v, us =

1

ns

∫
fsv d3v (2.5)

are the density and average velocity.

2.2. Momentum conservation equation

Taking X = msv, equation (2.3) becomes

∂

∂t
(nsmsus) +∇ ·

(∫
fsmsvv d3v

)
= Zsens(E + us ×B) +

∑
s′ 6=s

Fss′ , (2.6)
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where

Fss′ =

∫
msvCss′ [fs, fs′ ] d3v (2.7)

is the friction force on species s due to collisions with species s′. The integral
∫
fsmsvv d3v

in (2.6) can be rewritten in a more familiar form by using the relative velocity w = v−us.
With this relative velocity, we find∫

fsmsvv d3v = nsmsusus +

∫
fsmsww d3w. (2.8)

Moreover, if we define the pressure ps and the temperature Ts as

ps = nsTs =

∫
fs
msw

2

3
d3w, (2.9)

equation (2.8) becomes ∫
fsmsvv d3v = nsmsusus + psI + Πs, (2.10)

where I is the unit matrix and

Πs =

∫
fsms

(
ww − w2

3
I

)
d3w (2.11)

is the traceless viscosity tensor. With the result in (2.10), equation (2.6) finally becomes

∂

∂t
(nsmsus) +∇ · (nsmsusus) +∇ps +∇ ·Πs = Zsens(E + us ×B) +

∑
s′ 6=s

Fss′ .

(2.12)
Using (2.4), this momentum equation can also be written as

nsms

(
∂us
∂t

+ us · ∇us

)
+∇ps +∇ ·Πs = Zsens(E + us ×B) +

∑
s′ 6=s

Fss′ . (2.13)

2.3. Energy conservation equation

Taking X = msv
2/2, equation (2.3) becomes

∂

∂t

(∫
1

2
msv

2 fs d3v

)
+∇ ·

(∫
1

2
msv

2 fsv d3v

)
= ZsensE · us +

∑
s′ 6=s

Wss′ , (2.14)

where

Wss′ =

∫
1

2
msv

2 Css′ [fs, fs′ ] d3v (2.15)

is the energy gained by species s due to collisions with species s′. The integrals
∫
fsmsv

2/2 d3v
and

∫
fsmsv

2v/2 d3v in (2.14) can be rewritten in a more familiar form by using the rel-
ative velocity w = v − us. With this relative velocity, we find∫

1

2
msv

2 fs d3v =

∫
1

2
msw

2 fs d3w +
1

2
nsmsu

2
s =

3

2
nsTs +

1

2
nsmsu

2
s (2.16)
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and∫
1

2
msv

2 fsv d3v =

∫
1

2
msw

2 fsw d3w +

∫
1

2
msw

2 fsus d3w

+

∫
fsms(w · us)w d3v +

1

2
nsmsu

2
sus = qs +

(
5

2
nsTs +

1

2
nsmsu

2
s

)
us + Πs · us,

(2.17)

where

qs =

∫
1

2
msw

2 fsw d3w (2.18)

is the heat flux. With the results in (2.16) and (2.17), equation (2.14) finally becomes

∂

∂t

(
3

2
nsTs +

1

2
nsmsu

2
s

)
+∇ ·

[
qs +

(
5

2
nsTs +

1

2
nsmsu

2
s

)
us + Πs · us

]
= ZsensE · us +

∑
s′ 6=s

Wss′ . (2.19)

Using (2.4), this energy equation can also be written as

ns

(
∂

∂t
+ us · ∇

)(
3

2
Ts +

1

2
msu

2
s

)
+∇ · (qs + nsTsus + Πs · us)

= ZsensE · us +
∑
s′ 6=s

Wss′ . (2.20)

Finally, taking [equation (2.20) − (equation (2.13)) · us], we find the equation for the
thermal energy,

3

2
ns

(
∂Ts
∂t

+ us · ∇Ts
)

+∇ · qs + nsTs∇ · us + Πs : ∇us =
∑
s′ 6=s

W̃ss′ , (2.21)

where

W̃ss′ = Wss′ − Fss′ · us =

∫
1

2
msw

2 Css′ [fs, fs′ ] d3w. (2.22)

Note that equations (2.4), (2.13) and (2.21) are almost the same as the equations
for a neutral gas. The main apparent difference are the electromagnetic forces and the
collisional terms that transfer momentum and energy between species. There will also be
differences in the heat fluxes and viscosities, as we will see shortly.

In the next two sections, we particularize these fluid equations for a plasma composed
of one ion species with charge e and mass mi, and electrons with charge −e and mass
me.

3. Electron equations

To derive the electron fluid equations, we use the ordering in (1.2) and (1.6) (recall that
we will first expand assuming (1.9) and we will then perform the subsidiary expansion
(1.10)). We need to order several terms with respect to our expansion parameters in
(1.6).
• We assume that the electric field is in the high flow ordering, that is, the electric

field perpendicular to the magnetic field can balance the magnetic force, whereas the
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parallel electric field will only be of the order of the pressure gradient,

E⊥ ∼ vtiB ∼
L

ρi

Te
eL
� E‖ ∼

Te
eL
. (3.1)

• We assume that the time derivative is of the order of

∂

∂t
∼ us · ∇ ∼

vti
L
. (3.2)

• Both ue and ui are of the order of vti, but their difference need not be. We will
allow the velocity difference along the magnetic field to be of the order of vti, but the
difference in the direction perpendicular to the magnetic field must be small, as we will
see when we discuss equation (4.4) below. In fact,

ui‖ − ue‖ ∼ vti � ui⊥ − ue⊥ ∼
ρi
L
vti. (3.3)

For electrons, we start expanding assuming the orderings in (1.9), and hence

ρi
L
∼ ρe

L

√
mi

me
∼ 1. (3.4)

Thus, under the assumptions in (1.9), ui‖−ue‖ ∼ ui⊥−ue⊥ ∼ vti. Once we perform the
subsidiary expansion based on (1.10), we recover (3.3).
• The collisional terms are of the size that we estimated when we calculated them in

the electron-ion collision notes, that is,

Fei = −Fie ∼ nemeνei(ui − ue) ∼ nemeνeivti ∼
√
me

mi

L

λei

pe
L
∼ pe
L

(3.5)

and

Wei = −Wie ∼ ne
3me

mi
νei(Ti − Te) ∼ ne

me

mi
νeiTe ∼

√
me

mi

L

λei

pevti
L
∼ pevti

L
. (3.6)

• Finally from the definitions of the viscosity and the heat flux in (2.11) and (2.18),
we find the upper bounds

Πs . ps, qs . psvts. (3.7)

Equations (2.4), (2.13) and (2.21) for electrons are

∂ne
∂t

+∇ · (neue)︸ ︷︷ ︸
∼nevtiL

= 0, (3.8)

neme

(
∂ue
∂t

+ ue · ∇ue

)
︸ ︷︷ ︸
∼nemev

2
ti

L ∼memi
pe
L �

pe
L

= −∇pe︸︷︷︸
∼ peL

−∇ ·Πe︸ ︷︷ ︸
. pe
L

− ene(E + ue ×B)︸ ︷︷ ︸
∼enevtiB∼ L

ρi

pi
L�

pe
L

+ Fei︸︷︷︸
∼ peL

, (3.9)

3

2
ne

(
∂Te
∂t

+ ue · ∇Te
)

︸ ︷︷ ︸
∼ pevtiL

= −∇ · qe︸ ︷︷ ︸
. pevte

L

−neTe∇ · ue︸ ︷︷ ︸
∼ pevtiL

−Πe : ∇ue︸ ︷︷ ︸
. pevti

L

+ Fei · (ui − ue)− W̃ie︸ ︷︷ ︸
∼ pevtiL

.

(3.10)

Note that we have rewritten the collisional term W̃ei as

W̃ei = Fei · (ui − ue)− W̃ie. (3.11)
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To obtain this formula, we use the fact that collisions conserve energy, leading to

Wei = −Wie = −W̃ie − Fie · ui = −W̃ie + Fei · ui, (3.12)

where we have employed the definition of W̃ss′ in (2.22), and the fact that collisions
conserve momentum, Fie = −Fei. Then,

W̃ei = Wei − Fei · ue = −W̃ie + Fei · (ui − ue), (3.13)

which is equation (3.11). The term Fei · (ui − ue) is the Joule heating.
The dominant term in the momentum equation (3.9) is the term due to the electromag-

netic force in the perpendicular direction, −ene(E⊥+ue×B). Thus, to lowest order, the
electron momentum equation becomes E⊥+ ue×B ' 0, and the perpendicular electron
average velocity is the E×B drift,

ue⊥ ' vE ≡
1

B
E× b̂ ∼ vti. (3.14)

Note that if we had ordered the perpendicular electric field to be smaller than in (3.1),
the perpendicular electron velocity would have been smaller than the ion thermal speed.
The ion momentum equation is very similar to the electron momentum equation, giving
ui⊥ ' vE ∼ vti. Since both ue⊥ and ui⊥ are equal to vE , their difference is indeed small
as we assumed in (3.3).

We need to determine Πe, qe, Fei and W̃ie. To do so, we need to calculate the electron
and ion distribution functions. From the ion distribution function, we will only need to
know ni, ui and Ti. For the electron distribution function, we expand first in the small
parameter

ρe
L
∼
√
me

mi
∼ λee

L
∼ λei

L
� 1. (3.15)

In this expansion parameter, the electron distribution function is

fe = fe0 + fe1︸︷︷︸
∼ ρeL fe0

+ . . . (3.16)

We proceed to determine the electron distribution function order by order. We then
calculate the terms that we need for the electron fluid equations.

3.1. Electron Fokker-Planck equation

It is convenient to write the Fokker-Planck kinetic equation (2.1) using the relative ve-
locity w = v − ue. Using the chain rule for partial differentiation, we find

∂fe
∂t

∣∣∣∣
r,v

=
∂fe
∂t

∣∣∣∣
r,w

+
∂w

∂t

∣∣∣∣
r,v

· ∇wfe|t,r =
∂fe
∂t

∣∣∣∣
r,w

− ∂ue
∂t
· ∇wfe|t,r, (3.17)

∇fe|t,v = ∇fe|t,w +∇w|t,v · ∇wfe|t,r = ∇fe|t,w −∇ue · ∇wfe|t,r (3.18)

and

∇vfe|t,r = ∇vw|t,r · ∇wfe|t,r = ∇wfe|t,r. (3.19)

With these results, the Fokker-Planck equation (2.1) becomes

−Ωe(w × b̂) · ∇wfe − Cee[fe, fe]− Cei[fe, fi] = −∂fe
∂t
− (w + ue) · ∇fe

+

[
e

me
(E + ue ×B) +

∂ue
∂t

+ (w + ue) · ∇ue

]
· ∇wfe, (3.20)
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where Ωe = eB/me is the electron gyrofrequency, and b̂ = B/B is the unit vector in the
direction of B. Using (3.9) for ∂ue/∂t, equation (3.20) can be rewritten as

− Ωe(w × b̂) · ∇wfe︸ ︷︷ ︸
∼Ωefe∼ L

ρe

vte
L fe� vte

L fe

−Cee[fe, fe]− Cei[fe, fi]︸ ︷︷ ︸
∼νeefe∼ L

λee

vte
L fe� vte

L fe

= −∂fe
∂t
− ue · ∇fe︸ ︷︷ ︸

∼ vtiL fe∼
√
me
mi

vte
L fe� vte

L fe

−w · ∇fe︸ ︷︷ ︸
∼ vteL fe

+
Fei −∇pe −∇ ·Πe

neme
· ∇wfe︸ ︷︷ ︸

∼ vteL fe

+ w · ∇ue · ∇wfe︸ ︷︷ ︸
∼ vtiL fe∼

√
me
mi

vte
L fe� vte

L fe

.

(3.21)

Due to our choice of coordinate, w = v−ue, the electron distribution function has to
satisfy the condition ∫

few d3w = 0. (3.22)

Thus, equation (3.21) must be solved in conjunction with condition (3.22).

3.2. Zeroth order electron distribution function

Substituting the expansion (3.16) into the Fokker-Planck equation (3.21) and the condi-
tion (3.22), we obtain the lowest order equation

−Ωe(w × b̂) · ∇wfe0 − Cee[fe0, fe0]− Cei[fe0, fi] = 0 (3.23)

with the lowest order condition ∫
fe0w d3w = 0. (3.24)

Since we are expanding in
√
me/mi � 1, we can use the approximation that we deduced

for the electron-ion collision operator: Cei[fe0, fi] ' Lei[fe0], where Lei[fe0] is the Lorentz
collision operator. Thus, to lowest order, the equation for fe0 is

−Ωe(w × b̂) · ∇wfe0 − Cee[fe0, fe0]− Lei[fe0] = 0. (3.25)

The solution to equation (3.25) is a Maxwellian. To show it, we use the H-theorem.
Multiplying (3.25) by − ln fe0, we find

∇w · [Ωe(w × b̂)(fe0 ln fe0 − fe0)] = − ln fe0 Cee[fe0, fe0]− ln fe0 Lei[fe0]. (3.26)

Integrating over velocity space, we obtain

−
∫

ln fe0 Cee[fe0, fe0] d3w −
∫

ln fe0 Lei[fe0] d3w = 0. (3.27)

Both of these integrals are positive, and their sum is equal to zero only if both integrals
vanish. The integral over Cee only vanishes if fe0 is a Maxwellian, and the integral over
Lei only vanishes if fe0 is isotropic. Thus, fe0 is an isotropic Maxwellian

fe0 = fMe ≡ ne
(
me

2πTe

)3/2

exp

(
−mew

2

2Te

)
. (3.28)

Note that this function satisfies (w × b̂) · ∇wfMe = 0, and it is hence the only possible
solution to equation (3.25). It also satisfies condition (3.24).

We define the density ne and the temperature Te in fMe such that∫
fMe d3w =

∫
fe d3w = ne,

∫
1

3
mew

2 fMe d3w =

∫
1

3
mew

2 fe d3w = neTe. (3.29)
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Then, the higher order corrections must satisfy∫
fe1 d3w = 0,

∫
1

3
mew

2 fe1 d3w = 0. (3.30)

3.3. First order electron distribution function

To next order in ρe/L ∼
√
me/mi ∼ λee/L ∼ λei/L� 1, equation (3.21) becomes

−Ωe(w × b̂) · ∇wfe1 − C(`)
ee [fe1]− Lei

[
fe1 −

mew · (ui − ue)

Te
fMe

]
= −w · ∇fMe

+
Fei −∇pe −∇ ·Πe

neme
· ∇wfMe,

(3.31)

and condition (3.22) becomes ∫
fe1w d3w = 0. (3.32)

Note that we have use the approximation that we derived for the electron-ion collision
operator, valid for

√
me/mi � 1 (here we are using the relative velocity w = v − ue,

and hence in the electron-ion collision operator, we need to use the average ion velocity
in the frame moving with ue, ui − ue).

Equation (3.31) can be simplified using the following approximations:
• In the expansion in

√
me/mi � 1, the friction force is given by

Fei = −2γeini
me

∫
fe1(w′)

w′

(w′)3
d3w′ + nemeνei(ui − ue). (3.33)

• The piece of the electron-ion collision operator proportional to ui−ue can be written
as

Lei
[
mew · (ui − ue)

Te
fMe

]
= −3

√
π

4

(
2Te
mew2

)3/2
meνei(ui − ue) ·w

Te
fMe, (3.34)

where we have used that γei = (3
√

2π/4)(m
1/2
e T

3/2
e /ni)νei.

• The viscosity is negligible because fe ' fMe and hence

Πe '
∫
fMeme

(
ww − w2

3
I

)
= 0. (3.35)

With all these results, and using

∇fMe =

[∇pe
pe

+

(
mew

2

2Te
− 5

2

) ∇Te
Te

]
fMe, ∇wfMe = −mew

Te
fMe, (3.36)

equation (3.31) becomes

−Ωe(w × b̂) · ∇wfe1 − C(`)
ee [fe1]− Lei[fe1]− 2γeinifMe

mepe
w ·
∫
fe1(w′)

w′

(w′)3
d3w′

= −
[

1− 3
√
π

4

(
2Te
mew2

)3/2
]
meνei(ui − ue) ·w

Te
fMe

−
(
mew

2

2Te
− 5

2

)
w · ∇ lnTe fMe. (3.37)

To solve equation (3.37) with condition (3.32), we first change to a set of convenient
coordinates. We then split the distribution function into two components.
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↵

w

ê1

ê2

w

'

b̂

Figure 1. Spherical coordinates {w,α, ϕ}.

3.3.1. Change of coordinates

To solve equation (3.37), we will use the spherical coordinates {w,α, ϕ}, where w = |w|
is the magnitude of the velocity, α = arccos(w · b̂/w) is the angle between the velocity
and the magnetic field B, and ϕ = arctan(w · ê2/w · ê1) is the gyrophase (the angle
between the perpendicular velocity and a vector ê1 perpendicular to the magnetic field
B). See figure 1 for a sketch of these spherical coordinates. The vectors {ê1, ê2, b̂} form
an orthonormal, right handed basis. In these coordinates,

w = w[cosα b̂ + sinα(cosϕ ê1 + sinϕ ê2)]. (3.38)

The gradients with respect to velocity of these coordinates are

∇ww =
w

w
, ∇wα =

1

w sinα

(
cosα

w

w
− b̂

)
, ∇wϕ = − 1

w2 sin2 α
w × b̂, (3.39)

and hence

(w × b̂) · ∇wfe1 = (w × b̂) ·
(
∇ww

∂fe1
∂w

+∇wα
∂fe1
∂α

+∇wϕ
∂fe1
∂ϕ

)
= −∂fe1

∂ϕ
. (3.40)

Then, equation (3.37) becomes

Ωe
∂fe1
∂ϕ
−C(`)

ee [fe1]− Lei[fe1]− 2γeinifMe

mepe
w ·
∫
fe1(w′)

w′

(w′)3
d3w′

= −
[

1− 3
√
π

4

(
2Te
mew2

)3/2
]
meνei(ui − ue) ·w

Te
fMe

−
(
mew

2

2Te
− 5

2

)
w · ∇ lnTe fMe. (3.41)

To solve equation (3.41) with condition (3.32), it will be convenient to split fe1 into
its gyrophase independent piece, 〈fe1〉ϕ, where

〈f〉ϕ =
1

2π

∫ 2π

0

f(w,α, ϕ) dϕ (3.42)

is the gyroaverage, and its gyrophase dependent piece, f̃e1 = fe1 − 〈fe1〉ϕ.

3.3.2. Gyrophase independent piece of fe1

The equation for the gyrophase independent piece is obtained by gyroaveraging equa-

tion (3.41). Using the isotropy of the linearized collision operator, we obtain 〈C(`)
ee [fe1]〉ϕ =
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C
(`)
ee [〈fe1〉ϕ]. The gyroaverage of the Lorentz collision operator is

〈Lei[fe1]〉ϕ =
γeini
m2
ew

3

〈
1

sinα

∂

∂α

(
sinα

∂fe1
∂α

)
+

1

sin2 α

∂2fe1
∂ϕ2

〉
ϕ

=
γeini
m2
ew

3

1

sinα

∂

∂α

(
sinα

∂〈fe1〉ϕ
∂α

)
= Lei[〈fe1〉ϕ]. (3.43)

We finish by noting that using the form of w in (3.38), 〈w〉ϕ = w cosα b̂, and hence

〈w〉ϕ·
∫
fe1(w′)

w′

(w′)3
d3w′ = w cosα

∫
fe1(w′)

w′ cosα′

(w′)3
d3w′

= w cosα

∫
〈fe1〉ϕ(w′)

w′ cosα′

(w′)3
d3w′. (3.44)

With all these results, the gyroaverage of (3.41) becomes

C(`)
ee [〈fe1〉ϕ] + Lei[〈fe1〉ϕ] +

2γeinifMe

mepe
w cosα

∫
〈fe1〉ϕ(w′)

w′ cosα′

(w′)3
d3w′

=

[
1− 3

√
π

4

(
2Te
mew2

)3/2
]
meνei(ui‖ − ue‖)w cosα

Te
fMe

+

(
mew

2

2Te
− 5

2

)
w cosα b̂ · ∇ lnTe fMe. (3.45)

This equation has to be solved in conjunction with condition (3.32). Taking the parallel
component of (3.32), we obtain∫

fe1w cosα d3w =

∫
〈fe1〉ϕw cosα d3w = 0. (3.46)

To solve (3.45), it is typical to use a technique similar to the one that we used for the
Spitzer-Härm problem. We describe the calculation in Appendix A. The solution 〈fe1〉ϕ
is assumed to be a summation of modified Laguerre polynomials L

(3/2)
p (x),

〈fe1〉ϕ =

∞∑
p=1

apL
(3/2)
p (x)fMe(w)w cosα, (3.47)

where x = mew
2/2Te, and ap are coefficients that we need to determine. Note that unlike

in the Spitzer-Härm problem, the polynomial L
(3/2)
0 (x) is not included in the summation

because the function has to satisfy condition (3.46). Truncating the series after the first
two terms, one obtains

〈fe1〉ϕ '
[(

1.265

νee
b̂ · ∇ lnTe + 0.284

me(ui‖ − ue‖)
Te

)
L

(3/2)
1 (x)

+

(
−0.633

νee
b̂ · ∇ lnTe + 0.032

me(ui‖ − ue‖)
Te

)
L

(3/2)
2 (x)

]
fMe(w)w cosα, (3.48)

where the electron-electron collision frequency is defined by Braginskii to be

νee =
4
√

2π

3

e4ne ln Λee

(4πε0)2m
1/2
e T

3/2
e

. (3.49)

For singly charge ions, νei ' νee, and we can use both frequencies indistinctly. We will
use νei instead of νee in the terms that would not exist without electron-ion collisions.
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3.3.3. Gyrophase dependent piece of fe1

The equation for the gyrophase dependent piece f̃e1 is obtained by subtracting (3.45)
from (3.41) to find

Ωe
∂f̃e1
∂ϕ︸ ︷︷ ︸

∼Ωef̃e1

− C(`)
ee [f̃e1]− Lei[f̃e1]− 2γeinifMe

mepe
w⊥ ·

∫
f̃e1(w′)

w′⊥
(w′)3

d3w′︸ ︷︷ ︸
∼νeef̃e1

= −
[

1− 3
√
π

4

(
2Te
mew2

)3/2
]
meνei(ui − ue) ·w⊥

Te
fMe︸ ︷︷ ︸

∼meνeivteTe

ρi
L vtifMe∼

νee
Ωe

vte
L fMe

−
(
mew

2

2Te
− 5

2

)
w⊥ · ∇ lnTe fMe︸ ︷︷ ︸

∼ vteL fMe

, (3.50)

where

w⊥ = w sinα(cosϕ ê1 + sinϕ ê2). (3.51)

Equation (3.50) has to be solved in conjunction with condition (3.32). Taking the per-
pendicular component of (3.32), we obtain∫

fe1w⊥ d3w =

∫
f̃e1w⊥ d3w = 0. (3.52)

Equation (3.50) can be solved numerically, but it is more interesting to take the sub-
sidiary limit νee/Ωe � 1 (as we announced in (1.10)). In this subsidiary expansion, the
gyrophase dependent piece becomes

f̃e1 = f̃
(0)
e1 + f̃

(1)
e1︸︷︷︸

∼ νeeΩe
f̃

(0)
e1 �f̃

(0)
e1

+ . . . (3.53)

Using this expansion in (3.50), we find to lowest order

Ωe
∂f̃

(0)
e1

∂ϕ
= −

(
mew

2

2Te
− 5

2

)
w⊥ · ∇ lnTe fMe, (3.54)

and to next order

Ωe
∂f̃

(1)
e1

∂ϕ
= C(`)

ee [f̃
(0)
e1 ] + Lei[f̃ (0)

e1 ] +
2γeinifMe

mepe
w⊥ ·

∫
f̃

(0)
e1 (w′)

w′⊥
(w′)3

d3w′

−
[

1− 3
√
π

4

(
2Te
mew2

)3/2
]
meνei(ui − ue) ·w⊥

Te
fMe. (3.55)

We can integrate equation (3.54), finding

f̃
(0)
e1 = − 1

Ωe

(
mew

2

2Te
− 5

2

)
(w⊥ × b̂) · ∇ lnTe fMe =

L
(3/2)
1 (x)

Ωe
(w⊥ × b̂) · ∇ lnTe fMe,

(3.56)

where we have used L
(3/2)
1 (x) = 5/2− x and

w⊥ × b̂ = w sinα(sinϕ ê1 − cosϕ ê2). (3.57)
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We could integrate (3.55), but as we will see, it is not necessary to integrate it to find
what we need for the electron fluid equations.

3.4. Electron heat flux, electron viscosity, friction force and collisional energy exchange

Once the electron distribution function is known, we can calculate the electron heat flux,
the electron viscosity and the collisional terms.

3.4.1. Electron heat flux

The electron heat flux is given by

qe '
���

���
���

�:0∫
1

2
mew

2w fMe d3w +

∫
1

2
mew

2w fe1 d3w

= Te

∫ (
mew

2

2Te
− 5

2

)
w fe1 d3w = −Te

∫
L

(3/2)
1 (x) w fe1 d3w, (3.58)

where we have used the no flow condition (3.32) to write the heat flux as an integral of
(mew

2/2−5Te/2)w. It is a widespread form of writing the heat flux because it can then be

easily written as an integral over the modified Laguerre polynomial L
(3/2)
1 (x) = 5/2− x.

The first order correction that appears in (3.58) is fe1 ' 〈fe1〉ϕ + f̃
(0)
e1 + f̃

(1)
e1 . Using

this decomposition, we split the heat flux into three pieces,

qe = qe‖b̂ + qe× + qe⊥, (3.59)

where the parallel heat flux is

qe‖ = −Te
∫
L

(3/2)
1 (x)w cosα 〈fe1〉ϕ d3w = −3.16pe

meνee
b̂ · ∇Te − 0.71pe(ui‖ − ue‖),

(3.60)
the diamagnetic heat flux is

qe× = −Te
∫
L

(3/2)
1 (x) w⊥ f̃

(0)
e1 d3w = −5

2

pe
meΩe

b̂×∇Te, (3.61)

and the perpendicular heat flux is given by the integral

qe⊥ = −Te
∫
L

(3/2)
1 (x) w⊥ f̃

(1)
e1 d3w. (3.62)

To take the integral in (3.62), we use that w⊥ = ∂(w⊥ × b̂)/∂ϕ, and we integrate by
parts in the gyrophase ϕ to find

qe⊥ = Te

∫
L

(3/2)
1 (x) (w⊥ × b̂)

∂f̃
(1)
e1

∂ϕ
d3w. (3.63)

Using (3.55), this equation becomes

qe⊥ =
Te
Ωe

∫
L

(3/2)
1 (x) (w⊥ × b̂)

(
C(`)
ee [f̃

(0)
e1 ] + Lei[f̃ (0)

e1 ]
)

d3w

− Te
Ωe

∫
L

(3/2)
1 (x) (w⊥ × b̂)

[
1− 3

√
π

4

(
2Te
mew2

)3/2
]
meνei(ui − ue) ·w⊥

Te
fMed

3w.

(3.64)
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The integrals in this equation finally give

qe⊥ = −
(√

2 +
13

4

)
peνee
meΩ2

e

∇⊥Te −
3

2

peνei
Ωe

b̂× (ui − ue). (3.65)

3.4.2. Electron viscosity

The electron viscosity is zero to the order that we have calculated the distribution

function because the integral
∫ π

0
dα
∫ 2π

0
dϕ sinαw[ww− (w2/3)I] over the angles α and

ϕ vanishes. We would need a piece of the distribution function composed of spherical
harmonics with l = 2 to find a non-zero viscosity. Hence, we can take the electron
viscosity to be zero,

Πe '
���

���
���

���
��:0∫

fMeme

(
ww − w2

3
I

)
d3w +

∫
fe1me

(
ww − w2

3
I

)
d3w = 0. (3.66)

3.4.3. Friction force

The friction force, defined in (3.33), can be split into two pieces

Fei = Fei,‖b̂ + Fei,⊥, (3.67)

where the parallel friction force is

Fei,‖ = −2γeini
me

∫
〈fe1〉ϕ

cosα

w2
d3w + nemeνei(ui‖ − ue‖)

= 0.51nemeνei(ui‖ − ue‖)− 0.71neb̂ · ∇Te (3.68)

and the perpendicular friction force is

Fei,⊥ = −2γeini
me

∫
f̃e1

w⊥
w3

d3w + nemeνei(ui⊥ − ue⊥)

' −2γeini
me

∫
f̃

(0)
e1

w⊥
w3

d3w + nemeνei(ui⊥ − ue⊥)

= nemeνei(ui⊥ − ue⊥)− 3

2

neνei
Ωe

b̂×∇Te. (3.69)

3.4.4. Collisional energy exchange

To lowest order, the electron distribution function is a Maxwellian. Using the same
method that we used to show that the lowest order electron distribution function is a
Maxwellian, we can show that the ion distribution function is also a Maxwellian. The
electron and ion temperature will be different in general, and as a result, it is sufficient
to calculate the collisional energy exchange between two Maxwellians because the first
order corrections fe1 and fi1 will only give a small correction to the large Maxwellian
contribution. We have already calculated the energy exchange between two Maxwellians,
and it is given by

W̃ie =
3nemeνei

mi
(Te − Ti). (3.70)

3.5. Discussion

Since we have assumed that the smallest parameter in our expansion is ρe/L� 1, elec-
trons are magnetized, and they gyrate several times around the magnetic field before
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B

rTe

qe⇥

Figure 2. Sketch of a plasma with a gradient of electron temperature, ∇Te, and a magnetic
field B pointing towards the reader. Due to ∇Te, the gyro-orbits on the left have on average
higher velocity than the gyro-orbits on the right, leading to a net energy flow in the direction

−b̂×∇Te.

they collide with other electrons or ions (recall that νee/Ωe ∼ νei/Ωe � 1). As a re-
sult, electrons can move freely along field lines, but they barely move across them. This
disparity in the magnitude of the net parallel and perpendicular motion leads to very
different heat fluxes and friction forces in the parallel and perpendicular directions. The
terms proportional to ∇Te in equations (3.60), (3.61) and (3.65) are of order

qe‖ ∼
√
mi

me

λee
L
pevti � qe× ∼

ρi
L
pevti � qe⊥ ∼

√
me

mi

νii
Ωi

ρi
L
pevti. (3.71)

Heat diffuses rapidly along magnetic field lines, it moves in the direction −b̂×∇Te at a
slower rate, and diffuses even more slowly along ∇⊥Te. The difference in size between qe‖
and qe⊥ can be explained using a random walk argument. Particles that move a distance
∆l in a time ∆t and then change direction randomly before moving a distance ∆l in a
time ∆t again behave diffusively on average with a diffusive coefficient D ∼ (∆l)2/∆t.
In a collisional plasma, collisions are the randomizing events, and hence ∆t ∼ ν−1

ee . The
different size of the parallel and perpendicular heat fluxes is due to the different distances
that the particles move during the interval between collisions: along a magnetic field line,
they move ∆l ∼ λee, giving D‖ ∼ νeeλ2

ee ∼ v2
te/νee, whereas across a magnetic field line,

particles are only displaced a distance ∆l ∼ ρe, leading to D⊥ ∼ ρ2
eνee ∼ v2

teνee/Ω
2
e. We

then obtain qe‖ ∼ −neD‖b̂ · ∇Te and qe⊥ ∼ −neD⊥∇⊥Te. The diamagnetic heat flux is
a result of the ∇B and curvature drifts and of the finite size of the gyromotion. Figure 2
shows how a gradient of electron temperature gives a heat flux in the direction −b̂×∇Te.

Another interesting feature of the electron heat flux is that it contains terms propor-
tional to ui−ue. The terms −0.71pe(ui‖−ue‖) and −(3/2)(peνei/Ωe)b̂× (ui−ue) arise
from the fact that slow electrons are more likely to collide with ions, and as a result
they tend to acquire the ion average velocity, whereas the fast electrons will not collide
as much with ions. This difference in velocity between slow and fast electrons gives the
heat fluxes proportional to ui − ue. The terms proportional to ∇Te in the friction force
have a similar origin. The terms −0.71neb̂ · ∇Te and −(3/2)(neνei/Ωe)b̂×∇Te are due
to the fact that in the presence of a temperature gradient, the energy of a particle is
correlated with its direction: particles coming from the higher temperature region will
have more energy than particles coming from the opposite direction. This difference in
energy leads to a net friction force because particles coming from the low temperature
region will collide more often and will loss more momentum than particles going in the
opposite direction.

Finally, note that the parallel electron heat flux qe‖ and the parallel friction force Fei,‖
are order unity contributions to the electron energy equation (3.10) and the parallel com-
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ponent of the electron momentum equation (3.9), whereas the perpendicular components
of the heat flux and the friction force are usually small in the same equations.

4. Ion equations

Equations (2.4), (2.13) and (2.21) for ions are

∂ni
∂t

+∇ · (niui)︸ ︷︷ ︸
∼nivtiL

= 0, (4.1)

nimi

(
∂ui
∂t

+ ui · ∇ui

)
︸ ︷︷ ︸

∼ piL

= −∇pi︸︷︷︸
∼ piL

− ∇ ·Πi︸ ︷︷ ︸
.λii

L

pi
L�

pi
L

+ eni(E + ui ×B)︸ ︷︷ ︸
∼enivtiB∼ L

ρi

pi
L�

pi
L

− Fei︸︷︷︸
∼ piL

, (4.2)

3

2
ni

(
∂Ti
∂t

+ ui · ∇Ti
)

︸ ︷︷ ︸
∼ pivtiL

= − ∇ · qi︸ ︷︷ ︸
.λii

L

pivti
L � pivti

L

−niTi∇ · ui︸ ︷︷ ︸
∼ pivtiL

− Πi : ∇ui︸ ︷︷ ︸
.λii

L

pivti
L � pivti

L

+ W̃ie︸︷︷︸
∼ pivtiL

.

(4.3)

There two important considerations about these ion equations:
• Instead of equation (4.2), it is common to add equations (3.9) and (4.2) and to use

quasineutrality ne = ni to obtain a conservation equation for the total momentum,

nemi

(
∂ui
∂t

+ ui · ∇ui

)
︸ ︷︷ ︸

∼ piL

' −∇(pi + pe)︸ ︷︷ ︸
∼ piL

− ∇ ·Πi︸ ︷︷ ︸
∼λiiL

pi
L�

pi
L

+ ene(ui − ue)×B︸ ︷︷ ︸
∼ene ρiL vtiB∼

pi
L

. (4.4)

Here we have used quasineutrality, ni = ne, to cancel the electric field, and we have
neglected the electron inertia neme(∂ue/∂t + ue · ∇ue) and the electron viscosity Πe.
Equation (4.4) has the advantage that the large electromagnetic force terms of equations
(3.9) and (4.2) cancel. Note as well that this equation proves that the ordering for the
perpendicular velocity difference in (3.3) is correct.
• Since ne = ni due to quasineutrality, it is common to replace the ion continuity

equation (4.1) by the difference of equations (3.8) and (4.1),

∇ · [ne(ui − ue)] = 0. (4.5)

This is the current conservation equation.
The ion heat flux and ion viscosity are calculated following a similar procedure to the

one we followed to calculate the electron heat flux, electron viscosity and the collisional
terms. The ion distribution function is also close to a Maxwellian, and the small correction
to the Maxwellian gives the heat flux and the viscosity. For the ions, the collisions with
electrons are negligible, and only the collisions between ions matter. The final ion heat
flux is given by

qi = qi‖b̂ + qi× + qi⊥, (4.6)

where the parallel, diamagnetic and perpendicular components of the heat flux are anal-
ogous to the corresponding quantities for electrons, and they are given by

qi‖ = − 3.9pi
miνii

b̂ · ∇Ti, qi× =
5

2

pi
miΩi

b̂×∇Ti, qi⊥ = −2piνii
miΩ2

i

∇⊥Ti. (4.7)
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The ion-ion collision frequency was defined by Braginskii as

νii =
4
√
π

3

e4ni ln Λii

(4πε0)2m
1/2
i T

3/2
i

. (4.8)

Note that there is a difference of
√

2 between Braginskii’s definitions of νii and νee (see
(3.49)). The ion viscosity is also split into three different terms

Πi = Πi‖

(
b̂b̂− I

3

)
+ Πi× + Πi⊥. (4.9)

Here the parallel viscosity is

Πi‖ = −0.96pi
νii

(
3b̂ · ∇ui · b̂−∇ · ui

)
; (4.10)

the gyroviscosity is

Πi× =
pi

4Ωi

[
b̂×

(
∇ui + (∇ui)

T
)
· (I + 3b̂b̂)− (I + 3b̂b̂) ·

(
∇ui + (∇ui)

T
)
× b̂

]
,

(4.11)

where MT is the transpose of matrix M and b̂ ×M is, in Einstein’s repeated index
notation, (b̂×M)ij = εiklb̂kMlj ; and the perpendicular viscosity is

Πi⊥ = −3piνii
10Ω2

i

{
(I− b̂b̂) ·

(
∇ui + (∇ui)

T
)
· (I− b̂b̂)

+
(
b̂ · ∇ui · b̂−∇ · ui

)
(I− b̂b̂)

+ 4
[
(I− b̂b̂) ·

(
∇ui + (∇ui)

T
)
· b̂b̂ + b̂b̂ ·

(
∇ui + (∇ui)

T
)
· (I− b̂b̂)

]}
. (4.12)

Comparing the ion heat flux with the electron heat flux (see (3.71)), we find

qe‖ ∼
√
mi

me

λee
L
pevti � qi‖ ∼

λii
L
pivti � qi× ∼ qe× ∼

ρi
L
pivti

� qi⊥ ∼
νii
Ωi

ρi
L
pivti � qe⊥ ∼

√
me

mi

νii
Ωi

ρi
L
pevti. (4.13)

Thus, the electrons are much more efficient at transporting energy along magnetic field
lines than the ions due to their large thermal speed, but they are very slow in the
perpendicular direction due to their small gyroradii. The ion heat flux is usually a small
contribution to the ion energy equation (4.3).

The different pieces of the viscosity are of order

Πi‖ ∼
λii
L

|ui|
vti

pi � Πi× ∼
ρi
L

|ui|
vti

pi � Πi⊥ ∼
νii
Ωi

|ui|
vti

ρi
L
pi, (4.14)

where we have indicated that the viscosity is proportional to the size of ∇ui and hence
to the size of ui. For |ui| ∼ vti, the viscosity is small compared to the other terms in the
total momentum equation (4.4). For sufficiently small ion velocity, the parallel viscosity
can become comparable to the convective term nemiui ·∇ui ∼ (|ui|2/v2

ti)(pi/L). Indeed,
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for
ρi
L
� |ui|

vti
∼ λii

L
� 1, (4.15)

the parallel viscosity is as important as the convective term. Braginskii’s expansion is
valid in this limit. However, if the ion flow becomes as small as |ui| ∼ (ρi/L)vti, Bra-
ginskii’s viscosity is not sufficiently accurate and one needs to keep higher order terms
(Mikhailovskii & Tsypin 1971; Catto & Simakov 2004).
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Appendix A. Solving for the electron gyrophase independent piece of
the distribution function 〈fe1〉ϕ

Equation (3.45) can be solved using a variational principle.
Due to condition (3.46), we search for solutions in the vector space GINF of Gyrophase

Independent distribution functions he with No Flow, i.e.
∫
hew cosα d3w = 0. The lin-

earized electron-electron collision operator C
(`)
ee [he] and the modified Lorentz collision

operator

Lmod
ei [he] = Lei[he] +

2γeinifMe

mepe
w cosα

∫
he(w

′)
w′ cosα′

(w′)3
d3w′ (A 1)

convert functions of the space GINF into functions of GINF since
• when applied to a gyrophase independent function, they give another gyrophase

independent function, and

•
∫
C

(`)
ee [he]w cosα d3w = 0 and∫
Lmod
ei [he]w cosα d3w =

γeini
m2
e

∫
∇w · (∇w∇ww · ∇whe) w · b̂ d3w

+
2γeini
mepe

∫
fMew

2 cos2 α d3w

∫
he(w

′)
w′ · b̂
(w′)3

d3w′

= −γeini
m2
e

∫
b̂ · ∇w∇ww · ∇whe d3w +

2γeini
m2
e

∫
he(w

′)
w′ · b̂
(w′)3

d3w′

=
γeini
m2
e

∫
he b̂ · ∇w∇2

ww d3w +
2γeini
m2
e

∫
he(w

′)
w′ · b̂
(w′)3

d3w′ = 0, (A 2)

where we have integrated by parts several times, and we have used ∇w∇2
ww = −2w/w3.

We define the scalar product

〈ke, he〉 =

∫
1

fMe
kehe d3w (A 3)

in the vector space GINF. The operators C
(`)
ee [he] and Lmod

ei [he] are self-adjoint in GINF
with this scalar product. In the case of Lmod

ei [he], we use

〈ke, w cosαfMe〉 =

∫
kew cosα d3w = 0 (A 4)

to write

〈ke,Lmod
ei [he]〉 = 〈ke,Lei[he]〉. (A 5)

The Lorentz collision operator is clearly self-adjoint.

Using the self-adjointness of C
(`)
ee [he] and Lmod

ei [he], it is easy to show that the function
〈fe1〉ϕ, solution to (3.45), is the mininum of the functional

Σ[he] =−
〈
he, C

(`)
ee [he]

〉
− 〈he,Lei[he]〉

+ 2

〈
he,

(
mew

2

2Te
− 5

2

)
w cosα b̂ · ∇ lnTe fMe

〉
+ 2

〈
he,

[
1− 3

√
π

4

(
2Te
mew2

)3/2
]
meνeiw cosα(ui‖ − ue‖)

Te
fMe

〉
. (A 6)

Following the solution of the Spitzer-Härm problem, we choose to write 〈fe1〉ϕ in the
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form given in (3.47) to obtain

Σ =
pe
me

∞∑
p=1

∞∑
q=1

(νeeK
ee
pq+νeiK

ei
pq)apaq−

5neb̂ · ∇Te
me

a1−2neνei(ui‖−ue‖)
∞∑
p=1

Cpap, (A 7)

where Kee
pq and Kei

pq were calculated for the Spitzer-Härm problem, and

Cp =
2

ne

〈
x1/2L(3/2)

p (x)fMe(w) cosα, x1/2

(
3
√
π

4x3/2
− 1

)
fMe(w) cosα

〉

=
2

ne

〈
x1/2L(3/2)

p (x)fMe(w) cosα,
3
√
π

4x
fMe(w) cosα

〉
⇒


C1

C2

C3

...

 =


3/2
15/8
35/16

...

 .

(A 8)

The coefficients ap are then determined by finding the stationary values of Σ.


