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1. Introduction

In these notes, we present the Braginskii fluid equations for electrons and ions. We
will consider a plasma composed of one ion species with charge e and mass m;, and elec-
trons with charge —e and mass m.. Ions and electrons are assumed to have comparable
temperatures,

T, ~ T, (1.1)

and average flows of the order of the ion thermal speed (high flow ordering),

fm
W~ Up ~ Vg ~ oy | — Ve K Vte- (1.2)
m;

To derive the fluid equations we will expand in three different small parameters,

Pi )\n )\ee )\ei Me
L <5 L L L <4 my; <4 ( 3)

where L is the characteristic size of the system,

UVt miTz
o 1.4
i~ B (1.4)
is the ion thermal gyroradius, and
Np o Ute BT TE e (me)*TE v () TE
Vee  €*nglnAce Vvei ein;lnAg; vi;  ein;lnAy

are the mean free paths for electron-electron, electron-ion and ion-ion collisions. To sim-
plify the derivation, we will assume the following relative ordering

Pi i Me
— — ~ ] — 1. 1.
T < 7 ,/mi < (1.6)

For ions, it is common to first expand assuming

pi i Me
—_~ — —_— ]_ ]-~
L L \ m; <4 (1.7)

and then perform the subsidiary expansion in

Pi Vii L [me
LN 1~ —,/ —. 1.8
i Q; < Ais \| my ( )

For electrons, which we will examine in detail, we will start expanding in

Pe Aee Aei Me
re o ~ 2o =£ 1 1.9
LT 7T “\Vm S5 (1.9)
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and then we will perform the subsidiary expansion in

Pe Vee L Me
~ = 1~ -, 1.10
)\ee Qe )\ee my; ( )

Importantly, the subsidiary expansions suggested above are not the only ones that give
Braginskii equations. It is possible to obtain them by first expanding in p;/L < 1 (as-
suming A;;/L ~ 1) to get drift kinetics (Parra 2017), and then performing a subsidiary
expansion in \;/L < 1.

2. Fluid equations

The Fokker-Planck kinetic equation for species s is

Ofs Zge
9 +v-Vfs+ .

(E+VXB)'vas:chs/[fsafs']' (21)

Before trying to solve this equation, we start by taking moments of it to obtain fluid
equations, as in Kinetic Theory of neutral gases (Dellar 2015). We first calculate the
general conservation equations, and we then particularize them for a plasma formed by
singly charged ions and electrons.

Due to conservation of phase-space volume, equation (2.1) can be written as

dfs Zge
2 + V- (vfs)+ V- {m

(E+VXB)f5:| :chs/[fsafs’]' (22)

S

If we multiply this equation by a function X (v) and we integrate over velocity, we obtain

;(/ngd3u>+v- </stvd311> = fi/(E+va)-v,,std3v

+Y / XCouolfo fuldv.  (2.3)

Three particular functions, X = 1,msv,msv?/2, are of interest because they give the
conservation equations for particles, momentum and energy.

2.1. Continuity equation

Taking X = 1 and recalling that the Fokker-Planck collision operator conserves particles,
equation (2.3) becomes

88715 + V- (nsuy) =0, (2.4)
where
Mg :/fsd?’v, u, = i/fsvd?’v (2.5)
Ng

are the density and average velocity.

2.2. Momentum conservation equation

Taking X = myv, equation (2.3) becomes

%(nsmsus) + V- (/ fsmsVvv dsv) = Zsens(E+us x B) + Z F.., (2.6)
s'#s
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where
Fgo = /msv Cssr [fsa fs’] d*v (27)

is the friction force on species s due to collisions with species s’. The integral [ fymsvv d3v
in (2.6) can be rewritten in a more familiar form by using the relative velocity w = v—us.
With this relative velocity, we find

/fsmsvv Bv = nsmsusu, + /fsmsww Pw. (2.8)

Moreover, if we define the pressure p, and the temperature T as

2
Ps = nsTs = /fsmsgw d3U), (29)

equation (2.8) becomes
/fsmsvv d*v = ngmgusug + p,I + I, (2.10)

where I is the unit matrix and
w?
II, = /fsms (WW — 31) dBw (2.11)

is the traceless viscosity tensor. With the result in (2.10), equation (2.6) finally becomes

0
§(nsmsus) + V- (ngmsusug) + Vps + V- Il = Zsens(E + us x B) + Z F...
s'#s

(2.12)
Using (2.4), this momentum equation can also be written as

Oug
NgMg ((; + ug - Vus> +Vps +V 11, = Zsens(E+ us x B) + Z F.o.| (2.13)
s'#s

2.3. Energy conservation equation

Taking X = m,v?/2, equation (2.3) becomes
g / }mQ'UQ fod3v | +V- / 1mgvz fovddv ) = Zeen,E - u, + Z Wsery  (2.14)
at 2 & & 2 & & £ & £ Sl#s S8

where
1
Wesr = / §msv2 Cssr [fsa fs’] dgv (2'15)

is the energy gained by species s due to collisions with species s’. The integrals [ fsmsv?/2d%0
and [ fymsv?v/2d3v in (2.14) can be rewritten in a more familiar form by using the rel-
ative velocity w = v — u,. With this relative velocity, we find

1 1 1 3 1
/imsv2 fod3v = / imst fod3w + §nsm8u§ = inSTS + insmsui (2.16)
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and
1 1 1
/gmsvz fovdio = / §msw2 fow d3w + / §msw2 fous d3w

1 5 1
+ /fsms(w . us)w d3v + 5nsmsuiuS =qs+ <nsTs + 2nsmsu§> u, + I, - ug,

2
(2.17)
where
1
ds :/imst fow d3w (2.18)
is the heat flux. With the results in (2.16) and (2.17), equation (2.14) finally becomes
9 (3 1 5 1
ot <2nsTs + 2nsmsug> +V- |:qs + <2nsTs + 2nsmsu§> u; + I, - us:|
= ZsengE - ug + Z Wi (2.19)
s'#s

Using (2.4), this energy equation can also be written as

0 3 1 5

ns | = 4us- V)| =Ts+ -msus | + V- (qs + nsTsus + I - uy)
ot 2 2
= ZenB-u, + Y Wi (2.20)
s'#s

Finally, taking [equation (2.20) — (equation (2.13)) - u,], we find the equation for the
thermal energy,

3 oT, .
§n5 ( 5 +ug - VTS> +V-qs+nsTsV-us + 1, : Vu, = Z Wi, (2.21)
s'#s
where
- 1
Wss = Weg — Fggr - u, = / 5m3w2 Cysr [f& fs’] dPw. (2'22)

Note that equations (2.4), (2.13) and (2.21) are almost the same as the equations
for a neutral gas. The main apparent difference are the electromagnetic forces and the
collisional terms that transfer momentum and energy between species. There will also be
differences in the heat fluxes and viscosities, as we will see shortly.

In the next two sections, we particularize these fluid equations for a plasma composed
of one ion species with charge e and mass m;, and electrons with charge —e and mass
Me.

3. Electron equations

To derive the electron fluid equations, we use the ordering in (1.2) and (1.6) (recall that
we will first expand assuming (1.9) and we will then perform the subsidiary expansion
(1.10)). We need to order several terms with respect to our expansion parameters in
(1.6).

e We assume that the electric field is in the high flow ordering, that is, the electric
field perpendicular to the magnetic field can balance the magnetic force, whereas the
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parallel electric field will only be of the order of the pressure gradient,

LT, T.
E, ~v:B~—=% E ~ =& 3.1
L pi el > B el (3.1)
o We assume that the time derivative is of the order of
(%7
—_—~ s * v ~ —, 32
5~ 7 (3.2)

e Both u. and u; are of the order of vy, but their difference need not be. We will
allow the velocity difference along the magnetic field to be of the order of vy, but the
difference in the direction perpendicular to the magnetic field must be small, as we will
see when we discuss equation (4.4) below. In fact,

Wil| = Ue|| ~ Vt5 > Uil — Uel ~ %Uti- (3.3)

For electrons, we start expanding assuming the orderings in (1.9), and hence

Pi Pe [Ty
N R 4
L L\ me (3-4)

Thus, under the assumptions in (1.9), Uj|| — Ue| ~ W1 — Uel ~ V. Once we perform the
subsidiary expansion based on (1.10), we recover (3.3).

e The collisional terms are of the size that we estimated when we calculated them in
the electron-ion collision notes, that is,

me Lpe e

Fei:_FieN elMelVei\W; — Ue ) ™~ NelllelVei Uty ~~ - - 3.5
NeMeVei(W; — Ue) ~ NeMeVei Ut o W A (3.5)
and
W W 3me (T, —T.) Me Me L pevi  PeVii (3.6)
ei = —Wie ~ Ne———Vei\dy — de) ~ Ne——Vejle ™~ 3 ~ T .
m; m; m; Ae; L L

e Finally from the definitions of the viscosity and the heat flux in (2.11) and (2.18),
we find the upper bounds

11, 5 DPs, Qs 5 PsVts- (37)
Equations (2.4), (2.13) and (2.21) for electrons are
One
87; + V- (neue) = 07 (38)
negti
ou,
NeMe | — +Ue-Vue | = —Vp, —V-II. — ene(E+u. x B) + Fg;, (3.9)
ot _~ =\ —, =~
~be SE Nenevﬁ,BNp%%»pTe ~E
’rLe'VYLeUfl 7,7,116 pfe<<pTe
3 oT, -
—Te +u. VI, | =-V-q.—nT.V-u —II.: Vu. + F; - (0; —u,) — W
2 ot —_—— —— ——
< PeVte ~ Pevii < Peliti _Pevti
DO ~T L L ~TL T
~ et
(3.10)

Note that we have rewritten the collisional term Wei as

Wei = Fei ' (ui - ue) - Wie- (311)
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To obtain this formula, we use the fact that collisions conserve energy, leading to
Wei = =Wie = =Wie = Fic - 1y = =Wie + Fe; - u, (3.12)

where we have employed the definition of W,y in (2.22), and the fact that collisions
conserve momentum, F;. = —F.;. Then,

Wei = Wei - Fei cUe = *Wie + Fei ' (ui - ue)a (313)

which is equation (3.11). The term F; - (u; — ue) is the Joule heating.

The dominant term in the momentum equation (3.9) is the term due to the electromag-
netic force in the perpendicular direction, —en.(E | +u. x B). Thus, to lowest order, the
electron momentum equation becomes E; + u. x B ~ 0, and the perpendicular electron
average velocity is the E x B drift,

1 ~
UGLEVEEEEX})N’UM. (314)

Note that if we had ordered the perpendicular electric field to be smaller than in (3.1),
the perpendicular electron velocity would have been smaller than the ion thermal speed.
The ion momentum equation is very similar to the electron momentum equation, giving
u;, ™~ Vg ~ v. Since both u.; and u;,; are equal to vg, their difference is indeed small
as we assumed in (3.3).

We need to determine Il,, q., F.; and Wie. To do so, we need to calculate the electron
and ion distribution functions. From the ion distribution function, we will only need to
know n;, u; and T;. For the electron distribution function, we expand first in the small
parameter

Pe Me >\ee )\ei
2, L~ ~ 2 <. 3.15
L m; L L < ( )
In this expansion parameter, the electron distribution function is
f€:f80+ fel +... (316)
~
NPTCfeO

We proceed to determine the electron distribution function order by order. We then
calculate the terms that we need for the electron fluid equations.

3.1. Electron Fokker-Planck equation

It is convenient to write the Fokker-Planck kinetic equation (2.1) using the relative ve-
locity w = v — u.. Using the chain rule for partial differentiation, we find

afe 6fe ow afe aue
= e *Vuwlelt,r = - *Vawleltrs 1
ot |,y Ot |, T o . Vol = % e O Volels (8.17)
er‘t,v == vfe|t,w + vVV|t,v : vwfe|t,r = er‘t,w - vue : wae‘t,r (318)
and
vvfe't,r = V’UW t,r” wae tr — vwfe|t,r~ (319)
With these results, the Fokker-Planck equation (2.1) becomes
N Ofe
_Qe(w X b) : wae - Cee[feafe] - Cei[fwfi] = - aft - (W+ue) : vfe
e ou,
+|—(E+u. xB)+ +(wW+u.) - Vu| - Vyfe, (3.20)

Me ot
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where Q. = eB/m, is the electron gyrofrequency, and b = B/B is the unit vector in the
direction of B. Using (3.9) for du./dt, equation (3.20) can be rewritten as

ofe
ot

- Qe(W X B) : vwfe _Cee[feafe] - Cei[femfi] =
— - Vte

~Qe ferv L Vite fe> Vie f ~Vge ferv L Yte f >>“te f fe
T Je T Je eeJe™ X 7 Je 7 Je " L
g = Y fory [ e o< e S

_ue'vfe —W'er
———

Fe;— Vp.—V-1I,
+
NeMe
NvtTefg N%fe"’wf:;j v;jfe<<“£€fe
(3.21)

'vwfe+ W'Vue'vwfe
—_———

Due to our choice of coordinate, w = v — u,, the electron distribution function has to
satisfy the condition

/few d3w = 0. (3.22)
Thus, equation (3.21) must be solved in conjunction with condition (3.22).

3.2. Zeroth order electron distribution function

Substituting the expansion (3.16) into the Fokker-Planck equation (3.21) and the condi-
tion (3.22), we obtain the lowest order equation

Qo (W X b) - Vi feo — Ceel feo, feo] — Ceilfeo, fi] =0 (3.23)

with the lowest order condition
/ feow d*w = 0. (3.24)

Since we are expanding in y/m./m; < 1, we can use the approximation that we deduced
for the electron-ion collision operator: Ce;|[feo, fi] = Lei[feo], where Le;[feo] is the Lorentz
collision operator. Thus, to lowest order, the equation for feq is

—Qe(W X b) - Vi feo — Ceel feo, feo] — Leilfeo) = 0. (3.25)

The solution to equation (3.25) is a Maxwellian. To show it, we use the H-theorem.
Multiplying (3.25) by —In f.q, we find

vw : [Qe(w X B)(feo 1nfeO - feO)} =—In feO Cee[fevaeO] - lnfeO Eei[f60]~ (326)

Integrating over velocity space, we obtain

- / In feoo Cee[feo, feo] dPw — / In feoo Lei[feo] dPw = 0. (3.27)

Both of these integrals are positive, and their sum is equal to zero only if both integrals
vanish. The integral over C¢. only vanishes if f.o is a Maxwellian, and the integral over
Le; only vanishes if fq is isotropic. Thus, f.o is an isotropic Maxwellian

me \ /2 mew?
feo = frre = ne (27ﬂi ) exp (— 26T ) . (3.28)

Note that this function satisfies (w x f)) - Vwfme = 0, and it is hence the only possible
solution to equation (3.25). It also satisfies condition (3.24).
We define the density n. and the temperature T, in fps. such that

1 1
/fMe Bw = /fe 3w = ne, /gmew2 fare dPw = / gmer fo d3w = n.T.. (3.29)
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Then, the higher order corrections must satisfy
1
/fd d3w =0, /gmer for dPw = 0. (3.30)
3.3. First order electron distribution function

To next order in p./L ~ y/me/m; ~ Aee/L ~ Aei/L < 1, equation (3.21) becomes

mew - (Wi—le) o N G
T,

F.; — Vp. — V- 11,
. P

NeMle

_Qe(w X B) : vwfel - ngﬁ) [fel] - ﬁei |:fel -

wf]Wea
(3.31)

and condition (3.22) becomes

/felW d*w = 0. (3.32)

Note that we have use the approximation that we derived for the electron-ion collision
operator, valid for \/m./m; < 1 (here we are using the relative velocity w = v — u,,
and hence in the electron-ion collision operator, we need to use the average ion velocity
in the frame moving with u., u; — u.).

Equation (3.31) can be simpliﬁed using the following approximations:

e In the expansion in y/m./m; < 1, the friction force is given by

2 er’v
F., = Yeilts /fel d3w + neMele; (U; — Ue). (3.33)

e The piece of the electron-ion colhslon operator proportional to u; —u, can be written
as

mew - (U; — Ue) 3w ([ 2T, 3/2 MeVei (W — W) - W
) e/ = _ .34
Le; T fMeil n (m w2> T Ine, (3.34)

where we have used that v.; = (3v27/4)(m 1/QT?’/Q/nZ)Vm
e The viscosity is negligible because f. ~ fyr. and hence

w?
II, ~ /fMeme (WW — 3I> =0. (3.35)
With all these results, and using
Vpe mew? 5\ VT, MeW
.= _2 ., wlrie = — o 3.36
Viu { o + ( ST, 2) T, :|fM Vufm T, avi (3.36)

equation (3.31) becomes

n 276inifMe w’
¢ 3
—QE(W X b) Vi fer — Cée) [fel} - ‘CEi[fel] - Tpew : /fel(wl) (w/)S d*uw'
e 3w [ 2T, 3/2 MeVei(W; — Ue) -wf
4 mew? T. Me
mew? 5
_ ( e 2) w-VInT, fre. (3.37)

To solve equation (3.37) with condition (3.32), we first change to a set of convenient
coordinates. We then split the distribution function into two components.
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by

w

FIGURE 1. Spherical coordinates {w, «, ¢}.

3.3.1. Change of coordinates

To solve equation (3.37), we will use the spherical coordinates {w, «, ¢}, where w = |w]|
is the magnitude of the velocity, a@ = arccos(w - b/w) is the angle between the velocity
and the magnetic field B, and ¢ = arctan(w - é;/w - €;1) is the gyrophase (the angle
between the perpendicular velocity and a vector €; perpendicular to the magnetic field
B). See figure 1 for a sketch of these spherical coordinates. The vectors {€;, &z, b} form
an orthonormal, right handed basis. In these coordinates,

w = wlcos ab + sin a(cos p &1 + sin @ &5)]. (3.38)

The gradients with respect to velocity of these coordinates are

1 .\ 1 .
Vepw = y, Vo = — (cos ozE — b) , Ve = — S WX b, (3.39)
w w sin o w w2 sin” «
and hence
N " afel 8.fel afel afel
. = . = — . A
(W x b)-Vyfe = (wxb) (wa 0 + Voo Do + Ve 5 5 (3.40)
Then, equation (3.37) becomes
6fel 2eiM; fMe w/
q %t g g porp g Peintifae / N W 3
e 830 Cee [fel] ['ez[fel] MePe w fel(w )(w/)3 d w
_ |, _sva e 2] meves(u; — ue) W,
- 4 mew? T, Me
mew? 5
— ( 5T — 2) w-VInT, fye. (3.41)

To solve equation (3.41) with condition (3.32), it will be convenient to split f.; into
its gyrophase independent piece, (fe1),, where

1 2

{(fle =5 ; flw,a,¢)dp (3.42)

is the gyroaverage, and its gyrophase dependent piece, fel = fer — (fe1) -

3.3.2. Gyrophase independent piece of fe1

The equation for the gyrophase independent piece is obtained by gyroaveraging equa-
tion (3.41). Using the isotropy of the linearized collision operator, we obtain <C§£) (fe1l)p =
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ctd [(fe1)e]. The gyroaverage of the Lorentz collision operator is

) o Yeilli 1 i L afel 1 82.]0.31
(Leilfealle = m2w3 <sina Oa <bma Oa ) * sin® v 9% /

 Yeini 1 i L Ofe)e ) '
~ m2w3 sina da (sma dau = Lei[(fer)]- (3.43)

We finish by noting that using the form of w in (3.38), (w), = wcos a b, and hence

w' "cosa’
<W>¢' / fel(W/)W dB’UJ, = W COS & / fel (W/)iw(wl)?)a dgw/
w'cosa’ 4

= wcosa/(fd}w(w')(w/)‘gd w'. (3.44)

With all these results, the gyroaverage of (3.41) becomes

COUfur) o] + Les[(for) o] + chosa/(fd)@(w’)w B’

MePe (w’)3
1 3w [ 2T, 3/2 MeVei (U — Ue|| )W cosaf
N 4 \mew? T, Me
e 2 5 "
+ (77;71: — 2) wcosab-VInT, fue. (3.45)

This equation has to be solved in conjunction with condition (3.32). Taking the parallel
component of (3.32), we obtain

/felw cosaddw = /<f61>¢w cosad®w = 0. (3.46)

To solve (3.45), it is typical to use a technique similar to the one that we used for the
Spitzer-Hérm problem. We describe the calculation in Appendix A. The solution (fe1),

is assumed to be a summation of modified Laguerre polynomials LI(,B/ 2)(:v),
(fe1)e Z apLy (3/2) (1) fare (w)w cos o, (3.47)

where = m.w? /2T, and a, are coeflicients that we need to determine. Note that unlike
in the Spitzer-Harm problem, the polynomial Lé3/ 2) (z) is not included in the summation
because the function has to satisfy condition (3.46). Truncating the series after the first
two terms, one obtains

(fer)p =~ l(l 2. VI, +0.284 (ul_ul)> L3/ ()

Vee T.

+< 0633 YT, +0032(“_u€')> LY (@ )1fMe( Jweosa, (3.48)

Vee T,
where the electron-electron collision frequency is defined by Braginskii to be
427 e*ngln A,

3 (4mep)?me L2

For singly charge ions, ve; >~ v, and we can use both frequencies indistinctly. We will
use v,; instead of v.. in the terms that would not exist without electron-ion collisions.

(3.49)

Vee =
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3.3.3. Gyrophase dependent piece of fe1

The equation for the gyrophase dependent piece fel is obtained by subtracting (3.45)
from (3.41) to find

8:, ~ 2 eiTls P / /
QU _ o711 = Loilfon] — Dttt ”fM / Fa(w WL o

dp
W.'—/
~Qe fe1 NVeefel
3/2
B 1 3w [ 2T, MeVei(W; — Ue) - W f
B 4 Mew? T, Me
Nimeuf:u"e Hvgi frren 5L e fare
mew?® 5
— = -VInT, fire, 3.50
<2Te Q)len Tu (3:50)
~2e fare
where
w = wsina(cos & + sinp é3). (3.51)

Equation (3.50) has to be solved in conjunction with condition (3.32). Taking the per-
pendicular component of (3.32), we obtain

/fele_ dPw = /fele_ Bw=0. (3.52)

Equation (3.50) can be solved numerically, but it is more interesting to take the sub-
sidiary limit ve./Q. < 1 (as we announced in (1.10)). In this subsidiary expansion, the
gyrophase dependent piece becomes

Fo=f94 f“) t... (3.53)
Vee f(0)<<f(0)

Using this expansion in (3.50), we find to lowest order

o7y mew? 5
Q. 9, ~ \ 21 "2 wy - VInTe fue, (3.54)

and to next order

ofy 5 2Yeii € w w’
0 2L — CLO )+ LalF)) + ZemDiteny [ 70wy s b

3/2 e .
N M ( e ) ‘| meyez(uzT ue) Wi fMe~ (355)

4 mew?

We can integrate equation (3.54), finding

~ 1 (mew® 5 ~
fe(?)Q< oT 2> (Wi xb)-VInT, fare =

L) ()

O (WLXB)'VIHTG.]CMG,

(3.56)

where we have used L§3/2) () =5/2 —x and

w. x b = wsina(sinpé; — cospéy). (3.57)
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We could integrate (3.55), but as we will see, it is not necessary to integrate it to find
what we need for the electron fluid equations.

3.4. FElectron heat flux, electron viscosity, friction force and collisional energy exchange

Once the electron distribution function is known, we can calculate the electron heat flux,
the electron viscosity and the collisional terms.

3.4.1. Electron heat flux

The electron heat flux is given by

0
1 1
Qe :W+/2mew2wfel dPw

2
:Te/ MW 5w oy dbw = —Te/Lg?’/”(m)vvfe1 &, (3.58)
oT, 2

where we have used the no flow condition (3.32) to write the heat flux as an integral of
(mew?/2—5T,/2)w. It is a widespread form of writing the heat flux because it can then be

easily written as an integral over the modified Laguerre polynomial L(g/ 2)( )=5/2—u.

The first order correction that appears in (3.58) is fe1 =~ (fe1)y + f(o) + féi) Using
this decomposition, we split the heat flux into three pieces,

de = Ge| b + dex + Qe (3.59)
where the parallel heat flux is
) 3 16p.
Qe|| = _Te/L(fs/Q)(fU)wcosa (fer)p dPw = - Vp b- VT, - 0. T1pe (i — uey),
(3.60)
the diamagnetic heat flux is
3/2 (0
Qex = — e/Lﬁ D (@)wy fY) dPw = *2meﬂeb X VT, (3.61)

and the perpendicular heat flux is given by the integral

0= -1 [ 1P @w [ dw. (362)

To take the integral in (3.62), we use that w, = d(w, x b)/dyp, and we integrate by
parts in the gyrophase ¢ to find

(3/2) - Of)
- / LE(@) (v x B) Sl dw. (3.63)

Using (3.55), this equation becomes
L (@) (w x B) (COULT+ LalfD]) dw
/

2Te K eVei\Wi — Ue) *
/L3/2) Wlxb) [1_3ﬁ (m wz) ‘|mV4 (u u) WlfMedgw

(?\ﬁ P\ﬁ

4 T,
(3.64)
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The integrals in this equation finally give

. 13 PelVee 3pe’/el
Qel = <f+ ) QQVLT o b x (0; — u.). (3.65)

3.4.2. Electron viscosity

The electron viscosity is zero to the order that we have calculated the distribution
function because the integral [; dov fOQN dy sin a wlww — (w?/3)I] over the angles a and
¢ vanishes. We would need a piece of the distribution function composed of spherical
harmonics with [ = 2 to find a non-zero viscosity. Hence, we can take the electron
viscosity to be zero,

0
w2
II, ~ /fMe Me = ?I d3w + /fe1 Me <ww — 31) d3w = 0. (3.66)

3.4.3. Friction force
The friction force, defined in (3.33), can be split into two pieces

Fei=F.,b+F. ., (3.67)

where the parallel friction force is

2Yeili cos v
Faj=-=1 / (fer)o=p 7 dPw + nemevei (ug) — uep)

e

= 0.51nemeuei(ui“ —ug) — 0.71n.b - VT, (3.68)

and the perpendicular friction force is

2'y i

Fei,L = - -~ /.fel U) + nemeyei(uiL - uel)
Me
2’y ng

= - o /f U} + nemeyei(uiJ_ - ueJ_)

Me
3 NeVei
= NeMeVei(Wil —Uey) — = ———b x VT,. (3.69)
e

3.4.4. Collisional energy exchange

To lowest order, the electron distribution function is a Maxwellian. Using the same
method that we used to show that the lowest order electron distribution function is a
Maxwellian, we can show that the ion distribution function is also a Maxwellian. The
electron and ion temperature will be different in general, and as a result, it is sufficient
to calculate the collisional energy exchange between two Maxwellians because the first
order corrections f.; and f;; will only give a small correction to the large Maxwellian
contribution. We have already calculated the energy exchange between two Maxwellians,
and it is given by

- 3 }
Wi = 2eelei o ), (3.70)

m;

3.5. Discussion

Since we have assumed that the smallest parameter in our expansion is p./L < 1, elec-
trons are magnetized, and they gyrate several times around the magnetic field before
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Qe x

—
VT,

FIGURE 2. Sketch of a plasma with a gradient of electron temperature, V7., and a magnetic
field B pointing towards the reader. Due to VT, the gyro-orbits on the left have on average
higher velocity than the gyro-orbits on the right, leading to a net energy flow in the direction

—b x VT..

they collide with other electrons or ions (recall that ve./Qe ~ ve;i/Qe < 1). As a re-
sult, electrons can move freely along field lines, but they barely move across them. This
disparity in the magnitude of the net parallel and perpendicular motion leads to very
different heat fluxes and friction forces in the parallel and perpendicular directions. The
terms proportional to VT, in equations (3.60), (3.61) and (3.65) are of order

QGH ~ A/ %%pevti > Qex ~ %pevti > el ~ %%%pe”ti- (371)
Heat diffuses rapidly along magnetic field lines, it moves in the direction —b x VT, at a
slower rate, and diffuses even more slowly along V| T¢. The difference in size between g,
and g.; can be explained using a random walk argument. Particles that move a distance
Al in a time At and then change direction randomly before moving a distance Al in a
time At again behave diffusively on average with a diffusive coefficient D ~ (Al)?/At.
In a collisional plasma, collisions are the randomizing events, and hence At ~ v_.!. The
different size of the parallel and perpendicular heat fluxes is due to the different distances
that the particles move during the interval between collisions: along a magnetic field line,
they move Al ~ A, giving D) ~ Vee)\ie ~ Uth /Vee, Whereas across a magnetic field line,
particles are only displaced a distance Al ~ p., leading to D ~ p2vee ~ v Vee /2. We
then obtain g¢ ~ —neDHB -VT, and qe; ~ —ne.D; V| T.. The diamagnetic heat flux is
a result of the VB and curvature drifts and of the finite size of the gyromotion. Figure 2
shows how a gradient of electron temperature gives a heat flux in the direction —bxVT..
Another interesting feature of the electron heat flux is that it contains terms propor-
tional to u; — u.. The terms —0.71p, (u;| — ue)) and —(3/2)(Pevei/Qe)b x (u; —u,) arise
from the fact that slow electrons are more likely to collide with ions, and as a result
they tend to acquire the ion average velocity, whereas the fast electrons will not collide
as much with ions. This difference in velocity between slow and fast electrons gives the
heat fluxes proportional to u; — u.. The terms proportional to VT, in the friction force
have a similar origin. The terms —0.71n.b - VT, and —(3/2) (nel/ez-/Qe)B x VT, are due
to the fact that in the presence of a temperature gradient, the energy of a particle is
correlated with its direction: particles coming from the higher temperature region will
have more energy than particles coming from the opposite direction. This difference in
energy leads to a net friction force because particles coming from the low temperature
region will collide more often and will loss more momentum than particles going in the
opposite direction.
Finally, note that the parallel electron heat flux g, and the parallel friction force Fy;
are order unity contributions to the electron energy equation (3.10) and the parallel com-
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ponent of the electron momentum equation (3.9), whereas the perpendicular components
of the heat flux and the friction force are usually small in the same equations.

4. Ton equations
Equations (2.4), (2.13) and (2.21) for ions are

ony
L+ V- (nu;) =0, (4.1)
ot
iVt
8ui
n;my; ot +u; - Vui = — sz - V- Hz + GTLZ(E +u; X B) — Fei s (42)
-y ~ SXE Lig B NeﬂivtiBNP%%»% ~
~ i
3 oT; -
—n; l+ui-VTi = — V-q; —n; T,V -u; — II; : Vu; + Wie .
> < ’\ii PiZti < Pizti ~EBipti < ALz‘z‘ Pizu’ <<l"iz’ti ~ Bt
T

(4.3)

There two important considerations about these ion equations:
e Instead of equation (4.2), it is common to add equations (3.9) and (4.2) and to use
quasineutrality n. = n; to obtain a conservation equation for the total momentum,

ou;
nemi | = +u;-Vu; | ~=V(pi+pe)— V- -II; +ene(u; —u.) x B. (4.4)
8t N——— N——
P; ~5 NAL“‘ %<<% ~ene Gtvg BT

Here we have used quasineutrality, n; = n., to cancel the electric field, and we have
neglected the electron inertia n.m.(0u./0t + u. - Vu,.) and the electron viscosity IL..
Equation (4.4) has the advantage that the large electromagnetic force terms of equations
(3.9) and (4.2) cancel. Note as well that this equation proves that the ordering for the
perpendicular velocity difference in (3.3) is correct.

e Since n. = n; due to quasineutrality, it is common to replace the ion continuity
equation (4.1) by the difference of equations (3.8) and (4.1),

V- [ne(u; —u.)] = 0. (4.5)

This is the current conservation equation.

The ion heat flux and ion viscosity are calculated following a similar procedure to the
one we followed to calculate the electron heat flux, electron viscosity and the collisional
terms. The ion distribution function is also close to a Maxwellian, and the small correction
to the Maxwellian gives the heat flux and the viscosity. For the ions, the collisions with
electrons are negligible, and only the collisions between ions matter. The final ion heat
flux is given by

di = ¢ b + dix + Qi (4.6)
where the parallel, diamagnetic and perpendicular components of the heat flux are anal-
ogous to the corresponding quantities for electrons, and they are given by

2pivi;
m; Q?

3.9p; » 5 p;
b . Ev iX — a5
MV v dix =3 m;$

qi| = — bx VT, q=- VLT (4.7)
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The ion-ion collision frequency was defined by Braginskii as
- 4ﬁ 647’L7; In Aii

. 4.8
3 (47‘(’60)27713/21—;-3/2 (48)

Vig

Note that there is a difference of v/2 between Braginskii’s definitions of v;; and v, (see
(3.49)). The ion viscosity is also split into three different terms

!

Here the parallel viscosity is

0.96p;

(23

I = — (3b- Vu; b - V) (4.10)

the gyroviscosity is

DPi

I, =
SETeY

[6 x (Vu; + (V)T - (T+3bb) — (1+3bb) - (Vu, + (Vu,)T) x 6} :

@11)

where MT is the transpose of matrix M and b x M is, in Einstein’s repeated index
notation, (b x M);; = €iribpM,;; and the perpendicular viscosity is

3piVi
1002

Hu_ = {(I — BB) . (Vui + (VUZ>T) . (I — BB)

+(B~Vui~B—V~ui>(I—bb)

+4 {(1 —bb) - (Vu; + (Vu;)T) - bb + bb - (Vu; + (Vuy)T) - (T— BB)} } (4.12)

Comparing the ion heat flux with the electron heat flux (see (3.71)), we find

m; A i ;
Ge|| ~ TrT:%pevti > gy ~ %pivti > Qix ~ Qex ~ %pﬂ}ti
Vii Pi Me Vi i
> Q1 ~ Qi:%Pi'Uti > el ~ m(z Qiz%pevti. (4.13)

Thus, the electrons are much more efficient at transporting energy along magnetic field
lines than the ions due to their large thermal speed, but they are very slow in the
perpendicular direction due to their small gyroradii. The ion heat flux is usually a small
contribution to the ion energy equation (4.3).

The different pieces of the viscosity are of order

Aii |ug Vii |W;| p;
Iy ~ A |11 | pi > 1 ~ vii | |fp (4.14)

pi |uil |
(%73 Q; vy L v

pi > Iy ~ 7

where we have indicated that the viscosity is proportional to the size of Vu; and hence
to the size of u,. For |u;| ~ vy, the viscosity is small compared to the other terms in the
total momentum equation (4.4). For sufficiently small ion velocity, the parallel viscosity
can become comparable to the convective term n.m;u; - Vu; ~ (Ju;|?/v2)(pi/L). Indeed,
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for

Pi [u;| Aii

<K —~—x1 4.15

<. "1 ; (4.15)
the parallel viscosity is as important as the convective term. Braginskii’s expansion is
valid in this limit. However, if the ion flow becomes as small as |u;| ~ (p;/L)ve;, Bra-
ginskii’s viscosity is not sufficiently accurate and one needs to keep higher order terms

(Mikhailovskii & Tsypin 1971; Catto & Simakov 2004).
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Appendix A. Solving for the electron gyrophase independent piece of
the distribution function (f.i),
Equation (3.45) can be solved using a variational principle.
Due to condition (3.46), we search for solutions in the vector space GINF of Gyrophase
Independent distribution functions k. with No Flow, i.e. [ howcosad®w = 0. The lin-

earized electron-electron collision operator Céﬁ) [he] and the modified Lorentz collision
operator

2 cos
£modf ] = £k + 26 ogq / o (w') 208 gy (A1)
mepe
convert functions of the space GINF into functions of GINF since
e when applied to a gyrophase independent function, they give another gyrophase
independent function, and

. fC’ée Jwcosad3w = 0 and

/ﬁm‘)d wcosad‘gw—%ml/v (Vs Vow - Vphe) w - bd3w

Q%an/ 3 / NW b o
wcos?adw | ho(w)—— d3w
MePe fM ( ) (w/)S

eili [ + : 29ei; b
I 1 /b.Vwwa.th P 4 el /he(w)w a3’

m? (w')?
= %ﬂ;i /he bV, VZiwdw + %ml /h dw’ =0, (A2)
me
where we have integrated by parts several times, and we have used V,,,wa = —2w/w3.

We define the scalar product
(ke he) / kehe d*w (A3)
Me

in the vector space GINF. The operators C.’) [he] and £1°4[R,] are self-adjoint in GINF
with this scalar product. In the case of £%°%[h.], we use

(ke,wcosafare) = /kewcosadSw =0 (A4)
to write
<ke7['rerzl‘Od[he]> = <k67['ei[he]>- (A 5)

The Lorentz collision operator is clearly self-adjoint.
Using the self-adjointness of C' [he] and £2°4[h,], it is easy to show that the function
(fe1)e, solution to (3.45), is the mininum of the functional

Slhe] = = (he, CEhe] ) = (he, Leilhe)

2
MW 5 «
2 _—— = sab-VInT,
+ <he,< ST, 2>wcosa n efMe>

37 3/2 MeVeiW €OS (|| — Ue||)
+2<he,[1 () ] - fue ). (A6)

Following the solution of the Spitzer-H&rm problem, we choose to write (fe1), in the
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form given in (3.47) to obtain
_ DPe 5n.b - VT, >
e z;z; VeeK +v K )apaq %al—Qneyﬂ(uiH—ueH) X;Cpap, (A7)
€ p=1lgq p=

where K¢ and K;é were calculated for the Spitzer-Harm problem, and

Cy = - (2L @) fre(w) cosa 2 (7 1) farw) cosa)
493/2

ne
Cy 3/2
2 3vm Co 15/8
- <1;1/2L§,3/2) () fare(w) cos o, ﬂfMe(’LU) cos a> = | ¢, | =] 3516
(A8)

The coefficients a, are then determined by finding the stationary values of X.



