Mathematical Methods (Second Year) MT 2009 Problem Set 4: ODEs

1. Legendre polynomials

Position vectors \mathbf{r}_1 and \mathbf{r}_2 are such that $r_2 \gg r_1$, where $r_1 = |\mathbf{r}_1|$ and $r_2 = |\mathbf{r}_2|$. Show that

$$\frac{1}{|\mathbf{r}_2 - \mathbf{r}_1|} = \frac{1}{r_2} \left\{ 1 + \left(\frac{r_1}{r_2}\right) P_1(\cos\theta_{12}) + \left(\frac{r_1}{r_2}\right)^2 P_2(\cos\theta_{12}) + \dots \right\}$$

where θ_{12} is the angle between \mathbf{r}_1 and \mathbf{r}_2 , and $P_1(\cos\theta) = \cos\theta$, $P_2(\cos\theta) = \frac{1}{2}(3\cos^2\theta - 1)$.

An electric quadrupole is formed by charges Q at coordinates $(0, \pm a, 0)$ and charges -Q at coordinates $(\pm a, 0, 0)$. Show that the potential V in the (x, y) plane at a distance r large compared with a is approximately

$$V = \frac{-3Qa^2\cos 2\theta}{4\pi\varepsilon_0 r^3},$$

where θ is the angle between **r** and the *x*-axis.

Derive an expression for the couple exerted on the quadrupole by a positive point charge Q at a position **r** in the (x, y) plane, where r >> a.

Deduce the angles θ for which this couple is zero. If the charges of the quadrupole are rigidly connected and free to rotate about the z-axis, determine whether the equilibrium is stable or unstable in each case.

2. Orthogonal, normalized, eigenfunctions

The real functions $u_n(x)$ $(n = 1 \text{ to } \infty)$ are an orthogonal, normalized, set on the interval (a, b). The function f(x) is expressed as a linear combination of the $u_n(x)$'s via

$$f(x) = \sum_{n=1}^{\infty} a_n u_n(x).$$

Show

(i)

$$a_n = \int_a^b u_n(x) f(x) dx;$$

(ii)

$$\int_{a}^{b} [f(x)]^{2} dx = \sum_{n=1}^{\infty} a_{n}^{2}.$$

[Hint for this part: the left hand side is, when written out in long-hand notation,

$$\int_{b}^{a} (a_{1}u_{1}(x) + a_{2}u_{2}(x) + \dots)(a_{1}u_{1}(x) + a_{2}u_{2}(x) + \dots)dx = \int_{a}^{b} \{a_{1}^{2}[u_{1}(x)]^{2} + a_{2}^{2}[u_{2}(x)]^{2} + \dots$$

$$+2a_1a_2u_1(x)u_2(x) + \dots dx.$$

Why do the $\int [u_n(x)]^2 dx$ terms each give 1? Why do the $\int u_n(x) u_m(x) dx$ terms with $n \neq m$ each give 0?]

3. Hermiticity

Consider the set of functions $\{f(x)\}$ of the real variable x defined on the interval $-\infty < x < \infty$ that go to zero faster than 1/x for $x \to \pm \infty$, i.e.

$$\lim_{x \to \pm \infty} x f(x) = 0. \tag{1}$$

For unit weight function, determine which of the following linear operators is Hermitian when acting upton $\{f(x)\}$: (a) $\frac{d}{dx} + x$ (b) $-i\frac{d}{dx} + x^2$ (c) $ix\frac{d}{dx}$ (d) $i\frac{d^3}{dx^3}$

4. More Hermiticity

Recall that an operator \hat{H} is hermitian if

$$\int dx \ v^*(x) \ \hat{H} \ u(x) = \left[\int dx \ u^*(x) \ \hat{H} \ v(x) \right]^* = \int dx \ u(x) \ (\hat{H} \ v(x))^* \ . \tag{2}$$

The action of the hermitian conjugate of an operator A is defined as

$$\int dx \ u^*(x) A^{\dagger} \ v(x) = \int dx \ (Au(x))^* v(x).$$
(3)

(a) Let A be a non-hermitian operator. Show that $A + A^{\dagger}$ and $i(A - A^{\dagger})$ are hermitian operators. (b) Using the preceding result, show that every non-hermitian operator may be written as a linear combination of two hermitian operators.

5. Eigenvalues and Eigenfunctions

By substituting $x = e^t$, find the normalized eigenfunctions $y_n(x)$ and the eigenvalues λ_n of the operator $\hat{\mathcal{L}}$ defined by

$$\hat{\mathcal{L}}y = x^2 y'' + 2xy' + \frac{1}{4}y$$
, $1 \le x \le e$, (4)

with boundary conditions y(1) = y(e) = 0.

6. Orthogonality

In problem set 2 you showed that N orthogonal vectors are automatically linearly independent. Let the functions $\Psi_n(x)$ be orthogonal over the interval [a, b] with recpect to the weight function w(x). Show that the functions $\Psi_n(x)$ are linearly independent.

7. Sturm-Liouville Problem

The equation

$$\hat{\mathcal{L}}y(x) = \lambda y(x) \tag{5}$$

is a Sturm-Liouville equation for the operator

$$\hat{\mathcal{L}} = \frac{d}{dx} \left[p(x) \frac{d}{dx} \right] - q(x) , \qquad (6)$$

where p(x) and q(x) are real functions. Any two real solutions $y_n(x)$, $y_m(x)$ with distinct eigenvalues λ_n , λ_m satisfy the boundary condition

$$\left[y_m p \frac{dy_n}{dx}\right] \bigg|_{x=a} = \left[y_m p \frac{dy_n}{dx}\right] \bigg|_{x=b} .$$
⁽⁷⁾

Show that for $n \neq m y_n(x)$ and $y_m(x)$ are orthogonal.

8. Quantum Harmonic Oscillator

Consider the time-independent Schrödinger equation for the quantum harmonic oscillator

$$H\Psi(x) = E\Psi(x) ,$$

$$H = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2 .$$
(8)

(a) Using the substitutions $y = x \sqrt{\frac{m\omega}{\hbar}}$ and $\epsilon = \frac{E}{\hbar\omega}$ reduce the Schrödinger equation to

$$\frac{d^2}{dy^2}\Psi(y) + (2\epsilon - y^2)\Psi(y) = 0.$$
(9)

(b) Consider the limit $y \to \infty$ and show that in this limit

$$\Psi(y) \to Ay^m e^{-y^2/2}.$$
(10)

Hint: you can neglect ϵ compared to y^2 in this limit.

(c) Separate off the exponential factor and define

$$\Psi(y) = u(y)e^{-y^2/2} . (11)$$

Show that u(y) fulfils the ODE

$$u'' - 2yu' + (2\epsilon - 1)u = 0.$$
⁽¹²⁾

(d) Show that this differential equation can be converted to Sturm-Liouville form by multiplying both sides of the equation by e^{-y^2} . What is the weight function w(y) of the Sturm-Liouville problem?

(e) Solve (12) by the ansatz

$$u(y) = \sum_{n=0}^{\infty} a_n \ y^n \tag{13}$$

by deriving a recurrence relation for the coefficients a_n . You should get

$$a_{n+2} = a_n \frac{(2n+1-2\epsilon)}{(n+2)(n+1)}.$$
(14)

(f) We know from (b) that for $y \to \infty$ the function u(y) must go to Ay^m . This means that the recurrence relation must *terminate*, i.e. we must have $a_n = 0$. This quantizes the allowed values of $\epsilon = E/(\hbar\omega)$

$$\epsilon_n = n + \frac{1}{2}, \quad n = 0, 1, 2, \dots$$
(15)

Find the polynomial solutions $H_n(x)$ corresponding to these values of ϵ for n = 0, 1, 2, 3. These polynomials are called *Hermite polynomials*.

(g) Show that your results for n = 0, 1, 2, 3 agree with *Rodrigues' formula*

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}.$$
(16)

(h) Show that the H_n can be normalized such that

$$\int_{-\infty}^{\infty} dy \ e^{-y^2} \ H_n(y) \ H_m(y) = \delta_{nm} \sqrt{\pi} 2^n n!.$$
(17)