Fourier Series

1. Sketch graphs of the following functions in the range $-2\pi < x < 2\pi$ given that all the functions are periodic with period 2π :

(i)
$$f(x) = |x|, -\pi < x < \pi;$$

(ii)
$$f(x) = x, -\pi < x < \pi;$$

(iii)
$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases};$$

(iv)
$$f(x) = \begin{cases} -e^{-x} & -\pi < x < 0 \\ e^{-x} & 0 < x < \pi \end{cases}$$
.

2. State whether the following functions are even, odd or neither even nor odd:

- (i) $\sin x$
- (ii) $\cos x$
- (iii) $\sin^2 x$
- (iv) $\cos^2 x$

- $\begin{array}{ll}
 \text{(v)} & \sin 2x \\
 \text{(ix)} & x + \sin x
 \end{array}$
- $\begin{array}{cc} \text{(vi)} & \cos 2x \\ \text{(x)} & e^x. \end{array}$
- (vii) $x \cos x$
- (viii) $\sin x + \cos x$
- 3. Find the Fourier cosine series that represents the function

$$f(x) = \begin{cases} x & 0 < x < \frac{1}{2}\pi \\ \pi - x & \frac{1}{2}\pi < x < \pi \end{cases}$$

4. Find (a) the Fourier sine series and (b) the Fourier cosine series for the function

$$f(x) = x \sin x, \qquad 0 < x < \pi.$$

5. Find the Fourier series for the function

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \sin x & 0 < x < \pi \end{cases}.$$

- **6.** Find (a) the Fourier sine series and (b) the Fourier cosine series for the function $f(x) = x^2$ in the interval 0 < x < 3.
- 7. Find (i) the Fourier cosine series, and (ii) the Fourier sine series for the function $f(x) = x(\pi x)$ in the interval $0 < x < \pi$, and show by a sketch the functions represented by the two series in the intervals $-\pi < x < 0$ and $\pi < x < 2\pi$.

From your results show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{6}\pi^2$$

and sum the series

$$1 - \frac{1}{3^3} + \frac{1}{5^3} - \cdots$$

$$f(x) = \begin{cases} \cos x & -\frac{1}{2}\pi \le x \le \frac{1}{2}\pi \\ 0 & \frac{1}{2}\pi < |x| \le \pi \end{cases}.$$

Prove that its Fourier series is given by

$$\frac{1}{\pi} + \frac{1}{2}\cos x + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4n^2 - 1} \cos 2nx,$$

and find the sum $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$.

9. Find the Fourier series in the range $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$ for the function $f(x) = \cosh x$. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 + 1} = \frac{\pi}{4} \coth(\frac{1}{2}\pi) - \frac{1}{2}.$$

10. Find the Fourier cosine series for the range $0 \le x \le \pi$ of the function

$$f(x) = \begin{cases} 1 & 0 \le x < \alpha \\ 0 & \alpha < x \le \pi \end{cases}.$$

Hence show that for $0 < \alpha < \pi$

$$\frac{1}{2}(\pi - \alpha) = \sin \alpha + \frac{1}{2}\sin 2\alpha + \frac{1}{3}\sin 3\alpha + \cdots$$

Prove that this result is also true for $\pi < \alpha < 2\pi$.

11. Show that the solution of

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

that satisfies the boundary conditions u = 0 on the lines $y = \pm 1$ for x > 0, u = 1 on x = 0 for -1 < y < 1, and $u \to 0$ as $x \to \infty$ is:

$$u = \sum_{m=1}^{\infty} A_m \cos\left(\frac{m\pi y}{2}\right) e^{-m\pi x/2}$$

where $A_m = \int_0^1 \cos(m\pi y/2) dy - \int_1^2 \cos(m\pi y/2) dy$.

12. The temperature Θ in a rod satisfies the diffusion equation $\partial\Theta/\partial t = K\partial^2\Theta/\partial x^2$. At t=0 the rod is at temperature Θ_0 Celsius and the ends of the rod at x=0 and x=l are kept at zero temperature at all times. Show that for t>0 the temperature is given by

$$\Theta = \sum_{m=1,3,}^{\infty} \frac{4\Theta_0}{m\pi} \sin(m\pi x/l) e^{-(m\pi/l)^2 Kt}.$$

13. Show that the solution Φ of Laplace's equation in two dimensions in the region $r \leq a$, subject to the boundary conditions

$$\Phi = \begin{cases} \Phi_0 & \text{for } 0 < \theta < \pi, \\ -\Phi_0 & \text{for } -\pi < \theta < 0, \end{cases}$$

is

$$\Phi = \sum_{m=1,3,}^{\infty} \frac{4\Phi_0}{m\pi} \left(\frac{r}{a}\right)^m \sin(m\theta).$$