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1. Introduction

In many systems of interest, collisions are sufficiently frequent that the distribution
function is close to a Maxwellian. When this happens, we can assume the distribution
functions to be

fs:st+h57 (11)

where fys are Maxwellians that make the collision operators of interest vanish (that is,
they will have the same average velocity and the same temperature), and hy < fys5 are
corrections to the Maxwellians. The corrections hg are driven by electric and magnetic
fields and gradients in density, temperature and flows.

The linearized collision operator is the lowest order result of applying the collision
operator to a distribution function of the form shown in (1.1). We proceed to study the
properties of the linearized collision operator.

2. Landau form of the linearized Fokker-Planck collision operator

When the masses of species s and s’ are comparable, the distribution functions that
solve the collision operators for collisions between species s and s’ are Maxwellians with
the same average velocity u and temperature T,

fara = s (22 )" ms|v —uf?
Ms = TNg T €xXp T )

mer \3/2 my v — ul?
(s = Mg - . 21
f]\/fs Ns (27TT) exp < 2T ( )

Species with very different masses, e.g., electrons and ions, can have different tempera-
tures. The linearized collision operator for electrons and ions can be deduced from the
approximate collision operators given in the notes about collisions between electrons and
ions. We will not consider electron-ion collisions again in these notes until we solve the
Spitzer-Harm problem.

Using (1.1) and (2.1), and taking into account that the Fokker-Planck collision operator
is bilinear, we obtain

0
Css’ [fs7 fs'] = Css’ [st + hs7 st’ + hs’] :W:’_ Css’[h57 st’]
quadratic = small

+ O [fars, hot] + Cuslhstig]. (22)

Considering the Fokker-Planck collision operator bilinear in f; and fy is an approxima-
tion because all the distribution functions enter in the Coulomb logarithm In Agy via
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densities and temperatures. Since we have neglected order unity corrections to the def-
inition of In Agy > 1, keeping very small corrections to the densities and temperatures
due to hgs; would not be consistent. Thus, as long as InAge > 1, we can ignore the
perturbations to the Coulomb logarithm.

Equation (2.2) gives the linearized collision operator,

Css’ [fs7 fs’] = Cg? [hs§ hs’] = Css/ [h57 st’] + Css’[sta hs/]' (23)

The semi-colon in the linearized collision operator indicates that the arguments are hg
and hg, but the operator is not bilinear — it is composed of two pieces: one linear in hg
and the other linear in hg.

Using the Landau form of the Fokker-Planck collision operator,

Cuslfor fil = 2, {/vv [ D90 - L9, g >] d} (2.4

s’

the first term in equation (2.3) becomes

Coslhs, frrs] = 22V {/v Va9 lfMé( fus (V) g whs(V) — h:n(‘j)vv/st/(v’)] d%’}.

(2.5)
Realizing that V,V49-g = 0 and hence V,Vyg-v =V, V49 - v/, we can write
1 st’(V/) fMS ( )
oV Va0 Vo fue (V) = POV, V- (v ) = P9, (v— )
~ fus(V) fus (V) 1
o PV )
(2.6)

With this result, equation (2.5) becomes

s (v /st "NWVeVeg-V, ( hs(v) > d%']. (2.7)

A/ss’
Css’[hs,st } - m

fams(v)

Using a similar manipulation, we can rewrite the second term in equation (2.3) as

Cowr[fars, hot] = ==L [st / Fare (V))VgVyg- Vo ( s ’(V/))) d%’}. (2.8)

msMs fMa (

Substituting equations (2.7) and (2.8) into equation (2.3), we find
1 hs(v) )
V
(st (v)

ml y (Jm) ] d%’}. (2.9)

With this Landau form of the collision operator, we can easily prove its conservation
properties and an H-theorem.

S

S

COhgihy] = 22w {st / Fars (V)VgV g -

2.1. Conservation properties

Following the same procedure that we used for the full Fokker-Planck collision operator
(integration by parts and exchange of dummy integration variables v and v’), one can
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prove conservation of particles,

/C (g he] d®v = 0 (2.10)
conservation of momentum,
6Fss + 0F 4 =0, (2.11)
where
SF,y = / mgv C[hy; hy] Ao (2.12)

is the perturbed collisional friction force on species s due to collisions with species s';
and conservation of energy,

MW +Wys =0, (213)

where
5ng/_/ mav? C)hg; hy] v (2.14)

is the perturbed collisional energy gain or loss of species s due to collisions with species

s’

2.2. H-theorem and solutions to the linearized collision operator

The entropy production of the linearized collision operator can be deduced from the
entropy production of the full Fokker-Planck collision operator. We start from

é-ss’ - _/1n(f]\/[s+hs) Css’[st+hsans’ +hs’]d31}

- /m(st + 1) (CO s ] + Cogr [hs, ho]) o (2.15)
Using
hy he h2
In(fars +hs) =In fars +1In {1+ =In fars + +0 (= (2.16)
st f Ms st
and
mg \3/2 meu?  msv-u  mgv?
In fazs = In [" (27TT) ] T or T T (2.17)

and neglecting terms that are cubic or higher order in hs and hy/, equation (2.15) becomes

1 1
dss/ ~ T / (ZTrLSU2 — MgV - ll> (Cg? [hs; hs/] + CSS’ [hw hs/]) dsv

/ > CYhg; ho] dPv (2.18)
e
Adding the entropy productions ¢,s and ¢4 4, and using the conservation of momentum

and energy of the linearized and full collision operators, several terms linear and quadratic
in hs cancel,

1 1
T/ <2msv2 — MgV - u) (C’S(? [hs; he'] + Csg [hs, hsf]) o

1 1
+ T/ (2m517)2 — MgV -+ u) (Ci{z [hs’; hs] + Cs’s[hs’a hs]) d3’U =0, (219)
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and we find
dss’ + ds's =~ 60'-85’ + 6d—s’s; (220)

where the perturbed entropy productions

565 = / * C ) hg; hy] o (2.21)
st

are only a piece of the total entropy production in (2.18).

From the H-theorem of the full Fokker-Planck collision operator, it is evident that
0055 + 665 = 0. This property can also be shown using (2.9) and (2.21), integrating by
parts and exchanging the dummy integration variables v and v’ to write

5(.755’ + 66—5/5 = Vss’ /dSU/dgvl st(V)fJWs’ (V/) a- vgvgg caz 07 (222)
where
1 hs(v) > 1 < hg (V') )
a=—V, ——Vy | ————< . 2.23
mg (f]\/fs(v) mg! f]\/[s’ (V/) ( )

According to (2.22), 6655 + ds s = 0 only when a x g. Following the same procedure
that we used for the H-theorem, we can show that a o< g implies

ﬂist< hs(v) > v 4o— - V < hs (V) > (2.24)

st(V) st ( )
where k and c are constants. We rename the constants k£ and ¢
oT ou o6Tu

We will see that §T and du are perturbations to the temperature and the average velocity.
Using (2.25) and integrating (2.24), we obtain

ha(v) = [(sns g Ml (v ow) | 0T (m'v‘“ - ‘;’)] fara(),

T T 2T
mgéu-(v—u) 6T (mg|lv—u®> 3
’ = ’ —_— h— —_— — - ’ . 2.2

The functions in (2.26) are the only solutions to the linearized Fokker-Planck collision
operator because they make the entropy production vanish. They can also be understood
as perturbations to the background Maxwellians since

n +5n><ms)3/zex (mSIVUW)Nf (v) & ha(v)
s O\ 9n(T + o7) P 2T + oT) = JMs s\

3/2 2
My my|v —u — du|
™ 5 s _— — ~ s/ hs/ . 227
The perturbation to the velocity and the temperature, du and §7T', are the same for both
species.

For like particle collision operators, the entropy production is always positive,

064 = / —CO[h,]d3 > 0, (2.28)
st
and it only vanishes for

ha(v) = |on, + Med8e (Vo us) | OT, (’”'V‘“'Q - 3)} fes). (2.29)

Ts Ts 2T 2
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The perturbations to the average velocity and the temperature, dus and §7;, do not have
to be equal to those of any other species.

3. Isotropy of the linearized collision operator

If we use the relative velocities w = v —u and w' = v/ — u in equation (2.9), we find
va ( hs(w) )
mg st (w)
1 hs (w') > 3,
Vo [T ) a3 Y, (31
mg (f]\/[s’ (wl) ( )
where g = w — w’, and the Maxwellians

mg \3/2 msw?
fMS(“’):”S<27rT) eXPp (_ 2T )

mg \3/2 mew?
Farsr (w) = ner (27TT) P (_ 2T ) (32)

only depend on the magnitude of w, w = |w|. The linearized collision operator in (3.1)
does not depend on a particular direction, that is, it is isotropic.

The isotropy of the linearized collision operator can be formally expressed using ro-
tations of the basis of the velocity space. For a given orthonormal basis {€1, és, €3}, a
rotation gives a new orthonormal basis {&f, ef e}l characterized by

C g hy] = Zn Vo { Fars(w) / Fare W)V Vg -

S

el = 09,8, (3.3)

where we are using Einstein’s convention for repeated indices. The matrix ® with com-
ponents O;; = &; - éf is a rotation matrix, that is, it is an orthogonal matrix,

©-0" =1= 0,0, =d;, (3.4)
and its determinant is
det(@) = Eijk®1i®2j@3k = ]., (35)

where €;;; is the Levi-Civita tensor. Using (3.3), we find that the relation between the

coordinates (w}, w$, wh) before the rotation, w = w’@;, and the coordinates (w$, wg, ws)

after the rotation, w = wéF, is

wﬁ-’ = @i]‘w?. (36)

The rotation of the basis has not changed the vector w, or the physics of the problem,
and hence the equations have to be invariant under this rotation. Due to the isotropy
of the collision operator, we only need to consider the rotation in the arguments of the
operator, hg and hg, and not in the operator itself. If the function h in the basis before
the rotation {&;, &y, &3} is hb(wh, w5, w}), the function he(w$,wg,w?) after the rotation
is simply

hg(wT7 wgv wg) = hls)(wlljv wg? wg) = hg(gliwg’ @2iwg’ @31"(1}?), (3'7)

where we have used (3.6). This expression for h%(w{,w§,w$) can be written in vector
form as

he(w®) = h2(® - w?). (3.8)
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FIGURE 1. Spherical coordinates {w, «, 8}.

The isotropy of the linearized collision operator is the fact that

CO[hs(© - w); ho (@ - w)] (w) = CL[h(w); ho (w)] (© - w) (3.9)

ss’

for any matrix © that satisfies (3.4) and (3.5) (see Appendix A for a direct proof).
Property (3.9) is non-trivial. If the linearized collision operator had depended on a vector
different from w, such as a background magnetic field B or an average velocity u, it would
not have been sufficient to rotate the arguments hs and hg; we would have also had to
rotate the background magnetic field B and the average velocity u.

Some useful properties can be deduced from (3.9). These properties are best understood
in the spherical coordinates {w, a, 8} shown in figure 1.

(a) Angular averages. It is common to take averages over angles around an axis
(recall, for example, gyroraverages). This is equivalent to averaging over the angle S.
This average can be made using a particular rotation matrix @. In the basis {1, &2, €3},
the matrix is

cosy —siny 0
O(7) = cosyé1€; +siny(6281 — €1€3) + cosy €26y + €363 = | siny cosy 0
0 0 1

(3.10)

Under this transformation, w = w]sin a(cos 8 €; + sin § &3) + cos a €3] becomes
O(7) - w = wisina(cos(S + ) €1 + sin(8 + ) é2) + cos a &3], (3.11)

i.e. the rotation of the basis is equivalent to adding vy to 5. Then, we can write an average
over 3 of a function f(w) as

1 2m 1 2m 2m

Do=se [ Swap)ds=s [ fwaptnd=o [ fO0) wdr
0 0 0
(3.12)

that is, the average over  is equivalent to averaging over the rotation of the basis de-
scribed by © (). Then, averaging over the linearized collision operator and using equation
(3.9), we obtain

CITSIT SR S ) .
Clhitel)s = 5= [ CLl )i (WI(O() - w)dy

- / O (©() - W) ho(O() - w)](w) . (3.13)

Since the collision operator does not operate on v, we can apply the integral over
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directly over the distribution functions hs(®(7) - w) and hg (©(y) - w), leading to
[ ‘
(CLalhs; harl) = CLIL(hs) g5 st (3.14)

(b) Spherical harmonics. The collision operator is diagonal in the basis of spheri-
cal harmonics. The spherical harmonics ¥ («, 8) are eigenfunctions of the differential
operators

1 0 0 1 02 0
— sina— —, =i 3.15
snada " "9a T sn’a 0 0P (8.15)
Indeed,
1 0 .oym 1 9*ym

— =-l(l+1Yy™ 3.16
sin a Do (sma Oa )+sin2a 062 (t+ 1Y, (3.16)

with 1 =0,1,2,..., and

oy™m m

—i alﬁ =mY, (3.17)
with m = =,-l+1,...,—-1,0,1,...,1 — 1,1. The operators in equation (3.15) are Her-

mitian, and consequently the spherical harmonics are orthogonal to each other, that

is,

T 27 *
/ da / dB sina [Y;ﬂ (o, 5)} Y™ (e, B) =0 (3.18)
0 0
for I #£ 1’ and m # m'. Conventionally, the spherical harmonics are normalized such that
T 27 *
/ da/ dg sina [Yﬁn/(mﬁ)} Y™ (v, B) = 611/ Srmm - (3.19)
0 0
The first few spherical harmonics are
1
Y= —, 3.20
0 \/E ( )
0 3 +1 3 . :
Y =4/ —cosq, Y5 = Fy/ —sinaexp(£if), (3.21)
47 8T

/ 1
Y20 = 712% (3 cos? o — 1), Y2jEl F £ sin « cos aexp(£if),
Y2 = ,/E sin? a exp(£2i5) (3.22)
2 327 ’ '

To prove that the collision operator is diagonal in the basis of spherical harmonics, we
take an infinitesimal rotation,
O wow+Qxw, (3.23)
where Q is assumed to be small, |©}| < 1. Under this rotation, a function f(w) becomes
fO -w)~ f(w)+ (2 xw) V,f(w)=[f+iQ - M, (3.24)
where we have defined the differential operator
M = —iw X V,,. (3.25)

This operator is the same as the angular momentum operator of quantum mechanics,
—ikir x V. Using the same techniques as in quantum mechanics (see, for example, Sakurai
1993; Binney & Skinner 2013), one can derive that the spherical harmonics Y, («, ) are
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the eigenfunctions of the operators és - M and —M - M. For us, it is sufficient to note
that

1 9 0 1 02
M M= sinaz— + —5 oy 2
M-M sin a O Smaaa * sin2 o 032’ (3.26)
&3 - M= *1% (3.27)
Using (3.24) in (3.9), and keeping terms up to first order in 2, we obtain
MC s ho] = CL0Mbg; Mhy), (3.28)

that is, the operators C y, and M commute. This implies that they must have a common
basis of eigenfunctions, which is equivalent to saying that

COH, (w)Y™ (o, B); Hy ()Y (@, )] = F(w)Y™ (c, B). (3.29)

The relation between the functions Hy(w), Hy (w) and F(w) is not trivial. To show equa-
tion (3.29), we apply —M - M and &3 - M to C(i)[ Hy(w)Y,™ (e, B); Hy (w)Y,™ (e, B)].

ss’
Equation (3.28) implies that the result of applying these operators to the linearized colli-
sion operator is equivalent to applying these operators to the arguments of the linearized
collision operator. Hence, using the spherical harmonic properties (3.16) and (3.17), we

obtain

— M- MO H,(w)Y™ (a, B); Hy (w) Y™ (@, B)]

~U(1+ )OO H (w)Y™ (e, B); Hy (w) Y™ (e, B), (3.30)
ég-Mci?[H( Y™ (o, B); Ha (w) Y™ (at, B)]
= mCY[H, ()Y (o, B); Hy (w) Y™ (a, B)], (3.31)

ie. C’S(Q [Hs(w)Y;™ (e, B); Hy'(w)Y;™ (v, B)] has to be proportional to the spherical har-
monic Y}, proving equation (3.29).

4. Self-adjointness of the linearized collision operator

For collisions between species s and s’, we consider the 2D vectors

_( hs(w)
h,o(w) = ( s () ) . (4.1)
For vectors of these form, we can define the scalar product
Sél7héé / ’U) +/ s/ (W d3w. 4.2
st st ) ( ) ( )
The collision operator for the 2D vectors in (4.1) is
Orp,
4 C s’
Cis),[hss | = ( C(g){ . j ) (4.3)

This collision operator is self-adjoint, that is,

(kssr, C\[hyo)) = (CO ko], hgyr). (4.4)

SSs
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To prove this expression, we use the definition of the scalar product in (4.2) to write

(Kye, C /fM COhg; ho]d w+/fM COMhgs by Pw. (4.5)

Using (3.1), integrating by parts, and exchanging the dummy integration variables w
and w’, equation (4.5) becomes
(22)
fars(w)

V¥ [55e () e (o))
(4.6)

<kss’;C()[ __733 /d3 /dgw/st st( )[
Lo ()
mgr vw (f]\/[s/(w/)

Since we can swap ks with hg and kg with hy on the right side of this expression, we
have proved (4.4).

For like particle collisions, we do not need to consider the 2D vector space in (4.1). We
only consider the perturbed distribution functions hs(w). The scalar product is simply

1
kg, hs) = | ———ko(w)hs(w) d3w, 4.7
(ki) = [ s (w) d (47)
The self-adjointness of the like particle collision operator is

The proof of self-adjointness for the like-particle collision operator is slightly different
from collisions between different species. Using equation (3.1) and integrating by parts,

we obtain
(ks OL hal) = =5 / dw / dw’ fara(w) fas(w') |V ( fl(zz))
VyVeg Ve (k(w)) (4.9)

Y (%) fars(w)

This integral can be split into two equal halves, and in the second half, we can exchange
the dummy integration variables to obtain the symmetrized form

(ks,C O [hy]) = 2m2/d3 /d3w Sars(w) fars(w )l (;j;i;?o)

(!LE? o) | v [oe (7e58) v (53] o

The symmetry of this expression proves (4.8).

5. The Spitzer-Harm problem

The Spitzer-Hérm problem is the calculation of the response of a collisional, uniform,
steady state quasineutral plasma to an applied electric field in the absence of a magnetic
field. Since the electrons are the lightest, most mobile species, the problem reduces to
the response of the electrons to this electric field. In particular, we are interested in the
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electron flow neu. = [ fovd3v that gives the plasma current,

J= Z Zien;u; — eneUe. (5.1)

We assume that there is only one ion species with charge Ze and mass m; > m.. We
also assume that the electric field is sufficiently small (we will see how small later) that
the electron distribution function can be split into a Maxwellian and a small correction,
as shown in (1.1). Without loss of generality, we assume that the velocity u. in the
electron Maxwellian is zero, u., = 0,

me \*/? mev?
frae(v) = ne <2W;e) exp (— 2;6 ) ) (5.2)
and hence the electron distribution function is
fe(v) = fare(v) + he(v). (5.3)

The kinetic equation for electrons is

steady state

if
6fte +v ~%'unl_ormmiE : vvfe = Cee[fm fe] + Cei[f€7 fl} (54)

Using the expansion of f, in (5.3), and the expansion in y/m./m; < 1 that we performed
in the notes about electron-ion collisions, the electron-ion collision operator becomes

meV - u;

Cei [fea fl] = £ei l:he - Te

fMe] : (5.5)

With this result, equation (5.4) can be rewritten as

cE

fMe:| - —mieE . vvfMe = T;VfMe (56)

MV - U
T.

COThe] + Les [he -

When we investigated the entropy production of linearized like-collision operators,
we deduced that these operators vanish when applied to functions of the form (mgv -
o0us/Ts) fars- Thus, we find

0
sy [he - me;"”fm} = COh) - C | 2T | = €. (5.7)
Using this result, equation (5.6) becomes
) MV - ‘ _ MeV-u; :eE-v
Cee |:h€ Te fMe:| + Eez |:he Te fMe Te fMe- (58)
The solution to this equation has two different terms,
mev - 4,
h/e - TfMe + fe,SHa (59)
where the Spitzer-Hérm piece f. su satisfies the equation
eE-v
chﬁ) [fe,SH] + Eei[fe,SH] = T fMe~ (510)

If we solve this equation to obtain f. su, we can find the electron flow n.u, = f fevd3v ~
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new; + [ fesuvd®v. Then, the plasma current becomes

J=en.(u; —u —e/feSHvd3 (5.11)

We proceed to obtain the current in (5.11) using a variational principle. We first present
the variational principle, and we then propose a form of the solution. Finally, we obtain
an approximate solution for the current J.

5.1. Variational principle

Instead of calculating f. gu(v) with great accuracy, we will use a variational principle
to achieve a much less ambitious objective: to calculate only the current in (5.11) with
great accuracy.

Using the scalar product in (4.7), we can show that equation (5.10) has a variational
principle. The solution to equation (5.10) is the minimum of the quadratic functional

k] = ~(hes CO ) = (he Ll 2 (hes BV fure) . (512

We proceed to show that equation (5.10) can be derived by setting the lowest order
variation of X[ke] to zero. Taking the value of ¥ for ke win + 0ke with dke < ke min, and
neglecting terms quadratic in dk., we find

E[ke,mim + 5ke] - E[ke,min] = _<5k€7 Ce(ﬁ) [ke,min]> - <k€7miﬂ’ Oé? [5k€]>

E-
*<§kea ﬁei[ke,minb - <ke,mina Eez[§ke]> + 2 <6ke7 eT,VfMe> . (513)
Using the self-adjointness of Cee , we find (k emm,C [ ) = <5ke,C£? [kemin]). The
Lorentz operator is also self-adjoint, giving (ke min, Lei[0ke]) = (0ke, Leilke min])- Thus,
equation (5.13) becomes

cE -

VfMe> . (5.14)

E[ke,min + 6]‘7@} - 2[]'Cc,min} ~ -2 <5k€7 Oéﬁ) [ke,min] + Eei [ke,min] - T

We request that ¥ be stationary for any perturbation dk.. Then, k. min must satisfy
equation (5.10) and we have
ke,min = fe,SH- (515)

Since the variation linear in dk. vanishes, we need to keep quadratic terms, leading to

S[fesu + Oke] = B[fesn] = —(0ke, CF [6k ) = (Oke, Leildke])
Oke
=— [ —CO k) d%0 / Lei[0ke] d®v > (5.16)
f]Me fJVIe
Note that the quadratic variation is the entropy production due to the perturbation k.
and it is hence positive. Thus, f. s is indeed the minimum of the functional defined in

(5.12).
If we substitute equation (5.10) into (5.12), we find that the minimum of ¥ is
eE-v cE 3 E-J
Z:min - <fe,SH7 T‘efMe> - Te : /fe,SHVd U= = Te . (517)

Thus, we can obtain the component of the current parallel to E using the minimum of X..
Due to the symmetry of the problem, we expect J to be parallel to the applied electric
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field. Then, the current can be written using a conductivity o,

J= —e/fe,SHv d3v = oE. (5.18)
The conductivity o can be obtained from the minimum of ¥ in (5.17),
T Zmin
a:—eEQ (5.19)

Calculating ¢ with a variational principle is advantageous. There is a relatively large
region around the solution f, sy for which the value of ¥ is close to the value ¥,
(recall that the minimum is a stationary point). Thus, we can use a bad approximation
to fe,su to get an accurate value of X,;, and hence of o.

5.2. Form of the solution f.su
To propose a form for the solution to (5.10), we use the spherical coordinates {v, a, 8}
in figure 1. We align the basis vector é; with E. Then, equation (5.10) becomes

E
Céﬁ) [fe,SH] + ['ei[fe,SH] = MfM& (520)

T
Since cos a o Y (v, B), the solution must be of the form

E E-
e vjzosaFe,SH(v)fMe(v) _ec Tev

Integrating this distribution function over velocity space, we find that the current J =
—e [ fe,suvd®v is parallel to the electric field, as we predicted in (5.18).
For the function F, gy (v), instead of the magnitude v, we use the normalized coordinate

fe,SH (V) -

Fesu(v) fare(v). (5.21)

Mmev?

2T,

€= (5.22)

In this normalized coordinate, we describe the function Fe gy (v) as a series of generalized

Laguerre polynomials L,(;Y)(gc) (also known as Sonine polynomials). These are orthogonal
polynomials that satisfy the orthogonality condition

o r 1
/ x exp(—x)LI(;Y) (x)L((]'Y)(x) dz = w@,q, (5.23)
0 p!
where I'(v fo ¥~ !exp(—z)dz is Euler’s gamma function. These polynomials have
the generatmg function
Sy (&) = 1 exp _T ) if”L(V)(m) (5.24)
RANS - (1 _ §)7+1 1 _g = D . .

The fact that they have this generating function will be useful. The first three polynomials
are

Ly (@) =1,
L (@) =y +1-a, (5.25)
1

LY (@) = Z[(v + 1)(y + 2) — 2(y + 2)z + 27].

[\

For the particular case that we are considering, we will use the polynomials with
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v =13/2,
Fesn(v Z ap L(3/2) (5.26)

The choice of v = 3/2 is consistent with the fact that we are only considering spherical
harmonics with [ = 1. For example, the last term in (5.12) simplifies for v = 3/2. Using
(5.21), (5.23) and (5.26), we obtain.

2 (s S e ) = = 2 [ et a0 e o) %
_ m Ooo 73/2 L63/2)(x) F, su(v)exp(—z)dz = mfﬁ/?)
B %;;LT*E? . (5.27)

5.3. Final form of the variational principle
Using (5.21) and the decomposition in (5.26), the functional ¥ in (5.12) becomes

e*n ce ci 2e’n. B2
E[fe,su] 2 Z Z Vee K56 + Vei K5t ) apag + T}gao. (5.28)
p=0 gq=0
where
K== <x1/2L;3/2>(x) frze(v) cos o, CLO [2' 2L/ (2) fage (v )cosa}> (5.29)
and

ei 2 1/27(3/2 1/27(3/2
Ky, = —@<x / Lé/ ) () fare(v) cos a, Le; [z / L((I/ () fare(v) Cosa]>. (5.30)

We use the conventional Braginskii definitions of the collision frequencies,

S 42 e*n.lnA.. v 4\/27r Z2%e*n; In A,;
ee 3 (47'('6 ) 1/2 3/2 3 (47760)2771;/21—‘63/2 .

(5.31)

We still need to calculate the numerical coefficients K¢ and K f,g. To do this calculation,
it is usually easier to use the generating function in (5.24). We calculate the functions

Gee(f» 77) = _niy<m1/253/2(£v ZE)fMe(v) Cos @, Céﬁ) [x1/253/2(777 x)fMe(v) COs a] >

(5.32)
and

2 : <561/253/2(£, ) fare(v) cos a, Le; [21/2S39(n, ) fare(v) cos >

erer
(5.33)
that are relatively easy to evaluate. We then Taylor expand these functions to obtain the
coefficients of interest,

Ge(&,n) = ZZK“@" , G m) = ZZK%ID (5.34)

p=0¢=0 p=0¢=0

GEi (gv 77) =
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In Appendix B, we calculate G°¢(£, 1) and G¢(&,n),

&n
(1—&n)?2(2—-¢&—n)°/?

G(&,m) = (8 —4€ —dn — & + 280+ 26n* — 3¢%0%)  (5.35)

and
1

(1= &)1 —&)3/2(1 —n)3/2
The first few coefficients of the Taylor expansion of these generating functions are

G (&) =

(5.36)

Kgs K K K 0 0 0 0
K Kif Ky Kfs o o... 0 1 3/4 15/32
K35 K37 K33 K3 ... [ =.2]| 0 3/4 45/16 309/128
Ks§ KS¢ Ks5 Kg§ 0 15/32 309/128 5657/1024
(5.37)
and
K& K& Kgé Kgé 1 3/2 15/8 35/16
K¢ K¢ K§ K@ 3/2 13/4 69/16 165/32
K K§ Ksi Ksi ... | _| 15/8 69/16  433/64 1077/128
K$ K$ K K$ ... 35/16 165/32 1077/128 2957/256
(5.38)
5.4. Spitzer-Hdrm conductivity
For the truncated solution
Fosu(v) = ap + a L¥? (@) + ao LS/? (), (5.39)
the functional ¥ becomes
2¢%n E?
¥(ao,a1,az) = mao
2, 2 Vei Bt 15§ei ao
Cr ()| B egvE, SegsBe ||
Mele 158V6i 6911861- +3\/£§Lyee 43§Zei +45\{2VEE as
(5.40)
Minimizing ¥ with respect to ag, a; and as, we find the equations
0 82/8@0
0 = 82/8@1
O 82/8(12
3Ve; 150,
1 Vei == “ a
9 2 E2 2 0
_ Z€7Me 0|+ S ey \/oy,, 691?714_3\/4511/“ a
meTe 0 ove;  69vei | 3V2ree 433vei | 452w as
8 16 4 64 16
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For ions with charge Ze = e, quasineutrality implies n; = n., and the Coulomb logarithm
satisfies In Ao, ~ In A.;. Hence, ve. =~ ve;, and we can invert the matrix to find

ap 71.95/1/61'
al = 0~55/Vei . (542)
as O.OG/VEZ'
Then, the minimum of ¥ is
1.95¢%n.E?
Ymin=——"7+—+, 5.43
meTeVei ( )
and using (5.19), we find the Spitzer-Héarm conductivity
1.95¢%n,
o = 190EMe (5.44)
Melei
The plasma current is
1.95¢%n,
J=en.(u; —u.) =0E = ZC e (5.45)
Melej
This equation can be rewritten as
en.E =F. = 0.51n.meve(0; — ue). (5.46)

The electric field force is balancing the friction force between ions and electrons. Note
that the friction force is half the value of the force that we calculated by assuming that
the electron and the ion distribution functions are pure Maxwellians, Fo; = nemeve;(u; —
u.). The reason for this difference is that the electric field tends to accelerate more the
more energetic particles because the energetic particles collide much less often, and these
energetic particles can carry current more efficiently than the slow particles. The Spitzer-
Hérm solution has a distribution function with a tail at high energies.
Finally, the Spitzer-Harm solution is of the order of

E E
U frte ~ ———— fase (5.47)

TeVei VeiMeUte

fe,SH ~

We have assumed that f. sy < fare. For this assumption to be true, the electric field
must satisfy
b < MeVte. (5.48)
Vei
Electrons gain momentum between collisions and after each collision with an ion, they lose
their momentum to the ion. Thus, we need to impose that the momentum gained by an
electron due to the electric field in the time interval between collisions must be smaller
than the typical electron momentum to make sure that the Maxwellian distribution
function is not distorted.
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Appendix A. Proof of equation (3.9)
Using equation (3.1), the left side of (3.9) becomes

0 [1e(@ - w)sh (@ - )| (w)

= ’VSS {st /st v vgg
m

S

e ( SN V>V)>

We change variables to wg = © - w and wj = © - w'. Then, g = wr — wh =
O (w—w') = ©-g. Note as well that according to (3.4), w = wg, w’ = wj and g = gg.
Using these results and Einstein’s repeated index convention,

= : [st(wR)

hs(©®-w)\] 0 0%g
V- [st(w)Vngg'Vw ()] = [st( ) —— st
dgr; O (39R,m Ogr >5pr < )]
ow; OWwR 0gi Ogry \ 09; Ogrm ) Ow; Owgy st WR)
0

foars(w) 0g;0g; 8w]
awR k 0
e Oy (st )|
= O — s (SIS Oy
g Owp [fM (wr)® T 09R109R,m T Owrp \ fus(wr)
(A

2)

Equation (3.4) implies that ©;;,0 ;i = 0;;, and hence equation (A 2) becomes

Vo [st(w)Vngg Vu <m>}
0

P e S|
OWR, MsATR 09RrkOJR,m OWR,m \ frrs(WR)

Vo s 00) Vo Vo Vo (0] (A3)

A similar manipulation gives

V- [st(w)nggg Vur (W)]

= Vupg [fMS(wR)VgRVgRgR “Vaur, (hs'(W%))] : (Ad)
fus (wR)

Finally, equation (3.5) implies that

d3w’ = |det(®)] 7! 3wl = d3wl. (A5)
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Substituting (A 3), (A4) and (A 5) into (A 1), we obtain
i) [hs(© - W)ih(© - w)| (w)

= ZZS/ V'LUR : {fMS(wR)/st/(wk)ngnggR :

e ()

s fus(wr)
- oV () ] dgwk} = Oty b ()] (i)
= C[hs(w)sho(w)](© - w), (A6)

proving (3.9).

Appendix B. Calculation of the generating functions G¢(¢,n) and

G(&,m)
In this appendix, we calculate the generating functions G¢¢(£,n) and G¢(€, ), defined

in (5.32) and (5.33).

B.1. Generating functions G*(&,n)
To calculate G¢¢(,n), defined in (5.32), we use equation (4.10). Thus, we need to evaluate
Vo[21/255)5(&, x) cos a). We write this gradient as

Me

Vv[x1/25’3/2(§,x) cosal = 5T VolS3/2(&,2)v - &3] =/ %Sg/g(f,x)S(f,v), (B1)

where

& me(v-é3)v
1-¢ T,
Using this expression for V, [x1/2S3/2(§, x) cos af, equation (4.10) and the definition of
Vee in (5.31), equation (5.32) becomes

Gelen) =20 2 [ [ a8 ) farelo)

X [53/2(5737)53/2(777I)S(57V) -VyVyg-8(n,v)

= S3/2(& ) S32(n,2")S(E,v) - Vg Vg - S(n, V')

- S3/2(§,x’)53/2(77,x)S(E,v’) “VgVgg- S(n,v)

+ 832(&,2)S3/2(n, 2")S(§, V') - Vo Vg - S(n, V)], (B3)
where 2’ = m.v'"?/2T.. Exchanging the dummy integration variables v and v’ in the last

two terms inside the square brackets, we reduce the calculation of G¢¢(£,n) to evaluating
two integrals, that is,

G(&m) =

S(§,v) = é;3 — (B2)

1
=7 — "

(I + 15, (B4)

where

3 me \/? 1—¢&n  mev? me(v')?
Jee = e d3 d3 ! o e _ e
LT 4 (21;) / ”/ voep ( (1-6(0—n) 2T. 2T,

xS8(&,v) - VgVeg-S(n,v) (BS)
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5/2 2 AV
3 m 1 mev 1 me(v)
Jee — — € d3 d3 ! _ e _ e
2 47572 (2Te> / “/ voexp < 1-¢ 2T, 1-75 2T )

x8(¢,v) - V4Vag-S(n,v').  (B6)

Integral (B5) can be written as

5/2 2 2
Jee — 3 3,7 mivt mE(U )
1 w5/2 ( ) / v / v eXp( 2T, o,

XS(f,V) 'nggg‘s(%v)a (B7)

with
1—¢&n
(1-81-n)

To calculate the integral (B7), we change the integration variables to U and g, defined
by

my =

Me. (B 8)

Me
=U+ —-+—~— B9
v A (B9)
and
/ my
=U—- ——F—g. B10
v e (B10)

Using g - V,V4g9 = 0, the change to the variables U and g leaves

5/2 2 2
ee __ 3 3 ml +me)U . mime g
h= 7T5/2 ( ) /d /d geXp( 2T, my +me2Te>
I gg
Sl(gaUvg) : <g - g3> : Sl(anag)a (B 11)
with
N me(U - é3)U mg -e3)U

Si1(§,U,g) =e3 — : ( ) 3 (&) . (B12)

1—¢ T. 1—-¢mi+me T,

This integral can be calculated analytically because it is composed of moments of Maxwellians
in U and g. Calculating first the moments in g and using

mime g> I gg)\ .5  87(mi+me)Te
exp| — —— -2 |dg=—F—""1,
mi1 + me 2T, g g 3mime
2
mime g I gg
2 dBg =
/exp< m1+me2T>< g)(g é;3)d’g =0,

2 22
_mime g I gg A \2 13 32m(my + me)*T¢ 1. .
- . d3a = |
/exp ( my + me 2T, > ( g3 ) (g-&s)"d% 15m?m?2 %% )

(B13)
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we are left with the following moments in U:

(my +me)U?\ 4 3/9 2T, 3/2
— 2 el | QPu = ,
/exp ( 2T, i mi + Mme
(m1+m)U\ ., o 3¢%2 [ 2T, \*?
—_— — d pr—
/exp ( 2T, v v 2 my + Mme ,

2 3/2 5/2
/exp ( i + me) U7 )(U o) dU = T <2Te ) :

2T, 2 mi1 + me

19

2 3/2 7/2
/eXp (_ WW) UX(U - é3)2d%U = o ( 2T ) . (B14)

2T, 4 mi + Mme

With these integrals, the final result for I{¢ is

Iee _m A+ me ( Me )3/2 1 _ E+n—2n Me
1 = mq my + Me (1_5)(1—Ti)m1+me
587] Me ’ 28n m3
" (1-8A—n) (ml +me> " (1-8(1—n)m(mq +me)21‘ (B15)
Using (B 8), we find
_£)5/ _ /
Ilee _ (1 5)5 2(1 77)5 2 (4_25_2774_3&7_352772). (B 16)

(1—&n)2(2—-¢&—n)°/?

Integral (B6) can be obtained using a similar method. We write it as

5/2 2 "2
ee __ 3 Me 3 3,/ msv m4(v)
L= (2T6> /d ”/d Y eXp<_ oT. oI,

XS(f,V) 'nggg' S(W»V/)v (B 17)
with
L (B18)
ms 1— gme
and
1
To calculate the integral (B17), we change the integration variables to U and g, defined
by
Ty
=U+ — B20
v P (B20)
and
v=u_-_"8 (B21)
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Using g - V,V4g9 = 0, the change of variables to U and g leaves

e 3 Me 5/2 3 3 (m3 +myq)U? msma g2
L' =-1mn <2T> /d U/dgeXp - o, " ma + my 2T,

I
XSB(fa Ua g) : (g - i?) : S4(777 Ua g) (B 22)
with
N 5 me(U . é3)U f MmeMmy (g . é3)U
— Aa. _ B23
S3(§7U7g) €3 1 _§ Te 1— 5 ms + my Te ( )
and
R me(U -é3)U MeM -e3)U
Si(n,U,g) = &; — — U &) d s (8-&)U (B24)

I1—-n T, 1—nm3+my T.
This integral can be done analytically because it is composed of integrals very similar to
those given in equations (B13) and (B 14). The final result is

me(m3 + m4) ( Me )3/2 _ f + n— 2577 Me
mMamy ms + my (1= —n)ms+my

L 3 ( Me )2] (B25)

ee __
I = —

(1= —n) \mz+my
Using (B 18) and (B 19), we find
ee 2(1 _€ 5/2(1 — )5/2
e = 2 (2—)«5—77)5/2 (4 — 26 — 25 + 3¢n). (B26)

Summing I{¢ and I$° and using equation (B4), we finally obtain equation (5.35).

B.2. Generating functions G (&,m)

To calculate the generating function G (€, 7), defined in (5.33), we use the expression

_ fe ) S_M _<2Te>3/2 (fe>. . (he) 3
fMeﬁeZ[he]d v = ] Ves me /f]VIevv f]\/je VUVU'U vv fMe (d v,

B27)
where v,; is defined in (5.31). With this expression and equation (B 1), we obtain
; 3me 1 1—¢&n mev?\ v? —(v-e3)? 5
Ge'L — — d .
€= g gma e | = g g o) e

(B28)
Integrating this equation, we finally find equation (5.36)



