## Mathematical Methods (Second Year) MT 2009

## Problem Set 4: ODEs

## 1. Legendre polynomials

Position vectors $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ are such that $r_{2} \gg r_{1}$, where $r_{1}=\left|\mathbf{r}_{1}\right|$ and $r_{2}=\left|\mathbf{r}_{2}\right|$. Show that

$$
\frac{1}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|}=\frac{1}{r_{2}}\left\{1+\left(\frac{r_{1}}{r_{2}}\right) P_{1}\left(\cos \theta_{12}\right)+\left(\frac{r_{1}}{r_{2}}\right)^{2} P_{2}\left(\cos \theta_{12}\right)+\ldots\right\}
$$

where $\theta_{12}$ is the angle between $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$, and $P_{1}(\cos \theta)=\cos \theta, P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)$.
An electric quadrupole is formed by charges $Q$ at coordinates $(0, \pm a, 0)$ and charges $-Q$ at coordinates $( \pm a, 0,0)$. Show that the potential $V$ in the $(x, y)$ plane at a distance $r$ large compared with $a$ is approximately

$$
V=\frac{-3 Q a^{2} \cos 2 \theta}{4 \pi \varepsilon_{0} r^{3}}
$$

where $\theta$ is the angle between $\mathbf{r}$ and the $x$-axis.
Derive an expression for the couple exerted on the quadrupole by a positive point charge $Q$ at a position $\mathbf{r}$ in the $(x, y)$ plane, where $r \gg a$.

Deduce the angles $\theta$ for which this couple is zero. If the charges of the quadrupole are rigidly connected and free to rotate about the $z$-axis, determine whether the equilibrium is stable or unstable in each case.
2. Orthogonal, normalized, eigenfunctions

The real functions $u_{n}(x)(n=1$ to $\infty)$ are an orthogonal, normalized, set on the interval $(a, b)$. The function $f(x)$ is expressed as a linear combination of the $u_{n}(x)$ 's via

$$
f(x)=\sum_{n=1}^{\infty} a_{n} u_{n}(x)
$$

Show
(i)

$$
a_{n}=\int_{a}^{b} u_{n}(x) f(x) d x
$$

(ii)

$$
\int_{a}^{b}[f(x)]^{2} d x=\sum_{n=1}^{\infty} a_{n}^{2}
$$

[Hint for this part: the left hand side is, when written out in long-hand notation,

$$
\begin{gathered}
\int_{b}^{a}\left(a_{1} u_{1}(x)+a_{2} u_{2}(x)+\ldots \ldots .\right)\left(a_{1} u_{1}(x)+a_{2} u_{2}(x)+\ldots \ldots\right) d x=\int_{a}^{b}\left\{a_{1}^{2}\left[u_{1}(x)\right]^{2}+a_{2}^{2}\left[u_{2}(x)\right]^{2}+\ldots .\right. \\
\left.+2 a_{1} a_{2} u_{1}(x) u_{2}(x)+\ldots \ldots . .\right\} d x
\end{gathered}
$$

Why do the $\int\left[u_{n}(x)\right]^{2} d x$ terms each give 1 ? Why do the $\int u_{n}(x) \cdot u_{m}(x) d x$ terms with $n \neq m$ each give 0?]

## 3. Hermiticity

Consider the set of functions $\{f(x)\}$ of the real variable $x$ defined on the interval $-\infty<x<\infty$ that go to zero faster than $1 / x$ for $x \rightarrow \pm \infty$, i.e.

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} x f(x)=0 \tag{1}
\end{equation*}
$$

For unit weight function, determine which of the following linear operators is Hermitian when acting upton $\{f(x)\}$ :
(a) $\frac{d}{d x}+x$
(b) $-i \frac{d}{d x}+x^{2}$
(c) $i x \frac{d}{d x}$
(d) $i \frac{d^{3}}{d x^{3}}$
4. More Hermiticity

Recall that an operator $\hat{H}$ is hermitian if

$$
\begin{equation*}
\int d x v^{*}(x) \hat{H} u(x)=\left[\int d x u^{*}(x) \hat{H} v(x)\right]^{*}=\int d x u(x)(\hat{H} v(x))^{*} . \tag{2}
\end{equation*}
$$

The action of the hermitian conjugate of an operator $A$ is defined as

$$
\begin{equation*}
\int d x u^{*}(x) A^{\dagger} v(x)=\int d x(A u(x))^{*} v(x) . \tag{3}
\end{equation*}
$$

(a) Let $A$ be a non-hermitian operator. Show that $A+A^{\dagger}$ and $i\left(A-A^{\dagger}\right)$ are hermitian operators.
(b) Using the preceding result, show that every non-hermitian operator may be written as a linear combination of two hermitian operators.
5. Eigenvalues and Eigenfunctions

By substituting $x=e^{t}$, find the normalized eigenfunctions $y_{n}(x)$ and the eigenvalues $\lambda_{n}$ of the operator $\hat{\mathcal{L}}$ defined by

$$
\begin{equation*}
\hat{\mathcal{L}} y=x^{2} y^{\prime \prime}+2 x y^{\prime}+\frac{1}{4} y, \quad 1 \leq x \leq e, \tag{4}
\end{equation*}
$$

with boundary conditions $y(1)=y(e)=0$.
6. Orthogonality

In problem set 2 you showed that $N$ orthogonal vectors are automatically linearly independent. Let the functions $\Psi_{n}(x)$ be orthogonal over the interval $[a, b]$ with recpect to the weight function $w(x)$. Show that the functions $\Psi_{n}(x)$ are linearly independent.
7. Sturm-Liouville Problem

The equation

$$
\begin{equation*}
\hat{\mathcal{L}} y(x)=\lambda y(x) \tag{5}
\end{equation*}
$$

is a Sturm-Liouville equation for the operator

$$
\begin{equation*}
\hat{\mathcal{L}}=\frac{d}{d x}\left[p(x) \frac{d}{d x}\right]-q(x), \tag{6}
\end{equation*}
$$

where $p(x)$ and $q(x)$ are real functions. Any two real solutions $y_{n}(x), y_{m}(x)$ with distinct eigenvalues $\lambda_{n}, \lambda_{m}$ satisfy the boundary condition

$$
\begin{equation*}
\left.\left[y_{m} p \frac{d y_{n}}{d x}\right]\right|_{x=a}=\left.\left[y_{m} p \frac{d y_{n}}{d x}\right]\right|_{x=b} \tag{7}
\end{equation*}
$$

Show that for $n \neq m y_{n}(x)$ and $y_{m}(x)$ are orthogonal.

## 8. Quantum Harmonic Oscillator

Consider the time-independent Schrödinger equation for the quantum harmonic oscillator

$$
\begin{align*}
H \Psi(x) & =E \Psi(x), \\
H & =-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} . \tag{8}
\end{align*}
$$

(a) Using the substitutions $y=x \sqrt{\frac{m \omega}{\hbar}}$ and $\epsilon=\frac{E}{\hbar \omega}$ reduce the Schrödinger equation to

$$
\begin{equation*}
\frac{d^{2}}{d y^{2}} \Psi(y)+\left(2 \epsilon-y^{2}\right) \Psi(y)=0 . \tag{9}
\end{equation*}
$$

(b) Consider the limit $y \rightarrow \infty$ and show that in this limit

$$
\begin{equation*}
\Psi(y) \rightarrow A y^{m} e^{-y^{2} / 2} \tag{10}
\end{equation*}
$$

Hint: you can neglect $\epsilon$ compared to $y^{2}$ in this limit.
(c) Separate off the exponential factor and define

$$
\begin{equation*}
\Psi(y)=u(y) e^{-y^{2} / 2} . \tag{11}
\end{equation*}
$$

Show that $u(y)$ fulfils the ODE

$$
\begin{equation*}
u^{\prime \prime}-2 y u^{\prime}+(2 \epsilon-1) u=0 . \tag{12}
\end{equation*}
$$

(d) Show that this differential equation can be converted to Sturm-Liouville form by multiplying both sides of the equation by $e^{-y^{2}}$. What is the weight function $w(y)$ of the Sturm-Liouville problem?
(e) Solve (12) by the ansatz

$$
\begin{equation*}
u(y)=\sum_{n=0}^{\infty} a_{n} y^{n} \tag{13}
\end{equation*}
$$

by deriving a recurrence relation for the coefficients $a_{n}$. You should get

$$
\begin{equation*}
a_{n+2}=a_{n} \frac{(2 n+1-2 \epsilon)}{(n+2)(n+1)} . \tag{14}
\end{equation*}
$$

(f) We know from (b) that for $y \rightarrow \infty$ the function $u(y)$ must go to $A y^{m}$. This means that the recurrence relation must terminate, i.e. we must have $a_{n}=0$. This quantizes the allowed values of $\epsilon=E /(\hbar \omega)$

$$
\begin{equation*}
\epsilon_{n}=n+\frac{1}{2}, \quad n=0,1,2, \ldots \tag{15}
\end{equation*}
$$

Find the polynomial solutions $H_{n}(x)$ corresponding to these values of $\epsilon$ for $n=0,1,2,3$. These polynomials are called Hermite polynomials.
(g) Show that your results for $n=0,1,2,3$ agree with Rodrigues' formula

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} . \tag{16}
\end{equation*}
$$

(h) Show that the $H_{n}$ can be normalized such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d y e^{-y^{2}} H_{n}(y) H_{m}(y)=\delta_{n m} \sqrt{\pi} 2^{n} n! \tag{17}
\end{equation*}
$$

