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1. Introduction

The Fokker-Planck collision operator can be simplified significantly when we consider
collisions between electrons and ions. The simplification is a result of the large mass
difference. Assuming that the ion and electron temperatures are of the same order,

Te ∼ Ti, (1.1)

we find that the thermal speed of the electrons vte is much larger than the thermal speed
of the ions vti,

vte ∼
√
Te
me
� vti ∼

√
Ti
mi
∼
√
me

mi
vte, (1.2)

where me and mi are the mass of electrons and ions, respectively. We will exploit this
difference in characteristic velocities to study collisions between electrons and ions.

2. Simple estimates

Before attempting a rigorous derivation, we give some simple estimates. We consider
electrons of charge −e and mass me colliding with ions with charge Ze and mass mi.
Naively, to have a collision, the distance bei between the electron and the ion must be
such that the kinetic energy of the electron is of the order of the potential energy due to
the Coulomb force between the particles,

1

2
mev

2
te ∼ Te ∼

Ze2

4πε0bei
. (2.1)

Thus, only electrons at a distance

bei ∼
Ze2

4πε0Te
(2.2)

of ions have significant collisions with those ions.
The characteristic collision frequency (the inverse of the time between collisions) can

then be estimated using bei. An electron moves a mean free path λei before it encounters
an ion. Since the electron only notices ions at a distance bei, it samples a volume πb2eiλei
as it move a mean free path. In this volume, the probability of finding an ion is of order
unity, so it must satisfy niπb

2
eiλei ∼ 1. From this estimate we obtain the mean free path

λei ∼
1

niπb2ei
∼ (4πε0)2T 2

e

Z2e4ni
. (2.3)

With the mean free path, we obtain the collision frequency

νei ∼
vte
λei
∼ Z2e4ni

(4πε0)2m
1/2
e T

3/2
e

. (2.4)



2 Felix I. Parra

This estimate ignores the fact that weak collisions between particles separated by the
Debye length λD dominate. To include the effect of these weak collisions, we only need
to recall that we estimated the effect of weak collisions to be larger than the effect of
collisions between particles at a distance bei by a Coulomb logarithm ln Λei � 1. A larger
effect is roughly equivalent to more collisions, that is, it is equivalent to a larger collision
frequency. Then, we need to multiply (2.4) by a factor of ln Λei to obtain

νei ∼
Z2e4ni ln Λei

(4πε0)2m
1/2
e T

3/2
e

. (2.5)

Similar estimates give us the typical collision frequency of electron-electron collisions and
ion-ion collisions,

νee ∼
e4ne ln Λee

(4πε0)2m
1/2
e T

3/2
e

(2.6)

and

νii ∼
Z4e4ni ln Λii

(4πε0)2m
1/2
i T

3/2
i

. (2.7)

The estimate that led to (2.5) is not valid for the effect of ion-electron collisions on
ions. It is true that electrons and ions collide often, but the effect of a single collision on
an ion is small. Due to conservation of momentum, if the change of the electron velocity
in a collision is ∆ve, the change to the ion velocity is

∆vi = −me

mi
∆ve ∼

me

mi
vte ∼

√
me

mi
vti � vti. (2.8)

Therefore, a single electron-ion collision only modifies the ion velocity by a small amount
of the order of (me/mi)

1/2vti � vti. This type of collision that only changes the velocity
by a small amount can be thought of as a random walk in velocity space. To achieve
a total change in the ion velocity of the order of vti, we need a large number Nc of
electron-ion collisions,

Nc ∼
(

vti
|∆vi|

)2

∼ mi

me
� 1. (2.9)

Then, the effective collision frequency of ion-electron collisions is 1/Nc smaller than the
electron-ion collision frequency,

νie ∼
νei
Nc
∼ me

mi
νei ∼

Z2e4nim
1/2
e ln Λei

(4πε0)2miT
3/2
e

. (2.10)

Combining equations (2.5), (2.6), (2.7) and (2.10), and assuming Te ∼ Ti, Z ∼ 1 and
ne ∼ ni, we obtain

νee ∼ νei � νii ∼
√
me

mi
νei � νie ∼

me

mi
νei. (2.11)

The electrons collide with electrons as often as they collide with ions. Ions collide with
ions much more rarely, and ions are affected by their collisions with the light electrons
only after a time much longer than the time between collisions with other ions.
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3. Electron-ion collision operator

We start with the effect on electrons of collisions with ions. We perform an expansion
in
√
me/mi � 1. We first consider the lowest order in

√
me/mi � 1, and later we keep

higher order terms.

3.1. Electron-ion collision to lowest order in
√
me/mi � 1

The electron-ion Fokker-Planck collision operator is

Cei[fe, fi] =
γei
me
∇v ·

{∫
∇g∇gg ·

[
fi(v

′)

me
∇vfe(v)︸ ︷︷ ︸

∼fife/
√
meTe

− fe(v)

mi
∇v′fi(v′)︸ ︷︷ ︸

∼fife/
√
miTi

]
d3v′

}
. (3.1)

To find the order of magnitude estimate, we have used ∇vfe ∼ fe/vte and ∇v′fi ∼ fi/vti.
The term m−1i fe(v)∇v′fi(v′) is then negligible. Moreover, we find

g = v︸︷︷︸
∼vte

− v′︸︷︷︸
∼vti

' v, (3.2)

leading to

∇g∇gg ' ∇v∇vv =
v2I− vv

v3
. (3.3)

With this result, and using
∫
fi(v

′) d3v′ = ni, equation (3.1) becomes to lowest order in√
me/mi � 1

Cei[fe, fi] ' Lei[fe] =
γeini
m2
e

∇v ·
(
v2I− vv

v3
· ∇vfe

)
. (3.4)

This approximate operator is known as Lorentz collision operator or pitch-angle scattering
collision operator.

To understand the pitch-angle scattering operator, we rewrite it using the spherical
coordinates {v, α, β} in velocity space, shown in figure 1. In the orthonormal basis {v̂ =

v/v, α̂ = ∇vα/|∇vα|, β̂ = ∇vβ/|∇vβ|}, the gradient and divergence with respect to the
velocity of general functions f and Γ are

∇vf = ∇vv
∂f

∂v
+∇vα

∂f

∂α
+∇vβ

∂f

∂β
=
∂f

∂v
v̂ +

1

v

∂f

∂α
α̂ +

1

v sinα

∂f

∂β
β̂ (3.5)

and

∇v · Γ =
1

J

[
∂

∂v
(JΓ · ∇vv) +

∂

∂α
(JΓ · ∇vα) +

∂

∂β
(JΓ · ∇vβ)

]
=

1

v2
∂

∂v

(
v2Γ · v̂

)
+

1

v sinα

∂

∂α
(sinαΓ · α̂) +

1

v sinα

∂

∂β

(
Γ · β̂

)
, (3.6)

where J = det[∂v/∂(v, α, β)] = [∇vv · (∇vα × ∇vβ)]−1 = v2 sinα is the determinant
of the Jacobian of the transformation v(v, α, β). Using (3.5) and (3.6), equation (3.4)
becomes

Lei[fe] =
γeini
m2
ev

3

[
1

sinα

∂

∂α

(
sinα

∂fe
∂α

)
+

1

sin2 α

∂2fe
∂β2

]
. (3.7)

The Lorentz operator diffuses the distribution function in α and β, but leaves its structure
in v unchanged. The reason for this lack of diffusion in v is that electrons do not change
the magnitude of its velocity when they collide with heavy ions. According to (2.8), the
velocity of the ion barely changes in a collision with an electron. Then, the ion kinetic
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Figure 1. Spherical coordinates {v, α, β} in velocity space. The orthonormal basis

{v̂ = v/v, α̂ = ∇vα/|∇vα|, β̂ = ∇vβ/|∇vβ|} is also sketched.

energy does not change, and since the total kinetic energy of both the electron and the ion
is conserved, the kinetic energy of the electron is the same before and after the collision.
Thus, only the direction of the electron velocity changes after a collision, leading to the
diffusion in α and β seen in (3.7).

The Lorentz operator tends to make the electron distribution function isotropic, that
is, it tends to give a function fe that is only a function of v and not of α or β. To show this
property, we prove that the Lorentz operator satisfies its own H-theorem. The entropy
production due to the Lorentz operator is

σ̇Lei = −
∫

ln fe Lei[fe]. (3.8)

Using (3.4) and integrating by parts, we obtain

σ̇Lei =
γeini
m2
e

∫
fe∇v ln fe ·

v2I− vv

v3
· ∇v ln fe d3v

=
γeini
m2
e

∫
fe
v

∣∣∣∣∇v ln fe −
v · ∇v ln fe

v2
v

∣∣∣∣2 d3v

=
γeini
m2
e

∫
fe
v3

[(
∂fe
∂α

)2

+
1

sin2 α

(
∂fe
∂β

)2
]

d3v > 0. (3.9)

Thus, the entropy grows until σ̇Lei = 0. The entropy production σ̇Lei vanishes only when
∇v ln fe is proportional to v, that is, when fe(v) is only a function of the velocity mag-
nitude. Interestingly, we did not need to add the entropy production of the ions due to
electron-ion collisions to show that the entropy increases. The isotropization process is
then independent of the ion distribution function because to this order in

√
me/mi � 1,

the ions seem just stationary particles compared to the fast electrons.

3.2. Electron-ion collision to first order in
√
me/mi � 1

We have argued in (2.11) that the electron-ion collisions are much more frequent than
other types of collisions. Thus, it is usual to have an electron distribution function that
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is isotropic to lowest order in
√
me/mi � 1,

fe(v) = fe0(v)︸ ︷︷ ︸
isotropic

+ fe1(v)︸ ︷︷ ︸
∼
√

me
mi

fe0

+ . . . (3.10)

If this is the case, we need to continue the expansion of the electron-ion collision operator
to next order in

√
me/mi � 1. For ∇g∇gg, instead of the lowest order approximation

in (3.3), we keep the next order correction to find

∇g∇gg ≡M(g) = M(v−v′) 'M(v)−v′ · ∇vM(v) = ∇v∇vv−v′ · ∇v∇v∇vv. (3.11)

Substituting this result and the expansion in (3.10) into (3.1), we obtain

Cei[fe, fi] '
γei
me
∇v ·

{∫ [
fi(v

′)

me

(
���

���
���:

0 due to isotropy

∇v∇vv · ∇vfe0(v) +∇v∇vv · ∇vfe1(v)

−v′ · ∇v∇v∇vv · ∇vfe0(v)
)
− fe0(v)

mi
∇v∇vv · ∇v′fi(v′)

]
d3v′

}
. (3.12)

Using

∇vfe0(v) =
1

v

∂fe0
∂v

v, (3.13)

and ∫
fi(v

′) d3v′ = ni,

∫
fi(v

′)v′ d3v′ = niui,

∫
∇v′fi(v′) d3v′ = 0, (3.14)

the electron-ion collision operator in (3.12) can be rewritten as

Cei[fe, fi] '
γeini
m2
e

∇v ·

(
∇v∇vv · ∇vfe1 −

1

v

∂fe0
∂v

ui · ∇v∇v∇vv · v

)
. (3.15)

One further useful manipulation is

∇v∇v∇vv · v = ∇v(���
���:0

∇v∇vv · v)−��
�*I

∇vv · ∇v∇vv = −∇v∇vv. (3.16)

With this result equation (3.15) finally becomes

Cei[fe, fi] '
γeini
m2
e

∇v ·

[
∇v∇vv ·

(
∇vfe1 +

ui
v

∂fe0
∂v

)]

=
γeini
m2
e

∇v ·

[
∇v∇vv · ∇v

(
fe1 +

v · ui
v

∂fe0
∂v

)]
= Lei

[
fe1 +

v · ui
v

∂fe0
∂v

]
.

(3.17)

The electron-electron collisions are usually as frequent as the electron-ion collisions (see
(2.11)), and as a result, it is usually the case that the lowest order electron distribution
function is not only isotropic, but also Maxwellian,

fe0(v) = fMe(v) ≡ ne
(
me

2πTe

)3/2

exp

(
−mev

2

2Te

)
. (3.18)

If this is the case, equation (3.17) becomes

Cei[fe, fi] ' Lei
[
fe1 −

mev · ui
Te

fMe

]
. (3.19)
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We have seen that the Lorentz operator tends to make the distribution function
isotropic. Thus, the collision operator in (3.17) will give

fe1(v) = ge1(v)− v · ui
v

∂fe0
∂v

. (3.20)

where ge1(v) is isotropic. When calculating the total distribution function fe ' fe0(v) +
fe1(v), we can absorb the isotropic correction ge1(v) into the lowest order isotropic dis-
tribution function fe0(v), leading to

fe(v) ' fe0(v)− v · ui
v

∂fe0
∂v
' fe0(v) + (|v − ui| − v)

∂fe0
∂v
' fe0(|v − ui|). (3.21)

Then, the electron-ion collisions tend to give an electron distribution function that is
isotropic around the average velocity of the ions ui.

We proceed to calculate the collisional friction force and the collisional energy exchange
using (3.17).

3.2.1. Electron-ion collisional friction force

The collisional force on the electrons is

Fei =

∫
mevCei[fe, fi] d3v. (3.22)

Substituting equation (3.17) into this expression, and integrating by parts, we find

Fei = −γeini
me

∫
�
��*

I
∇vv · ∇v∇vv ·

(
∇vfe1 +

ui
v

∂fe0
∂v

)
d3v

= −γeini
me

∫
∇v∇vv ·

(
∇vfe1 +

ui
v

∂fe0
∂v

)
d3v. (3.23)

Integrating by parts the first term in the integral, we find

Fei =
γeini
me

∫ (
fe1∇2

v∇vv −
v2I− vv

v4
· ui

∂fe0
∂v

)
d3v. (3.24)

To simplify the integral further, we use that fe0(v) is isotropic, and we take the integral in
the spherical coordinates sketched in figure 1. Since v = v[sinα(cosβ x̂+sinβ ŷ)+cosα ẑ],
the integral over the angles α and β gives

1

4π

∫ π

0

dα

∫ 2π

0

dβ sinαvv =
v2

3
(x̂x̂ + ŷŷ + ẑẑ) =

v2

3
I. (3.25)

Then, ∫
v2I− vv

v4
∂fe0
∂v

d3v =
8π

3
I

∫ ∞
0

∂fe0
∂v

dv = −8πfe0(0)

3
I. (3.26)

Using this expression, and employing

∇2
v∇vv = ∇v[∇v · (∇vv)] = ∇v

[
∇v ·

(v

v

)]
= ∇v

(
∇v · v
v
− v · ∇vv

v2

)
= ∇v

(
3

v
− v · v

v3

)
= ∇v

(
2

v

)
= −2v

v3
, (3.27)

equation (3.24) becomes

Fei =
γeini
me

(
8πfe0(0)

3
ui − 2

∫
v

v3
fe1 d3v

)
. (3.28)
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The friction force depends on the average ion velocity and on a moment of the correction
to the electron distribution function fe1. Note that only the value of fe0 at v = 0 enters
in the expression, and that the integral over fe1 is weighed towards smaller v due to
the factor v−3. Low energy electrons determine the friction force because they are more
likely to collide with ions.

Expression (3.28) becomes more transparent if we assume that the electron distribution
function is a Maxwellian with average velocity ue ∼ ui � vte,

fe(v) = ne

(
me

2πTe

)3/2

exp

(
−me|v − ue|2

2Te

)
= fMe(|v − ue|)

' fMe(v)− v · ue
v

∂fMe

∂v
= fMe(v)︸ ︷︷ ︸

fe0(v)

+
mev · ue

Te
fMe(v)︸ ︷︷ ︸

fe1(v)

, (3.29)

where fMe(v) is the stationary Maxwellian defined in (3.18). In this simple case,

fe0(0) = fMe(0) = ne

(
me

2πTe

)3/2

, (3.30)

and using (3.25), we find that∫
v

v3
fe1 d3v =

∫
me(v · ue)v

v3Te
fMe d3v

=
2neue

3
√

2π

(
me

Te

)5/2 ∫ ∞
0

exp

(
−mev

2

2Te

)
v dv =

2ne

3
√

2π

(
me

Te

)3/2

ue. (3.31)

With these results, equation (3.28) becomes

Fei = nemeνei(ui − ue), (3.32)

where the electron-ion collision frequency is defined to be

νei =
4

3
√

2π

γeini

m
1/2
e T

3/2
e

=
4
√

2π

3

Z2e4ni ln Λei

(4πε0)2m
1/2
e T

3/2
e

. (3.33)

3.2.2. Electron-ion collisional energy exchange

The collisional energy gained or lost by the electrons is

Wei =

∫
1

2
mev

2 Cei[fe, fi] d3v. (3.34)

Substituting equation (3.17) into this expression, and integrating by parts, we find

Wei = −γeini
me

∫
∇v
(
v2

2

)
· ∇v∇vv ·

(
∇vfe1 +

ui
v

∂fe0
∂v

)
d3v

= −γeini
me

∫
���

���:0
v · ∇v∇vv ·

(
∇vfe1 +

ui
v

∂fe0
∂v

)
d3v = 0. (3.35)

To this order in the expansion in
√
me/mi � 1, there is no exchange of energy. The

magnitude of the velocity of the electron barely changes in one collision, and as a result,
the transfer of energy is minimal. To calculate the energy transfer, it is better to use the
ion-electron collision operator than to expand the electron-ion collision operator to next
order in

√
me/mi � 1.
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4. Ion-electron collision operator

We proceed to calculate the effect on ions of collisions with electrons. We perform
an expansion in

√
me/mi � 1. To simplify the problem, we assume that the electron

distribution function is almost isotropic and hence it can be expanded as in (3.10).

The ion-electron Fokker-Planck collision operator is

Cie[fi, fe] =
γei
mi
∇v ·

{∫
∇g∇gg ·

[
fe(v

′)

mi
∇vfi(v)︸ ︷︷ ︸

∼fife/
√
miTi

− fi(v)

me
∇v′fe(v′)︸ ︷︷ ︸

∼fife/
√
meTe

]
d3v′

}
. (4.1)

The term m−1i fe(v
′)∇vfi(v) is then small, and we can use the lowest order approximation

fe(v) ' fe0(v) in it. We also have

g = v︸︷︷︸
∼vti

− v′︸︷︷︸
∼vte

' −v′, (4.2)

leading to

∇g∇gg ≡M(g) = M(v−v′) 'M(−v′) + v ·∇v′M(−v′) = ∇v′∇v′v′−v ·∇v′∇v′∇v′v′.
(4.3)

With these results, equation (4.1) becomes

Cie[fi, fe] '
γei
mi
∇v ·

{∫ [
fe0(v′)

mi
∇v′∇v′v′ · ∇vfi(v)− fi(v)

me

(
��

���
���

��:0

∇v′∇v′v′ · ∇v′fe0(v′)

+∇v′∇v′v′ · ∇v′fe1(v′)− v · ∇v′∇v′∇v′v′ · ∇v′fe0(v′)
)]

d3v′

}
.

(4.4)

Using (3.13) and (3.16), we find

∇v′∇v′∇v′v′ · ∇v′fe0(v′) = − 1

v′
∂fe0(v′)

∂v′
∇v′∇v′v′. (4.5)

Employing (3.23), we obtain

− γei
mime

∫
∇v′∇v′v′ · ∇v′fe1(v′) d3v′ =

Fei
nimi

+
γei
mime

ui ·
∫

1

v′
∂fe0(v′)

∂v′
∇v′∇v′v′ d3v′.

(4.6)
With these results, equation (4.4) becomes

Cie[fi, fe] '
Fei
nimi

· ∇vfi +
γei
mi
∇v ·

{∫ [
fe0(v′)

mi
∇v′∇v′v′ · ∇vfi(v)

−fi(v)

mev′
∂fe0(v′)

∂v′
(v − ui) · ∇v′∇v′v′

]
d3v′

}
. (4.7)

We finish by taking the integrals in v′. Using (3.25) and ∇v′∇v′v′ = [(v′)2I−v′v′]/(v′)3,
we find ∫

fe0(v′)∇v′∇v′v′ d3v′ =
8π

3
I

∫ ∞
0

fe0(v′)v′ dv′. (4.8)
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Using this result and (3.26), equation (4.7) finally becomes

Cie[fi, fe] '
Fei
nimi

·∇vfi +
8πγeife0(0)

3mime
∇v ·

[
∇vfi

mife0(0)

∫ ∞
0

fe0(v′)mev
′ dv′+ (v−ui)fi

]
.

(4.9)
If the electron distribution function is a Maxwellian (see (3.18)), this operator simplifies
to

Cie[fi, fe] '
Fei
nimi

· ∇vfi +
nemeνei
nimi

∇v ·

[
Te
mi
∇vfi + (v − ui)fi

]
, (4.10)

where νei is defined in (3.33).
We proceed to calculate the collisional friction force and the collisional energy ex-

change.

4.1. Ion-electron collisional friction force

The collisional force on the ions is

Fie =

∫
mivCie[fi, fe] d3v. (4.11)

Substituting equation (4.9) into this expression, and integrating by parts, we find

Fie = −Fei
ni

∫
fi d3v − 8πγeife0(0)

3me

∫ [
∇vfi

mife0(0)

∫ ∞
0

fe0(v′)mev
′ dv′ + (v − ui)fi

]
d3v.

(4.12)
Using (3.14), the collisional force becomes

Fie = −Fei, (4.13)

as expected.

4.2. Ion-electron collisional energy exchange

The collisional energy gained or lost by the ions is

Wie =

∫
1

2
miv

2 Cie[fi, fe] d3v. (4.14)

Substituting equation (4.9) into this expression, and integrating by parts, we find

Fie = −Fei
ni
·
∫
fiv d3v − 8πγeife0(0)

3me

∫ [
v · ∇vfi
mife0(0)

∫ ∞
0

fe0(v′)mev
′ dv′

+v · (v − ui)fi

]
d3v. (4.15)

Using that
∫
fi(v − ui) d3v = 0, we can write∫

fiv · (v − ui) d3v =

∫
fi|v − ui|2d3v. (4.16)

By integrating by parts, we obtain∫
v · ∇vfi d3v = −

∫
fi(∇v · v) d3v = −3

∫
fi d3v = −3ni. (4.17)
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With these results, equation (4.15) becomes

Wie = −Fei ·ui+
8πγeinife0(0)

mime

(
1

fe0(0)

∫ ∞
0

fe0(v′)mev
′ dv′− 1

ni

∫
fi
mi|v − ui|2

3
d3v

)
.

(4.18)
For an electron Maxwellian distribution function (see (3.18)) and an ion Maxwellian
distribution function

fi(v) = fMi(v) ≡ ni
(
mi

2πTi

)3/2

exp

(
−mi|v − ui|2

2Ti

)
, (4.19)

the collisional energy exchange becomes

Wie = −Fei · ui︸ ︷︷ ︸
work done by friction force

+
3nemeνei

mi
(Te − Ti). (4.20)

The first term in (4.20) is the work done by the collisional force Fie = −Fei on the
ions. The second term is a collisional energy exchange proportional to the temperature
difference between electrons and ions. This term will tend to make the ion and electron
temperatures equal, but at the slow rate

neme

nimi
νei � νii � νee ∼ νei. (4.21)

Then, the ions and electrons can have many collisions and their distribution functions
become Maxwellians without their temperatures becoming equal. For this reason, it is
possible to find plasmas with very different electron and ion temperatures.

Due to energy conservation, the electron energy gain or loss is

Wei = −Wie = Fei · ui −
3nemeνei

mi
(Te − Ti)

= Fei · ue︸ ︷︷ ︸
work done by friction force

+ Fei · (ui − ue)︸ ︷︷ ︸
Joule heating

+
3nemeνei

mi
(Ti − Te). (4.22)

This collisional energy gain has the work done by the friction force Fei on the electrons,
and the energy exchange due to the temperature difference, but in addition to these two
terms, it contains Joule heating. This Joule heating term is due to the transfer of energy
from the average electron flow to the electron temperature.


