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Niels Bohr (Nobel Prize in Physics 1922).

“If quantum mechanics hasn’t profoundly shocked you,
you haven’t understood it yet.”

A visitor to Niels Bohr’s country cottage, noticing a horse
shoe hanging on the wall, teased Bohr about this ancient
superstition. Can it be true that you, of all people, believe
it will bring you luck? Of course not, replied Bohr, but I
understand it brings you luck whether you believe it or not.
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Some general remarks:
These notes aim to be self-contained. Homework questions are are placed at appropriate positions in

the text, i.e. to work them out you will require only the preceeding material. Questions marked by a
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star are optional. Asides give details on derivations we don’t have time to go through in the lectures, or
present material that goes beyond the core of the course. In some cases this material will be very useful for
particular homework problems. Exercises are small problems that should be worked out after the lecture
they pertain to. They are meant to ensure that you are continuously engaged with the course and not only
the days immediately preceeding a tutorial.

This course aims to give an introduction to Quantum Mechanics. Let us start with some general context.

• QM is arguably humanity’s greatest achievement. Actually, forget about the “arguably” part...

• Its understanding is the basis of much of our technological progress over the last 80 years.

• QM is intellectually challenging and only a minute fraction of humanity has any idea what it is about.

• We don’t have an intuitive understanding of QM. As Richard Feyman famously said “Nobody under-
stands quantum mechanics”. An important addendum to this statement is that one naturally can not
understand QM on a multitude of different levels, and the ultimate aim of this course is to elevate
your ununderstanding to levels beyond your wildest imagination. Your ultimate goal should of course
be to reach Feynman’s level of ununderstanding...

Figure 1: Richard Feynman (Nobel Prize in Physics 1965).

Part I

The Mathematical Structure of Quantum
Mechanics

αγεωµετρητωζ µηδειζ εισιτω Inscription on Plato’s door.

QM is fundamentally different from Classical Mechanics in several ways:

• It does aim to provide a description of physical reality, but merely to make predictions for measure-
ments. It is by its very design a theory of measurement.

• It accounts for the fact that measurements disturb the system; if the latter is small this is a large
effect!
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• QM is inherently probabilistic in nature: in general it cannot predict the outcome of a particular
measurement exactly, but it rather provides a probability distribution for a set of possible outcomes.

Examples of quantities that can be measured are energy, momentum, position, angular momentum.
These are called observables. Measuring an observable can in general have many possible outcomes.
These can be either discrete or continuous: position measurements will typically result in an outcome
that various continuously in some interval [a, b], but measuring energy will often result in a “quantized”
set of outcomes E1, E2, ... Note that here and in the following we think of measurements in a rather
abstract way and are not concerned with questions of experimental inaccuracies.

The aim of QM is to provide probability distributions associated with measurements of observables

P (E1), P (E2), . . .
∑
j

P (Ej) = 1. (1)

These distributions give us a statistical understanding of what happens if we repeat a given experiment
many times.

1 Probability Amplitudes and Quantum States

1.1 Probability Amplitudes

A key aspect of QM is that probability enters in an unusual way. To stress this point let’s recall that
“classical” probabilities fulfil rules like

• If A,B are independent events with probabilities P(A) and P(B), then the probability for A and B is
P(A and B)= P(A)P(B).

• If A,B are exclusive events with probabilities P(A) and P(B), then the probability for A or B is P(A
or B)= P(A)+P(B).

QM works differently by construction. To understand why we follow Master Quantum Mechanic Richard
Feynman’s exquisite discussion (Feynman Lectures on Physics Vol 3) of double-slit thought experiments,
which, incidentally, in German is of course a single word “Doppelspaltgedankenexperimente” – don’t you
just love it!

Feynman first considers the double-slit experiment for classical bullets. These can go through either slit,

Figure 2: A double-slit experiment with indestructable bullets.

and the probability P12(x) of bullets arriving at position x on the detector screen is simply the sum of the
probabilities P1(x) and P2(x) obtained by closing holes 2 and 1 respectively, i.e.

P12 = P1 + P2. (2)
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So for classical bullets we are dealing with classical probabilities.
Quantum mechanics works completely differently, as can be seen by repeating the double-slit experiment

for electrons. What one observes is that electrons still reach the detector in “lumps”, but now P12(x) 6=

Figure 3: A double-slit experiment with (a) electrons and (b) waves.

P1(x) + P2(x). Moreover, the observed probability distribution looks suspiciously like the interference
pattern we would observe when conducting the experiment with waves! For waves we understand perfectly
that intensities do not add, but instead we have

I1 = |h1|2 , I2 = |h2|2 , I12 = |h1 + h2|2 , (3)

where h1,2 are the amplitudes of the waves. What the Doppelspaltgedankenexperiment shows is that elec-
trons in some way behave like particles (lumpiness at detector) and in some ways like waves (interference)!
This is called particle-wave duality.

The way to encode the baffling interference phenomenon into the fabric of QM is to postulate that the
fundamental objects in QM are not probabilities, but probability amplitudes A.

Postulate 1: Probabilities from Probability Amplitudes

Probability amplitudes are complex numbers associated with the outcomes of measurements. The
corresponding probabilities are obtained as

P (A) = |A|2. (4)

If there are several ways of arriving at a particular measurement outcome the associated probability
amplitudes add.

This postulate allows us to understand why there is an interference pattern in out double-slit experiment
for electrons. By Postulate 1 we have

P (x) = |Probability amplitude to go from the electron gun to x|2 . (5)

Clearly there are two paths from the gun G to position x on the screen. The electron could travel via slit 1
or via slit 2. Denoting the associated probability amplitudes by A(1) and A(2) respectively we have by our
postulate

P (x) = |A(1) +A(2)|2 , (6)

because probability amplitudes add. Working this out we have

P (x) = |A(1)|2 + |A(2)|2 + 2Re [A(1)A∗(2)]︸ ︷︷ ︸
“Interference term”

. (7)
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Expressing the complex amplitudes in terms of their magnitudes and phases A(1) =
√
P (1)eiφ(1) we can

rewrite this as
P (x) = P (1) + P (2) + 2

√
P (1)P (2) cos

(
φ(1)− φ(2)

)
. (8)

This is clearly very different from the “classical” rule for adding probabilities for exclusive events! For x ≈ 0
we have P (1) ≈ P (2) and therefore

P (x) ≈ 2P (1)
[
1 + cos

(
φ(1)− φ(2)

]
. (9)

The “classical” result would simply be 2P (1), while QM predicts a probability distribution that oscillates
between 0 and 4P (1) as a consequence of “QM interference”. Before we take leave of our double-slit
experiments there is one more variation we need to consider. Now we position a light source behind the double

Figure 4: Double-slit experiments with electrons where we measure through which slit the electrons go.

slit, which allows us to measure through which slit the individual electrons go. In this experimental setup
the interference disappears and probabilities add! If this does not give you goosebumps there is something
seriously wrong with you! Our framework for QM will have to account for this bizarre interference-killing
effect as well.

NB 1

The fundamental idea in QM is to associate probability amplitudes with measurement outcomes of
given observables.

• Example 1: Let E0, E1, . . . be the possible outcomes of an energy measurement. With each energy
we associate a complex probability amplitude A(Ej) such that the probability for measuring Ej is
P (Ej) = |A(Ej)|2 and ∑

j

P (Ej) = 1. (10)

• Example 2: Consider a position measurement in one dimension (like the one above). The possible
outcomes are then real numbers in some interval x ∈ [a, b]. With each position x we associate a
complex probability amplitude ψ(x) such that P (x) = |ψ(x)|2 and∫ b

a
dx P (x) = 1. (11)

In this case the set of probability amplitudes can be viewed as a complex valued function.
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1.2 Complete sets of amplitudes and quantum states

Knowing all amplitudes A(Ej) provides us with a probabilistic description of repeated energy measurements
in the following sense.

• Set up an experiment in a particular way. This fixes a particular set of probability amplitudes
{A(E0), A(E1), . . . }.

• Measure the energy. The result is Ej Write the result down.

• Repeat the experiment many times (we imagine that we can set things up in precisely the same way
each time). The ultimate result of our efforts is a histogram that gives probabilities P (Ej) for the
various observed measurement outcomes Ej . QM asserts that P (Ej) = |A(Ej)|2.

• Changing our experimental setup would result in a different set of amplitudes {A′(E0), A′(E1), . . . }.
So far so good. The next step is a crucial one.

Definition 1 A key aspect of QM is that specifying amplitudes for e.g. an energy measurement can provide
enough information to obtain probabilistic descriptions of measurement outcomes of any other observable.
Such sets of amplitudes are called complete.

An efficient way of encoding the information contained in a complete set of amplitudes {A(E0), A(E1), . . . }
is to combine them into a vector

|ψ〉 = (A(E0), A(E1), . . . ). (12)

We call this a state or ket-state using a terminology (and very clever notation) invented by P.A.M. Dirac.

Paul A.M. Dirac (Nobel Prize in Physics 1933).

“If you are receptive and humble, mathematics will
lead you by the hand”.

1.3 Dirac notation for complex linear vector spaces

It is easy to see that ket states form a complex linear vector space V . Addition of two kets is defined in
terms of addition of the associated amplitudes

|ψ〉+ |φ〉 = (A(E0) +A′(E0), A(E1) +A′(E1), . . . ) , (13)

while multiplication by complex numbers is defined as

c|ψ〉 = (cA(E0), cA(E1), . . . ). (14)

The vector space structure makes it clear that there are special states such that all amplitudes are zero except
A(Ej) = 1. We denote these states by |Ej〉. By construction they are such that an energy measurement in
a system described by the ket |Ej〉 returns the result Ej with probability 1. In other words they are states
of definite energy. If {A(Ej)} is a complete set of amplitudes these form a basis of V : any ket |ψ〉 can be
expressed as a linear combination

|ψ〉 =
∑
j

ψj |Ej〉 , ψj ∈ C. (15)
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1.3.1 Dual (“bra”) states

Given a state |ψ〉 we want a quick way for extracting individual amplitudes. Mathematically speaking we
are searching for linear maps

V −→ C
|ψ〉 −→ ψj (16)

such that α|ψ〉 + β|φ〉 maps to αψj + βφj . For finite dimensional linear vector spaces such maps form a
linear vector space V ∗, the dual space, of the same dimension as V . Dirac notations provide us with a very
neat way of constructing a basis of V ∗:

• Start with an orthonormal basis B = {|j〉} of V.

• Define corresponding “bra” states 〈j| ∈ V ∗ by specifying their action on B

〈n|j〉 = δn,j , “bra-ket” – Dirac’s only joke. (17)

• Extend this to general states |ψ〉 =
∑

j ψj |j〉 by the rule

〈ψ| =
∑
j

ψ∗j 〈j| . (18)

In this way 〈ψ|φ〉 turns into the usual scalar product for complex linear vector spaces

〈ψ|φ〉 =
∑
j

ψ∗jφj = (〈φ|ψ〉)∗ , (19)

and
〈ψ|ψ〉 =

∑
j

|ψj |2 ≥ 0 “Length” of |ψ〉. (20)

NB 2

he length of state vectors in QM must always be 1, because probabilities must add up to 1.

1.4 ... and back to measurements

To describe the measurement of an observable A we express the ket |ψ〉 that describes our system as a linear
combination of basis states that correspond to definite outcomes aj

|ψ〉 =
∑
j

ψj |aj〉 , ψj = 〈aj |ψ〉 ,
∑
j

|ψj |2 = 1. (21)

The probability to obtain aj in our measurement is

|ψj |2 = |〈aj |ψ〉|2 “Born’s rule.” (22)

An important question is what “state” a quantum mechanical system is in just after a particular observable
has been measured. As QM deals with very small things measurements can greatly disturb the QM system,
i.e. change its QM state. What should we expect? To be more precise let’s start with a QM system described
by the state |ψ〉, then measure the observable A and obtain the result aj .
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Figure 5: Max Born (Nobel Prize in Physics 1954) ... and his more famous granddaughter. Born is said to
have thought that the Copenhagen interpretation of QM should really be called the Göttingen interpretation.
He has a point...

Postulate 2: Projective nature of measurements

We expect that if we measure A again straight away, we will obtain the result aj with certainty.
This is only possible if the first measurement leaves the system in the state |aj〉 – meaning that
measurements are projective:

|ψ〉 −→ measure A, obtain result aj ⇒ system left in the state |aj〉.
(23)

1.5 Arbitrariness of the overall phase

Let us now consider the two states |ψ〉 and |ψ′〉 = eiα|ψ〉 where α is an arbitrary phase. According to the
rules we have presented, there is no way of telling these two states apart through any quantum mechanical
measurement! Indeed we have

|ψ′〉 = eiα|ψ〉 =
∑
j

eiα〈aj |ψ〉 |aj〉. (24)

Hence the possible measurement outcomes are again given by the set {aj} and the corresponding probabilities
are

|〈aj |ψ′〉|2 = |eiα〈aj |ψ〉|2 = |〈aj |ψ〉|2. (25)

This tells us that |ψ〉 and eiα|ψ〉 describe the same quantum mechanical state. In the mathematical literature
the states eiα|ψ〉, α ∈ R are called a ray. In practice we will always fix the overall phase of quantum states
in a convenient way.

Example 1: Atom in a double-well potential

As much of our discussion is necessarily rather abstract it is useful to explain how the new concepts
work for a simple, but realistic example. Our example of choice will be a single atom confined by an
external electromagnetic field (that couples to the atom’s magnetic moment). This trapping works
due to quantum mechanical effects, which means that we can’t explain it at this point in the course.
As we will see later in the course, atoms are in fact rather complicated quantum mechanical systems

10



themselves. However, there is an experimentally realizable regime, in which the only relevant degree
of freedom associated with the atom is purely motional, i.e. the atom can move between local minima
of the electromagnetic potential. The upshot is that, with respect to the relevant experimental probes,
our simple QM system is characterized by two different probability amplitudes, associated with the
atom sitting in the left and right potential well respectively, giving rise to the two quantum states |1〉
and |2〉

A general quantum state in this system is then of the form

|ψ〉 = α|1〉+ β|2〉 , |α|2 + |β|2 = 1. (26)

If we prepare our system in the state |ψ〉 and then measure the position of the atom (e.g. by shining
light on it), we find that with probability |α|2 (|β|2) it is in the left (right) well. By this we mean
that if we repeat the state-preparation and subsequent measurement procedure N times, we obtain
a sequence of outcomes RLLLRRRLRLLRRLLRRLLRLLRR..., where R and L indicate that the
atom was observed in the right/left well. Denoting by NR,L the numbers of R’s and L’s in our
sequence, QM tells us that as N becomes large we have NR/N = |α|2 and NL/N = |β|2.

Summary 1

1. QM systems are described by quantum “ket” states |ψ〉. These correspond to different ways
of experimentally “setting up” the system. States that differ only by an overall phase factor
describe the same physical situation and are to be identified.

2. Kets form a complex linear vector space V .

3. To each state |ψ〉 we can associate a complex valued linear map 〈ψ|. These “bra-vectors” form
a linear vector space V ∗ of the same dimension as V .

4. To describe a measurement of an observable A we express the state |ψ〉 describing our system
as a linear superposition of basis states that correspond to definite measurement outcomes aj
for A

|ψ〉 =
∑
j

ψj |aj〉 , ψj = 〈aj |ψ〉 ,
∑
j

|ψj |2 = 1. (27)

The probability to obtain aj in our measurement is

|ψj |2 = |〈aj |ψ〉|2 “Born’s rule.” (28)

5. After the measurement the system is left in the state |aj〉 (if the outcome of the measurement
was aj).
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Homework 1: Probability amplitudes, probabilities and Dirac notation

1.1 What physical phenomenon requires us to work with probability amplitudes rather than with
probabilities?

1.2 Given that |ψ〉 = eiπ/5|a〉+ eiπ/4|b〉, express 〈ψ| as a linear combination of 〈a| and 〈b|.

1.3 An electron can be in one of two potential wells that are so close that it can ‘tunnel’ from one to
the other. Its state vector can be written

|ψ〉 = a|A〉+ b|B〉, (29)

where |A〉 is the state of being in the first well and |B〉 is the state of being in the second well and all
kets are correctly normalised. What is the probability of finding the particle in the first well given
that: (a) a = i/2; (b) b = eiπ; (c) b = 1

3 + i/
√

2?

1.4 An electron can “tunnel” between potential wells that form a linear chain, so its state vector can
be written as

|ψ〉 =
∞∑

n=−∞
an|n〉, (30)

where |n〉 is the state of being in the nth well, where n increases from left to right. Let

an =
1√
2

(
−i
3

) |n|
2

einπ. (31)

(a) What is the probability of finding the electron in the nth well?
(b) What is the probability of finding the electron in well 0 or anywhere to the right of it?

2 Operators and Observables

In the lab we (i.e. our experimental colleagues) can manipulate quantum states, i.e. devise protocols that
map states to other states. In our mathematical framework this is described by considering linear operators
acting on V

O : V −→ V

|ψ〉 −→ O|ψ〉 , (32)

where O(α|ψ〉 + β|φ〉) = αO|ψ〉 + βO|φ〉. Dirac notation provides us with a very useful way of expressing
operators. A general operator can be expressed in terms of basis states |j〉 and their dual states 〈j| as
follows:

• The object |j〉〈k| is a linear operator.

Proof:

|k〉〈j|
(
α|ψ〉+ β|ψ〉

)
= |k〉

(
α〈j|ψ〉+ β〈j|ψ〉

)
= α〈j|ψ〉︸ ︷︷ ︸

∈C

|k〉+ β〈j|ψ〉|k〉 . (33)

• The identity operator is

1 =
∑
j

|j〉〈j|. (34)

Proof: Act with 1 on a general state |ψ〉 =
∑

k ψk|k〉:[∑
j

|j〉〈j|
]
|ψ〉 =

∑
k

ψk
∑
j

|j〉 〈j|k〉︸ ︷︷ ︸
δj,k

=
∑
k

ψk|k〉 = |ψ〉. (35)
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• A general operator A can be written in the form

A =
∑
j,k

〈j|A|k〉 |j〉〈k| .

(36)

the complex numbers 〈j|A|k〉 are called matrix elements of A in the basis {|j〉}.
Proof:

A = 1A1 =
(∑

j

|j〉〈j|
)
A
(∑

k

|k〉〈k|
)
. (37)

NB 3

For finite dimensional linear vector spaces linear operators correspond to square matrices.

Like for matrices, a very useful way to characterize an operator is through its eigenvalues and eigenvectors
(“eigenstates”). The eigenvalue equation for an operator O is

O|oj〉 = oj |oj〉.
(38)

The eigenvalues {oj} form the spectrum of the operator O. The most important operator in QM is the
Hamiltonian, or energy operator. It is defined by

H =
∑
j

Ej |Ej〉〈Ej |,

(39)

where |Ej〉 are the quantum states introduced above that give result Ej with probability one when the
energy is measured.The Hamiltonian fulfils by construction

H|Ej〉 = Ej |Ej〉. (40)

Hence the spectrum of the Hamiltonian is equal to the set of possible outcomes of energy measurements.
This generalizes to other observables: with each observable we can associate an operator by

A =
∑
j

aj |aj〉〈aj | , (41)

where {|aj〉} is a complete set of states that return the result aj with probability one when the observable
under consideration is measured. As the outcomes of the measurements we have in mind (energy, momentum,
position etc) are real numbers the operators representing observables must be special.

2.1 Hermitian Operators

In QM observables are represented by Hermitian operators

A Hermitian⇔ (〈φ|A|ψ〉)∗ = 〈ψ|A|φ〉 .
(42)

Hermitian operators have three crucial properties that we will use constantly in the following:

(H1) Their eigenvalues are real.

(H2) Eigenstates corresponding to different eigenvalues are orthogonal

〈aj |ak〉 = 0 if aj 6= ak. (43)

(H3) One can always construct an orthonormal basis of V from the eigenstates of a Hermitian operator.
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Aside 1: Hermitian Operators

You have already seen this in your Linear Algebra course, but in order to be self-contained and to
get you fluent in Dirac notations the proofs of these statements are summarized below. Let A be a
Hermitian operator with eigenvalue equation

A|ak〉 = ak|ak〉. (44)

As A is Hermitian we have
(〈ak|A|a`〉)∗ = 〈a`|A|ak〉 . (45)

Using the eigenvalue equation this implies a∗` 〈ak|a`〉∗ = ak〈a`|ak〉 and using that 〈ak|a`〉∗ = 〈a`|ak〉
we have

(a∗` − ak)〈a`|ak〉 = 0 . (46)

• Setting k = ` gives
(a∗` − a`)〈a`|a`〉 = 0, (47)

which implies
a` = a∗` ⇒ (H1). (48)

• Taking ak 6= a` in (46) we have
〈a`|ak〉 = 0 , (49)

which immediately implies (H2).

• For eigenstates with the same eigenvalue we can carry out a Gram-Schmidt orthogonalization
procedure. Together with (H2) this implies (H3).

Definition 2 The Hermitian conjugate B† of an operator B is defined by

〈φ|B†|ψ〉 = (〈ψ|B|φ〉)∗ . (50)

Hermitian operators fulfil A = A†. The following rules for taking Hermitian conjugates will be useful:

(A+B)† = A† +B† , (51)

(cA)† = c∗A† , (52)

(AB)† = B†A† . (53)

Aside 2: Hermitian conjugation

The properties (53) are straightforward to establish and provide an excellent exercise in Dirac notation
(so make sure that you are happy with each of the steps!). The first property follows from considering

〈φ|(A+B)†|ψ〉 = (〈ψ|A+B|φ〉)∗ = (〈ψ|A|φ〉)∗ + (〈ψ|B|φ〉)∗ = 〈φ|A†|ψ〉+ 〈φ|B†|ψ〉. (54)

The second property holds because

〈φ|(cA)†|ψ〉 = (〈ψ|cA|φ〉)∗ = (c〈ψ|A|φ〉)∗ = c∗〈φ|A†|ψ〉 (55)

To establish the third property consider

〈ψ|(AB)†|φ〉 = (〈φ|AB|ψ〉)∗ = (〈φ|A
∑
k

|k〉〈k|︸ ︷︷ ︸
1

B|ψ〉)∗ =
∑
k

(〈φ|A|k〉)∗(〈k|B|ψ〉)∗

=
∑
k

〈k|A†|φ〉〈ψ|B†|k〉 = 〈ψ|B†
∑
k

|k〉〈k|A†|φ〉 = 〈ψ|B†A†|φ〉. (56)
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Example 2: Atom in a double-well potential

Let us return to our example of an atom in a double-well potential. As discussed earlier, a basis of
quantum states is provided by the two states shown below

We can now define a number of different operators. In fact there are altogether 4 linearly independent
operators in this system, namely

N̂1 = |1〉〈1| , N̂2 = |2〉〈2| ,
T̂R = |2〉〈1| , T̂L = |1〉〈2| . (57)

The operators N̂1,2 are Hermitian and hence correspond to observables, while T̂ †R = T̂L. We can

however construct linear combinations Ŝ = T̂R+ T̂L and Ŷ = i[T̂R− T̂L] that are Hermitian operators.
The physical meaning of the observables corresponding to N̂1,2 is easy to work out: they count the
number of atoms in wells 1 and 2 respectively. Indeed, |1〉 and |2〉 are eigenstates of N̂1,2 and the
corresponding eigenvalues are one and zero

N̂1|1〉 = |1〉 , N̂1|2〉 = 0 ,

N̂2|2〉 = |2〉 , N̂2|1〉 = 0 . (58)

The operator Ŝ swaps the position of the atom and we therefore will call it swap operator

Ŝ|1〉 = |2〉 , Ŝ|2〉 = |1〉 . (59)

Its eigenvalues are ±1 and the corresponding eigenstates are

Ŝ|±〉 = ±|±〉 , |±〉 =
|1〉 ± |2〉√

2
. (60)

Homework 2: Operators

1.5 Let Q be the operator of an observable and let |ψ〉 be the state of our system.
(a) What are the physical interpretations of 〈ψ|Q|ψ〉 and |〈qn|ψ〉|2, where |qn〉 is the nth eigenket of
the observable Q and qn is the corresponding eigenvalue?
(b) What is the operator

∑
n |qn〉〈qn|, where the sum is over all eigenkets of Q? What is the operator∑

n qn|qn〉〈qn|?

1.6 Which of the following operators are Hermitian, given that Â and B̂ are Hermitian:
Â+ B̂; cÂ; ÂB̂; ÂB̂ + B̂Â.
Show that in one dimension, for functions which tend to zero as |x| → ∞, the operator ∂/∂x is not
Hermitian, but −i~∂/∂x is. Is ∂2/∂x2 Hermitian?

1.7 Given that Â and B̂ are Hermitian operators, show that i[Â, B̂] is a Hermitian operator.

1.8 Given that for any two operators (ÂB̂)† = B̂†Â†, show that

(ÂB̂ĈD̂)† = D̂†Ĉ†B̂†Â†.
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2.2 Commutators and Compatible Observables

Definition 3 The commutator of two operators A and B is

[A,B] = AB −BA. (61)

In QM commutators play an important role because of the following theorem.

Theorem 1 Let A and B be two Hermitian operators. If [A,B] = 0 there exists a complete set of simulta-
neous eigenstates of the operators A and B, i.e.

A|uj〉 = aj |uj〉 , B|uj〉 = bj |uj〉, (62)

and {|uj〉} form a basis of the LVS on which A and B act.

Proof: One direction is simple: if A and B have a complete set of simultaneous eigenstates |uj〉 we have

〈uj |[A,B]|uk〉 = (akbk − bkak)〈uj |uk〉 = 0, (63)

which implies that the commutator is zero (because the |uj〉 form a basis). Let’s now turn to the other
direction of the proof, i.e. let’s assume [A,B] = 0 and show that this implies the existence of a complete set
of simultaneous eigenstates. As A is Hermitian we know that is has a complete set of orthogonal eigenstates

A|aj〉 = aj |aj〉 , 〈aj |ak〉 = δj,k. (64)

Now consider the matrix elements of the commutator in this basis

0 = 〈aj |[A,B]|ak〉 = (aj − ak)〈aj |B|ak〉 (65)

This tells us that if all eigenvalues aj are different, we have 〈aj |B|ak〉 ∝ δj,k, i.e. the eigenstates |aj〉 of
A are simultaneous eigenstates of B. The situation is a bit more complicated if some of the aj are equal.
Let us assume that n of the aj are equal and let’s label the eigenstates of A such they correspond to
a1 = a2 = · · · = an = a. Then

(i) Any linear combination
∑n

j=1 αj |aj〉 is an eigenstate of A with eigenvalue a.

(ii) On the subspace spanned by {|a1〉, . . . , |an〉} B is represented by Hermitian matrix Bjk = 〈aj |B|ak〉.
Hence it can be diagonalized, i.e. we can construct eigenstates |uk〉 of B by taking appropriate linear

combinations of the |uk〉 =
∑n

j=1 β
(k)
j |aj〉. These are simultaneous eigenstates of A by (i).

This generalizes straightforwardly to the case where we have several “degenerate” eigenvalues.
Even though all this Linear Algebra is of course very interesting in itself, you may be asking yourselves at

this point what on earth this has to do with QM. As you may have guessed, it has to do with measurements!
Let us consider two Hermitian operators A and B that correspond to two observables in an experiment. We
know that the respective eigenstates of A and B can be used to construct an orthonormal basis of our linear
vector space of quantum states

A|ai〉 = ai|ai〉, B|bi〉 = bi|bi〉 ⇒ |ψ〉 =
∑
i

〈ai|ψ〉 |ai〉 =
∑
i

〈bi|ψ〉 |bi〉. (66)

Let us now make the following Gedankenexperiment: we first measure the observable corresponding to A,
and then straight away measure the observable corresponding to B (without re-initializing our experiment).
We want to compare this to the reverse order of measurements. Here we go:

• Measure A, then B

|ψ〉 −→ measure A: ai with prob. |〈ai|ψ〉|2, system in state |ai〉
−→ measure B: bj with prob. |〈bj |ai〉|2 . (67)

So the final outcome is a table of outcomes with associated probabilities

outcome (ai, bj) probability |〈ai|ψ〉|2 |〈bj |ai〉|2 (68)
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• Measure B, then A

|ψ〉 −→ measure B: bj with prob. |〈bj |ψ〉|2, system in state |bj〉
−→ measure A: ai with prob. |〈ai|bj〉|2 . (69)

So here the final outcome is a table

outcome (ai, bj) probability |〈bj |ψ〉|2 |〈ai|bj〉|2 (70)

Clearly, the tables of measurement outcomes we obtain in the two ways will generally be different! That. Is.
Deep. If the order of measurement does not matter, the observables corresponding to A and B are called
compatible. As the order of measurement for two compatible observables does not matter and we always
end up in a quantum state where both observables have a definite value, one could in principle set up an
experiment that measures both observables simultaneously.

Theorem 2 Two observables are compatible if and only if the commutator between the associated Hermitian
operators vanishes

[A,B] = 0. (71)

Proof: If [A,B] = 0 there exists a basis of simultaneous eigenstates of A and B. Using this basis in the
above consideration it is easy to see that the two outcomes are identical. On the other hand, if [A,B] 6= 0
there must be at least one eigenstate |aj〉 of A that is not an eigenstate of B. As the state |ψ〉 above is
arbitrary we can choose it to be |aj〉. By considering the two sets of outcomes we see that they can only be
equal if |aj〉 is an eigenstate of B, giving a contradiction. This completes the proof.

Example 3: Atom in a double-well potential

As an explicit example let us see how sequential measurements work for our system of an atom in a
double well potential. Let us consider measuring the observables corresponding to N̂1 and Ŝ when
the system is prepared in the state |ψ〉 = |1〉.

Homework 3: Commutators

1.9 Show that if there is a complete set of mutual eigenkets of the Hermitian operators Â and B̂,
then [Â, B̂] = 0. Explain the physical significance of this result.

1.10 Does it always follow that if a system is an eigenstate of Â and [Â, B̂] = 0 then the system will
be in a eigenstate of B̂? If not, give a counterexample.

1.11 Show that
(a) [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂
(b) [ÂB̂Ĉ, D̂] = ÂB̂[Ĉ, D̂] + Â[B̂, D̂]Ĉ + [Â, D̂]B̂Ĉ. Explain the similarity with the rule for differen-
tiating a product.
(c) [x̂n, p̂] = i~nx̂n−1

(d) [f(x̂), p̂] = i~df
dx for any function f(x).

1.12 Let A and B be two Hermitian operators. Prove that if [A,B] = 0 there exists a complete set
of simultaneous eigenstates of the operators A and B, i.e.

A|uj〉 = aj |uj〉 , B|uj〉 = bj |uj〉, (72)

and {|uj〉} form a basis of the LVS on which A and B act.

1.13 Prove that two observables are compatible if and only if the commutator between the associated
Hermitian operators vanishes.
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1.14 What does it mean to say that two operators commute? What is the significance of two
observables having mutually commuting operators?
Given that the commutator [P,Q] 6= 0 for some observables P and Q, does it follow that for all
|ψ〉 6= 0 we have [P,Q]|ψ〉 6= 0?

2.3 Expectation Values

Definition 4 The expectation value of an operator O in a quantum state |ψ〉 is defined as

〈ψ|O|ψ〉 . (73)

Expectation values are hugely important in QM. To see why let us consider a Hermitian operator A = A†

associated with some observable. Any state can be written as linear combination of the eigenstates of A
(why?)

|ψ〉 =
∑
j

〈aj |ψ〉 |aj〉. (74)

Hence

〈ψ|A|ψ〉 =
∑
j

aj |〈aj |ψ〉|2.

(75)

This expression has an important physical meaning: aj are the outcomes of measuring the observable to
which A corresponds, and |〈aj |ψ〉|2 are the associated probabilities.

NB 4

So the expectation value gives the average over many measurements of our observable when the
system is in the quantum state |ψ〉.

Let us now consider the expectation values

〈ψ|An|ψ〉 =
∑
j

anj |〈aj |ψ〉|2. (76)

These are nothing but the moments of the probability distribution associated with measuring the observable
associated with A in the state |ψ〉! Nice.

3 Position and Momentum Representations

All animals are equal, but some are more equal than others. George Orwell.
The basic objects in QM are quantum states. In order to work with them we usually express them in

some particular basis. Which choice is most convenient depends on the particular problem one is interested
in. Having said this, some choices of basis are of particular importance.

3.1 Position Representation

This is obtained by working with probability amplitudes ψ(x) for finding a particle at position x (in 1
dimension). In Dirac notation

|ψ〉 =

∫
dx ψ(x) |x〉, (77)

where |x〉 are quantum states in which a position measurement returns the result x with probability 1.

Definition 5 The probability amplitude ψ(x) is called a wave function.
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Now recall that we introduced bra-vectors to extract amplitudes from states. Here we want

〈x′|ψ〉 = ψ(x′) =

∫
dx ψ(x) 〈x′|x〉. (78)

This requires
〈x′|x〉 = δ(x− x′), (79)

where δ(x) is the Dirac delta-function. Indeed, a defining property of the delta-function is that (for all
sufficiently well-behaved functions f(x))∫ ∞

−∞
dx f(x) δ(x− x′) = f(x′). (80)

At this point students usually feel somewhat uncomfortable, because the scalar product of bras and kets
involves a delta-function rather than a Kronecker delta. The reason for this is that x is a continuous
variable and the same situation arises for other observables where the outcome of measurements can vary
continuously. The resolution of the identity in terms of the states |x〉 reads

1 =

∫
dx |x〉〈x|. (81)

Check:

1|ψ〉 =

∫
dx |x〉〈x|ψ〉 =

∫
dx ψ(x) |x〉. (82)

3.1.1 Position operator

Given a basis of states of definite position we can introduce the associated position operator

x̂ =

∫
dx x |x〉〈x|.

(83)

By construction the position operator has eigenstates |x〉 with eigenvalues x

x̂|x′〉 =

∫
dx x |x〉〈x|x′〉 =

∫
dx x |x〉 δ(x− x′) = x′|x′〉. (84)

It acts on general states as

x̂|ψ〉 =

∫
dx x |x〉〈x|ψ =

∫
dx xψ(x) |x〉 , (85)

i.e. it multiplies the wave function by x. By concatenating (84) we find

x̂n|x′〉 = (x′)n|x′〉, (86)

and therefore

V (x̂)|x′〉 = V (x′)|x′〉 ,
(87)

where V (x) is a function that is to be understood in terms of its Taylor expansion around x = 0. For a QM
particle moving in one dimension V (x̂) would be the operator describing its potential energy. (Why?) We
note that

〈ψ|x̂n|ψ〉 =

∫
dx |ψ(x)|2xn , (88)

so 〈ψ|x̂|ψ〉 is the average position and 〈ψ|x̂2|ψ〉− 〈ψ|x̂|ψ〉2 the variance if we look at the histogram of many
position measurements.
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3.1.2 Position representation for other operators

An important question is how other operators look like in the position representation. For a general operator
A we have

A = 1 A 1 =

∫
dx dx′ |x〉〈x′| 〈x|A|x′〉. (89)

As usual in order to define the operator we require its matrix elements 〈x|A|x′〉. A particular important
operator is the momentum operator. It is defined (in one dimension) as

p̂ =

∫
dp p |p〉〈p|, (90)

where |p〉 are states such that a momentum measurement returns the value p with certainty. In the position
representation (see below for some motivation) one has

〈x|p̂|x′〉 = −i~ ∂
∂x

δ(x− x′).
(91)

This gives

〈x|p̂|ψ〉 =

∫
dx′〈x|p̂|x′〉 ψ(x′) = −i~∂ψ(x)

∂x
.

(92)

Aside 3: Momentum operator

At this point we have simply asserted that the position representation of the momentum operator is
given by eqn (91). The justification will be given in Part III of the lectures, when we will consider
translations in QM. The logic that underlies the identification of the momentum operator goes as
follows. In classical mechanics momentum can be defined as the generator of translations. One then
defines the momentum operator in quantum mechanics as the generator of translations in QM. This
leads to (91).

3.2 Heisenberg Uncertainty Relation

Werner Heisenberg (Nobel Prize in Physics 1932).
“What we observe is not nature itself, but nature exposed to
our method of questioning.”

Heisenberg also gave an excellent definition of experts: “An
expert is someone who knows some of the worst mistakes
that can be made in their subject, and how to avoid them.”

Let us consider the commutator [x̂, p̂]

〈x|[x̂, p̂]|ψ〉 = 〈x|x̂p̂− p̂x̂|ψ〉 = −i~x∂ψ(x)

∂x
+ i~

∂

∂x

[
xψ(x)

]
= i~〈x|ψ〉. (93)
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As |ψ〉 is arbitrary this tells us that

[x̂, p̂] = i~.
(94)

So momentum and position are incompatible observables! Now consider the variances for position and
momentum measurements in the state |ψ〉

〈ψ|(x̂− x0)2|ψ〉 , 〈ψ|(p̂− p0)2|ψ〉, (95)

where x0 = 〈ψ|x̂|ψ〉 and p0 = 〈ψ|p̂|ψ〉. For general Hermitian operators A = A† and B = B† we have

2i Im〈ψ|AB|ψ〉 = 〈ψ|[A,B]|ψ〉. (96)

But the imaginary part of a complex number is always smaller than its magnitude and so

Im〈ψ|AB|ψ〉 ≤ |〈ψ|AB|ψ〉|. (97)

Next we use the Schwarz inequality, which in Dirac notations reads

|〈φ|φ′〉| ≤
√
〈φ|φ〉 〈φ′|φ′〉. (98)

In the usual vector notation and for real vector spaces this reads |~a ·~b| ≤ ||~a|| ||~b||, which is obviously true
because ~a ·~b = ||~a|| ||~b|| cosϕ, where ϕ is the angle between the two vectors. Applying the Schwarz inequality
to the states B|ψ〉 and A|ψ〉 on the rhight-hand-side of (97) and then using (96) we obtain

1

2i
〈ψ|[A,B]|ψ〉 ≤

√
〈ψ|A2|ψ〉 〈ψ|B2|ψ〉. (99)

Finally we substitute A = x̂ − x0, B = p̂ − p0 and use [A,B] = i~ to arrive at the Heisenberg uncertainty
relation

~
2
≤
√
〈ψ|(x̂− x0)2|ψ〉︸ ︷︷ ︸

∆X

√
〈ψ|(p̂− p0)2|ψ〉︸ ︷︷ ︸

∆P

.

(100)

The physical content of the Heisenberg uncertainty relation is that the product of the variances of the QM
probability distributions for position and momentum measurements must always be larger than (~/2)2. So
if the state |ψ〉 is such that the variance of the position probability distribution is very small, i.e. we can
determine the position very precisely, the variance of the probability distribution of momentum must be
large enough to satisfy the inequality (100), i.e. very large. So, in a probabilistic sense, we can never know
both the position and the momentum of a particle very precisely.

3.3 Momentum Representation

Momentum eigenstates fulfil p̂|p〉 = p|p〉. We can work out the corresponding wave functions by considering

〈x|p̂|p〉 = −i~ ∂
∂x
〈x|p〉 = p〈x|p〉. (101)

This is a first order ODE with solution

〈x|p〉 = A e
i
~px.

(102)

So the wave function of momentum eigenstates are plane waves! As |〈x|p〉|2 = |A|2 is position independent
a particle in a momentum eigenstates is equally likely to be found anywhere in space when its position is
measured. The constant A is fixed by the normalization condition

〈p|p′〉 = δ(p− p′) , (103)
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which ensures that the resolution of the identity has the form

1 =

∫
dp |p〉〈p|. (104)

We have

〈p|p′〉 =

∫
dx 〈p|x〉〈x|p′〉 =

∫
dx |A|2e

i
~ (p′−p)x = |A|2 2π~ δ(p− p′), (105)

so A = (2π~)−1/2. The momentum representation is obtained by expressing states and operators in terms
of a basis of momentum eigenstates

|ψ〉 =

∫ ∞
−∞

dp 〈p|ψ〉 |p〉 , O =

∫
dp dp′〈p|O|p′〉 |p〉〈p′|. (106)

Using |ψ〉 =
∫∞
−∞ dx 〈x|ψ〉 |x〉 =

∫∞
−∞ dp 〈p|ψ〉 |p〉 we can relate the momentum and position representations

〈p|ψ〉 =

∫ ∞
−∞

dx ψ(x)
e−

i
~px

√
2π~

, 〈x|ψ〉 =

∫ ∞
−∞

dp 〈p|ψ〉 e
i
~px

√
2π~

. (107)

This is precisely the (inverse) Fourier transformation of the wave function!

3.4 Generalization to 3 Dimensions

In three spatial dimensions we use a basis of quantum states |~x〉 of definite position ~x = (x, y, z). These
states fulfil the normalization condition

〈~x|~x′〉 = δ(3)(~x− ~x′) = δ(x− x′)δ(y − y′)δ(z − z′). (108)

The resolution of the identity is

1 =

∫
d3~x |~x〉〈~x|. (109)

A general state can be written as a linear combination of these basis states

|ψ〉 =

∫
d3~x 〈~x|ψ〉︸ ︷︷ ︸

ψ(~x)

|~x〉.

(110)

Now we can define operators corresponding to each of the three components of position

x̂ =

∫
d3~x x |~x〉〈~x| ,

ŷ =

∫
d3~x y |~x〉〈~x| ,

ẑ =

∫
d3~x z |~x〉〈~x| . (111)

By the same kind of argument as in the 1D case we have

V (x̂, ŷ, ẑ)|~x〉 = V (x, y, z)|~x〉, (112)

where V (x, y, z) is to be understood in terms of its Taylor expansion around (0, 0, 0). In D=3 we also have
three components of momentum and can define the associated quantum states |~p〉, which return the result
pα with certainty when the α-component of momentum is measured (α = x, y, z). Their normalization is as
you may have already guessed

〈~p|~p′〉 = δ(3)(~p− ~p′) = δ(px − p′x)δ(py − p′y)δ(pz − p′z). (113)
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Following our construction for D=1 we can define three Hermitian operators associated with the three
components of momentum by

p̂α|~p〉 = pα|~p〉 , α = x, y, z (114)

In the position representation we have

〈~x|p̂α|~x′〉 = −i~ ∂

∂xα
δ(3)(~x− ~x′) , α = x, y, z. (115)

This implies that

〈~x|p̂α|ψ〉 = −i~ ∂

∂xα
ψ(~x) .

(116)

4 Time Evolution in Quantum Mechanics

Newtonian mechanics is about equations of motion for physical quantities. The analogue in QM is time
evolution of quantum states.

4.1 Time dependent Schrödinger equation and Ehrenfest’s theorem

Postulate 3

The time evolution of quantum states is described by the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉,

(117)

where H is the Hamiltonian of the system.

Erwin Schrödinger (Nobel Prize in Physics 1933).
“I insist upon the view that all is waves.”

“I knew of Heisenberg’s theory, of course, but I felt discour-
aged, not to say repelled, by the methods of transcendental
algebra, which appeared difficult to me, and by the lack of
visualizability.” (Schrödinger in 1926)

The more I think about the physical portion of Schrödinger’s
theory, the more repulsive I find it. What Schrödinger
writes about the visualizability of his theory is probably not
quite right, in other words it’s crap (in German “Mist”).”
(Heisenberg, writing to Pauli in 1926).

The associated equation for the bra-state is

−i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H.

(118)

The general rules are

c|ψ〉 −→ c∗〈ψ| , A|ψ〉 −→ 〈ψ|A† .
(119)
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To see what the bra-state corresponding to A|ψ〉 is we expand both the state and the operator in a basis

|ψ〉 =
∑
j

ψj |j〉 , A =
∑
k,l

〈k|A|l〉 |k〉〈l| . (120)

Using 〈l|j〉 = δl,j we then have

A|ψ〉 =
∑
k,l

〈k|A|l〉 ψl |k〉 . (121)

The associated bra state is∑
k,l

(〈k|A|l〉 ψl)∗ 〈k| =
∑
k,l

(〈k|A|l〉)∗ ψ∗l 〈k| =
∑
k,l

〈l|A†|k〉 ψ∗l 〈k| =
∑
l

ψ∗l 〈l|A†
∑
k

|k〉〈k| = 〈ψ|A†. (122)

By combining the TDSEs for |ψ(t)〉 and 〈ψ(t)| we obtain the evolution equation for the expectation values
of (time-independent) operators

−i~ ∂
∂t
〈ψ(t)|O|ψ(t)〉 = 〈ψ(t)|[H,O]|ψ(t)〉 .

(123)

This is called Ehrenfest’s theorem. As a first application of this equation let us consider a free QM particle
with Hamiltonian H = p̂2/(2m), i.e. only kinetic energy. Then

−i~ ∂
∂t
〈ψ(t)|x̂|ψ(t)〉 =

1

2m
〈ψ(t)|[p̂2, x̂]|ψ(t)〉 . (124)

The commutator is worked out using a standard trick

[p̂2, x̂] = p̂2x̂− p̂x̂p̂+ p̂x̂p̂− x̂p̂2 = p̂[p̂, x̂] + [p̂, x̂]p̂ = −2i~p̂. (125)

This tells us that

m
∂

∂t
〈x̂〉 = 〈p̂〉. (126)

This is precisely what we would expect classically (and shows that our definition of momentum operator is
reasonable).

4.2 Time independent Schrödinger equation

The eigenvalue equation for the Hamiltonian is also known as the time-independent Schrödinger equation

H|En〉 = En|En〉 .
(127)

As H is Hermitian we can obtain an orthonormal basis of energy eigenstates and hence write any state as
linear combination

|ψ(t)〉 =
∑
j

ψj(t)|Ej〉 . (128)

Substituting this back into the TDSE we have

i~
∑
j

∂ψj(t)

∂t
|Ej〉 =

∑
j

ψj(t)Ej |Ej〉. (129)

Extracting the amplitudes for |En〉 by acting with 〈En| we have

i~
∂ψn(t)

∂t
= Enψn(t) . (130)
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This first order differential equation is easily solved

ψn(t) = ψn(0)e−
i
~Ent . (131)

In Dirac notations

|ψ(t)〉 =
∑
n

〈En|ψ(0)〉 e−
i
~Ent |En〉 .

(132)

NB 5

Given the solutions of the time-independent Schrödinger equation we can construct the solutions to
the time-dependent Schrödinger equation for a given initial quantum state |ψ(0)〉 using (132). This
is why the study of the TISE is so important!

For energy eigenstates themselves we have

|En, t〉 = e−
i
~Ent |En〉 .

(133)

So energy eigenstates only acquire a phase under time evolution. As a result the probabilities |〈x|En, t〉|2
to find a particle in an energy eigenstate at a given position x are time-independent. This is why energy
eigenstates are also known as stationary states.

4.3 Schrödinger equation in the position representation

A key point is that we can express the TDSE in the position representation

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|H|ψ(t)〉. (134)

This is very useful for Hamiltonians of the form

H =
p̂2

2m︸︷︷︸
kinetic energy

+ V (x̂)︸ ︷︷ ︸
potential energy

. (135)

Given that

〈x|p̂|ψ(t)〉 = −i~∂ψ(x, t)

∂x
(136)

we have

〈x|p̂2|ψ(t)〉 =

∫
dx′ 〈x|p̂|x′〉〈x′|p̂|ψ(t)〉 = −~2

∫
dx′

∂

∂x
δ(x− x′)∂ψ(x′, t)

∂x′
= −~2∂

2ψ(x, t)

∂x2
. (137)

This gives

〈x|H|ψ(t)〉 = − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) . (138)

Substituting this back into (134) we see that for Hamiltonians of the form (135) the TDSE can be represented
as a partial differential equation for the wave function

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) .

(139)
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Now you are starting to see where Schrödinger’s view that “all is waves” comes from! The generalization to
3D is straightforward and we only quote the result

i~
∂ψ(~x, t)

∂t
= − ~2

2m
~∇2ψ(~x, t) + V (~x)ψ(~x, t) .

(140)

In the position representation the TISE reads

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x) .

(141)

Here ψ(x) are the wave functions of energy eigenstates. Many QM text approach the subject using the
position representation on the Schrödinger equation as a starting point.

4.4 Probability Current

The probability density of finding a particle at position ~x at time t is according to Born’s rule is

ρ(~x, t) = |ψ(~x, t)|2 = ψ(~x, t)ψ∗(~x, t) . (142)

Taking the time derivative gives

∂ρ(~x, t)

∂t
= ψ∗(x, t)

∂ψ(~x, t)

∂t
+ ψ(x, t)

∂ψ∗(~x, t)

∂t
. (143)

We now use the TDSE for the wave function (140) and its complex conjugate to rewrite the right-hand side

∂ρ(~x, t)

∂t
=

i~
2m

[
ψ∗(x, t)∇2ψ(~x, t)− ψ(x, t)∇2ψ∗(~x, t)

]
. (144)

The right-hand side of this equation can be written as a divergence

∂ρ(~x, t)

∂t
= −~∇ · ~J(~x, t) , (145)

where ~J(~x, t) is called probability current

~J(~x, t) =
i~
2m

[
ψ(x, t)~∇ψ∗(~x, t)− ψ∗(x, t)~∇ψ(~x, t)

]
. (146)

Eqn (145) takes the form of a continuity equation that expresses the conservation of probability. Its integral
form follows from the divergence theorem

d

dt

∫
V
d3~x ρ(~x, t) = −

∫
V
d3~x ~∇ · ~J(~x, t) = −

∮
∂V
d2~S · ~J(~x, t) , (147)

where ∂V is the boundary of the volume V . So the change in the probability for the particle to be found
inside V is minus the integral over the volume’s bounding surface of the probability flux out of the volume.

Homework 4: Time dependence and the Schrödinger equation

2.1 Write down the time-independent (TISE) and the time-dependent (TDSE) Schrödinger
equations. Is it necessary for the wavefunction of a system to satisfy the TDSE? Under what
circumstances does the wavefunction of a system satisfy the TISE?
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2.2 Why is the TDSE first-order in time, rather than second-order like Newton’s equations of motion?

2.3 A particle is confined in a potential well such that its allowed energies are En = n2E , where
n = 1, 2, . . . is an integer and E a positive constant. The corresponding energy eigenstates are |1〉, |2〉,
. . . , |n〉, . . . At t = 0 the particle is in the state

|ψ(0)〉 = 0.2|1〉+ 0.3|2〉+ 0.4|3〉+ 0.843|4〉.

(a) What is the probability, if the energy is measured at t = 0, of finding a number smaller than 6E?
(b) What is the mean value and what is the rms deviation of the energy of the particle in the state
|ψ(0)〉?
(c) Calculate the state vector |ψ〉 at time t. Do the results found in (a) and (b) for time t remain
valid for arbitrary time t?
(d) When the energy is measured it turns out to be 16E . After the measurement, what is the state
of the system? What result is obtained if the energy is measured again?

2.4 A particle moves in the potential V (x) and is known to have energy En. (a) Can it have well-
defined momentum for some particular V (x)? (b) Can the particle simultaneously have well-defined
energy and position?
2.5 Let ψ(x, t) be the correctly normalized wave function of a particle of mass m and potential energy
V (x). Write down the expressions for the expectation values of (a) x̂; (b) x̂2; (c) p̂x; (d) p̂2

x; (e) the
energy.
What is the probability that the particle will be found in the interval (x1, x2)?

2.6 Consider a quantum mechanical particle with Hamiltonian

H =
p̂2

2m
+ V (x̂),

that is initially prepared in a state |ψ(0)〉. Using the TDSE show that the expectation value of an
operator Q̂ fulfils the following evolution equations

i~
d

dt
〈ψ(t)|Q̂|ψ(t)〉 = 〈ψ(t)|[Q̂,H]|ψ(t)〉.

Consider the particular cases of the position and momentum operators and comment on the resulting
equations

Part II

Wave Mechanics and Oscillators

Erwin with his psi can do
Calculations quite a few. Erich Hückel, freely translated by Felix Bloch.
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5 Wave mechanics

5.1 Free particle in one dimension

Let us start with the case where our QM particle only has kinetic energy. Then the Hamiltonian is

H =
p̂2

2m
. (148)

The TISE reads

− ~2

2m

d2

dx2
ψ(x) = Eψ(x) . (149)

The solutions to this differential equation are the momentum eigenstates

up(x) =
1√
2π~

e
i
~px, (150)

where the energy is given by

Ep =
p2

2m
. (151)

In this case the energy eigenvalues are not quantized. Given the energy eigenstates we are now is a position
to solve the time-dependent Schrödinger equation. We need to adjust our previous result

|ψ(t)〉 =
∑
n

〈En|ψ(0)〉e−
i
~Ent|En〉 (152)

because the energy eigenvalues are continuous rather than discrete here. Using that the energy eigenstates
are also momentum eigenstates we have

|ψ(t)〉 =

∫ ∞
−∞

dp 〈p|ψ(0)〉e−
ip2

2m~ t|p〉. (153)

The corresponding wave function is

〈x|ψ(t)〉 = ψ(x, t) =

∫ ∞
−∞

dp√
2π~

〈p|ψ(0)〉e−
ip2

2m~ t+
i
~px . (154)

Let us consider a state that at time t = 0 corresponds to a Gaussian wave packet

ψ(x, 0) = 〈x|ψ(0)〉 =
1

(2πσ2)
1
4

e−
x2

4σ2
+ i

~p0x . (155)

Going over to the momentum representation we have

〈p|ψ(0)〉 =

∫
dx 〈p|x〉〈x|ψ(0)〉 =

[
2σ2

π~2

] 1
4

e−
σ2

~2 (p−p0)2 . (156)

This describes a superposition of momentum eigenstates with momenta centred around p0 and probability
amplitudes that become very small when |p− p0| � ~

σ . Substituting this back into (154) and carrying out
the integral (how?) we obtain

|ψ(x, t)|2 =
σ√

2π~4|b(t)|4
e
− σ2

2~4|b(t)|4 (x−p0t/m)2
, ~2b2(t) = σ2 +

i~t
2m

. (157)

This describes a Gaussian wave packet moving with velocity p0/m that broadens in time as

σ2(t) = σ2 +

(
~t

2mσ

)2

. (158)

We can understand this by noting that initially there is an uncertainty in momentum (as at time t = 0 we
are dealing with a superposition of momentum eigenstates), which translates into an increasing uncertainty
in position at later times.
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5.2 Infinite square well

Let us consider a QM particle moving in a one-dimensional potential well

V (x) =

{
0 if 0 < x < a

∞ else.
(159)

The TISE for the wave function ψ(x) reads

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) . (160)

As we are interested in finite E solutions the wave function must vanish at x < 0 and x > a. Continuity at
x = 0, a then imposes the boundary conditions

ψ(0) = 0 = ψ(a). (161)

In the interior of the potential we then have

− ~2

2m

d2

dx2
ψ(x) = Eψ(x) . (162)

The general solution is

ψ(x) = A cos(kx) +B sin(kx) , E =
~2k2

2m
. (163)

Imposing the boundary conditions gives A = 0 and the wave number k gets quantized

kn =
πn

a
, n = 1, 2, 3, . . . (164)

The corresponding quantized energies are

En =
~2π2n2

2ma2
. (165)

Normalizing the wave functions by imposing∫ a

0
dx|ψ(x)|2 = 1 , (166)

we arrive at the following result for the energy eigenstates

ψn(x) =

√
2

a
sin

(
πn

a
x

)
. (167)

We note that the overall phase of the wave functions is arbitrary and we fix it to be equal to one. The lowest
energy state is called the ground state. The wave functions ψn(x) are either symmetric or antisymmetric

Figure 6: Wave functions for the 4 lowest energy states in the infinite square well potential.

under reflection around x = a/2.
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5.3 Finite square well

Let us now consider a particle moving in the potential

V (x) =

{
0 if |x| < a

V0 if |x| > a.
(168)

The TISE for the wave function ψ(x) reads

− ~2

2m

d2

dx2
ψ(x) = [E − V (x)]ψ(x) . (169)

Let us first consider the case E < V0. In this case the solution of (169) is

ψ(x) =


A cos(kx) +B sin(kx) if |x| < a ,

Ce−κx + C ′eκx if x > a ,

Deκx +D′e−κx if x < −a ,
(170)

where

E =
~2k2

2m
= V0 −

~2κ2

2m
. (171)

Now we impose

• Normalizability ∫ ∞
−∞

dx |ψ(x)|2 = 1 . (172)

This sets C ′ = D′ = 0, i.e. imposes that the wave function vanishes at x→ ±∞.

• Continuity of ψ(x) at x = ±a, i.e. limε→0 ψ(±a− ε) = limε→0 ψ(±a+ ε)

A cos(ka) +B sin(ka) = Ce−κa ,

A cos(ka)−B sin(ka) = De−κa . (173)

• Continuity of ψ′(x) at x = ±a

Bk cos(ka)−Ak sin(ka) = −Cκe−κa ,
Bk cos(ka) +Ak sin(ka) = Dκe−κa . (174)

Equations (173)and (174) have two types of solutions

(i) B = 0, C = D and k tan(ka) = κ, corresponding to symmetric wave functions ψ(x) = ψ(−x).

(ii) A = 0, C = −D and k cot(ka) = −κ, corresponding to antisymmetric wave functions ψ(x) = −ψ(−x).

The (anti)symmetry of energy eigenstates is a result of a symmetry of the problem under reflection around
x = 0, i.e. x → −x. This symmetry is called parity. Symmetric solutions are said to be even under the
parity transformation (i.e. they map onto themselves), while antisymmetric solutions are odd under parity
(i.e. they map onto minus themselves). What remains to be done is to solve the remaining equations for
the wave numbers, e.g.

k tan(ka) = κ =

√
2mV0

~2
− k2. (175)

We rewrite this slightly as

tan(ka) =

√
W 2

k2a2
− 1 , W =

√
2mV0a2

~2
. (176)
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Figure 7: Solutions of eqn (176) for W = 10.

This equation does not have simple solutions, but we can understand the structure of solutions by plotting
the two sides of the equation as functions of ka. This is done in Fig. 7. We see that for W = 10 there
are 4 solutions to the equation. For larger values of W there will be more solutions, but there will always
be at least one! We call these states bound states, because |ψ(x)|2 drops off very quickly away from the
square well, which means that the particle is most likely to be found inside the well. So in one dimension a
potential well will always have at least one bound state, no matter how small V0 is. Note however that the
probability of finding the particle outside the well is not zero (as it would be classically for energies E < V0)!

Let us now turn to the case E > V0. Now the solutions to the TISE look like

ψ(x) =


A cos(kx) +B sin(kx) if |x| < a ,

C cos(Kx) + C ′ sin(Kx) if x > a ,

D cos(Kx) +D′ sin(Kx) if x < −a ,
(177)

E =
~2k2

2m
=

~2K2

2m
− V0. (178)

In this case the wave functions will not vanish at x→ ±∞ and the spectrum of energies will be continuous.

5.4 Split infinite square well

Next we consider a potential of the form

V (x) = V0δ(x) + VISW(x) ,

VISW(x) =

{
0 if 0 < |x| < a/2

∞ else.
(179)

The TISE reads

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) . (180)

If V0 = 0 we are dealing with an infinite square well, which is now symmetric around x = 0. The
odd-parity energy eigenstates can be read off from our previous solution

ψ2n(x) =

√
2

a
sin

(
2πn

a
x

)
, E2n =

~2π2(2n)2

2ma2
. (181)
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As ψ2n(0) = 0 these wave functions also fulfil the TISE (180) in presence of the additional delta-function
potential!

Using that V (x) vanishes away from x = 0 we conclude that the even-parity eigenstates must have wave
functions of the form

ψ(x) =

{
Aeikx +Be−ikx if 0 < x ≤ a/2 ,
Ae−ikx +Beikx if − a/2 ≤ x < 0 .

(182)

The free parameters are fixed by noting that

• The wave functions must vanish at ±a/2 for finite energy eigenstates, i.e. ψ(±a/2) = 0. This gives

B = −Aeika . (183)

• The wave function must be continuous at x = 0. Our Ansatz fulfils this requirement.

• The derivative of the wave function at x = 0 is determined by integrating the TISE around x = 0∫ ε

−ε
dx

[
−~2ψ′′(x)

2m
+ V0δ(x)ψ(x)− Eψ(x)

]
= 0 . (184)

Using that the wave function is continuous at zero and taking the limit ε → 0 we obtain ψ′(0+) −
ψ′(0−) = 2mV0

~2 ψ(0), which in turn implies

ik(A−B) =
mV0

~2
(A+B) . (185)

We see that the first derivative of the wave function is discontinuous at x = 0. This is a characteristic
feature of delta-function potentials. If we regularize the delta function, e.g. by

δε(x) =
e−x

2/4ε

√
4πε

, (186)

then the wave function and its derivative are continuous at x = 0. The discontinuity of the derivative
arises only in the limit ε→ 0. Substituting (183) leaves us with a quantization condition for k

k cot(ka/2) = −mV0

~2
. (187)

The most interesting case is when V0 becomes very large. Then the right hand side of (187) is very large
and k must be close to one of the singularities of cot(ka/2)

k2n+1 ≈
2nπ

a
− 2nπ

a

2~2

maV0
. (188)

For large V0 our wave functions are thus approximately given by

ψ2n+1(x) ≈
√

2

a
sin

(
2πn

a
|x|
)
, E2n+1 ≈

~2π2(2n)2

2ma2
. (189)

The corrections to the wave functions and energies are proportional to 1/V0. This implies that at large V0

there are pairs of eigenstates with almost degenerate energies but opposite parities. Let us now prepare our
system is the state corresponding to the wave function

Ψ(x, 0) =
ψ2n(x)− ψ2n+1(x)√

2
. (190)
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The probability density to find the particle at position x is

|Ψ(x, 0)|2 ≈

 4
a sin2

(
2πn
a x

)
if − a

2 ≤ x ≤ 0

0 else.
(191)

So to a very good approximation the particle is on the left hand side of the potential well. The time evolution
of the system is given by the time-dependent Schrödinger equation. Using our general result

|ψ(t)〉 =
∑
n

〈En|ψ(0)〉e−
i
~Ent|En〉 , (192)

and going over to the position representation we have

〈x|ψ(t)〉︸ ︷︷ ︸
Ψ(x,t)

=
∑
n

〈En|ψ(0)〉e−
i
~Ent 〈x|En〉︸ ︷︷ ︸

ψn(x)

. (193)

For our particular choice of initial state this becomes

Ψ(x, t) =
1√
2

[
e−

i
~E2ntψ2n(x)− e−

i
~E2n+1tψ2n+1(x)

]
. (194)

Consider now the probability density to find the particle at position x at time t∗ = π~/(E2n−E2n+1). This
is a late time as the splitting between the two energy levels is small. We have

|Ψ(x, t∗)|2 =
|ψ2n(x) + ψ2n+1(x)|2

2
≈

 4
a sin2

(
2πn
a x

)
if 0 ≤ x ≤ a

2

0 else.
(195)

To a very good approximation the particle is now in the right hand side of the well! This is a purely quantum
mechanical effect, which we refer to as tunnelling through a potential barrier.

5.5 Scattering of free particles

Next we consider a potential step

V (x) =

{
0 if |x| > a

V0 if |x| < a.
(196)

The corresponding TISE

− ~2

2m

d2ψ(x)

dx2
+ [V (x)− E]ψ(x) = 0 (197)

is solved by considering the regions x < −a, |x| < a and x > a separately. For E < V0 energy eigenstates
are of the form

ψ(x) =


Deikx + re−ikx if x < −a
Ae−κx +Beκx if |x| < a

teikx + Ce−ikx if x > a ,

(198)

where k and κ are related to the energy eigenvalue by

E =
~2k2

2m
= V0 −

~2κ2

2m
. (199)

We see that the wave functions do not vanish at ±∞ and are not normalizable to one. We now specify
solutions such that C = 0 and D = 1 as these have a nice physical interpretation. For C = 0 there is
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no left-moving wave at x > a1, and the wave functions can be interpreted as an incident plane wave with
amplitude 1 that gets partially reflected by the barrier (re−ikx) and partially transmitted (teikx).

The free parameters in (198) are fixed by the four requirements that the wave function and its first
derivative are continuous at x = ±a. This gives the following four equations for the four unknowns A, B, r,
and t

e−ika + reika = Aeκa +Be−κa ,

teika = Ae−κa +Beκa ,

ik[e−ika − reika] = κ[−Aeκa +Be−κa] ,

ikteika = κ[−Ae−κa +Beκa]. (200)

After some algebra we find

t =
2iκke−2ika

(k2 − κ2) sinh(2κa) + 2ikκ cosh(2κa)
,

r =
e−2ika(κ2 + k2) sinh(2κa)

(k2 − κ2) sinh(2κa) + 2ikκ cosh(2κa)
. (201)

We note that
|r|2 + |t|2 = 1, (202)

which corresponds to the conservation of probability in the scattering interpretation mentioned above. A
simple way of seeing that |r|2 + |t|2 = 1 is to consider the probability currents for x < −a and x > a. We
have

Jx<−a =
~k
m

[1− |r|2] , Jx>a =
~k
m
|t|2 . (203)

These must be equal by conservation of probability (consider the integral form (147) of the continuity
equation and take as the volume e.g. the interval [−2a, 2a]). The transmission probability is

|t|2 =
4k2κ2

4κ2k2 + (k2 + κ2)2 sinh2(2κa)
. (204)

Transmission includes the possibility that the incoming particle failed to interact with the potential barrier.
To isolate the possibility of scattering to occur we write the amplitude of the outgoing wave as t = 1 + T ,
where the 1 corresponds to the possibility of passing through undisturbed and T representing actual forward
scattering. The total scattering cross section is defined as the sum of the probabilities for forwards and
backwards scattering

σ = |T |2 + |r|2 = |1− t|2 + |r|2. (205)

This is a good point to elaborate a bit more on continuity conditions for the derivative of the wave function.
In our example the first derivative is continuous. Let us now however consider the limit a → 0, V0 → ∞
such that 2aV0 = Vδ is kept fixed. Let us denote this limit as limδ. In this limit our potential is like a
delta-function and hence no longer “nice” at x = 0. The derivative of the wave functions behaves as

ψ′(0−) = ik limδ(1− r) =
mVδ/~2

ik −mVδ/~2
,

ψ′(0+) = ik limδt =
ik

ik −mVδ/~2
. (206)

So in the limit the first derivative is no longer continuous. Its jump at x = 0 is

ψ′(0+)− ψ′(0−) =
ik(2mVδ/~2)

ik −mVδ/~2
=

2mVδ
~2

ψ(0). (207)

1eikx corresponds to a right-moving wave as can be seen by including the time dependence imposed by the TDSE: eikx−i
~k2

2m
t.

The points of constant phase can be seen to move rightwards.
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5.6 Resonant Scattering

Scattering experiments are widely used to probe the internal structure of atomic nuclei and “elementary”
particles. We will now consider a toy model that explains how the structure of the scattering cross section
reflects the existence of long-lived bound states inside the nucleus. To that end we consider particles moving
in a one dimensional potential of the form

V (x) = Vδ [δ(x+ a) + δ(x− a)] . (208)

We aim to construct finite energy eigenstates of the form

ψ(x) =


eikx + re−ikx if x < −a
Aeikx +Be−ikx if |x| < a

teikx if x > a.

(209)

The energy of such a solution is

E(k) =
~2k2

2m
. (210)

Such solutions can be interpreted in terms of a right-moving wave with unit amplitude that scatters off the
potential and eventually generates a reflected left-moving wave at x < −a and a transmitted right-moving
wave at x > a. The wave functions (209) must fulfil the following conditions

• Continuity of the wave function at x = ±a. This gives

e−ika + reika = Ae−ika +Beika ,

teika = Aeika +Be−ika . (211)

These can be cast in matrix form(
e−ika eika

eika e−ika

)
︸ ︷︷ ︸

M1

(
A
B

)
= eika

(
r
t

)
+ e−ika

(
1
0

)
(212)

• Jump discontinuity of the first derivatives at the positions of the delta-functions. These conditions are
again obtained by integrating the TISE over infinitesimal intervals around ±a, e.g.∫ a+ε

a−ε
dx

[
− ~2

2m

d2ψ(x)

dx2
+ Vδδ(x− a)ψ(x)− Eψ(x)

]
= 0 . (213)

This gives two equations

ψ′(a+ 0)− ψ′(a− 0) =
2m

~2
Vδψ(a) ,

ψ′(−a+ 0)− ψ′(−a− 0) =
2m

~2
Vδψ(−a) . (214)

These two equations can be written in matrix form as(
(v0 − ik)e−ika (v0 + ik)eika

(v0 + ik)eika (v0 − ik)eika

)
︸ ︷︷ ︸

M2

(
A
B

)
= ikeika

(
r
t

)
− ike−ika

(
1
0

)
, (215)

where we have defined

v0 =
2mVδ
~2

. (216)
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Eliminating A and B we can extract a system of equations for only r and t[
M2M

−1
1 − ik

(
1 0
0 1

)](
r
t

)
= e−2ika

(
k csc(2ka)

−ik − v0 − k cot(2ka)

)
. (217)

The solution of this system is

t =
4k2

(2k + iv0)2 + e4ikav2
0

,

r =
v0[e−2ika(v0 − 2ik)− e2ika(v0 + 2ik)]

(2k + iv0)2 + e4ikav2
0

. (218)

The total scattering cross section is defined as

σ = |t− 1|2 + |r|2 = 2 +
4k2

(
−4k2 − v2

0 cos(4ka) + v2
0

)
8k4 + 4k2v2

0 − v2
0

(
v2

0 − 4k2
)

cos(4ka) + 4kv3
0 sin(4ka) + v4

0

. (219)

We see that at certain values of k (and hence at particular energies) the cross section is strongly enhanced.

Figure 8: Left: Total scattering cross section σ as a function of ka for v0a = 10. Right: Total scattering
cross section σ as a function of energy E for v0a = 10 (E0 = ~2/(2ma2)).

To understand the origin of this phenomenon it is useful to consider the limit of an impenetrable delta-
function potential Vδ →∞. In this case we have v0a� 1 and the “resonances” occur at

kna ≈
πn

2
, n = 1, 2, 3 . . . (220)

These correspond to energies

En =
~2k2

n

2m
=

~2π2n2

8ma2
. (221)

For very large values of Vδ we basically have a infinite square well (as the wave functions must vanish at
±a). We already know that in the latter stationary states occur at energies, cf. (165)

EISW
n =

~2(πn)2

2m(2a)2
=

~2(πn)2

8ma2
, (222)

where we have taken into account that the width of the well is 2a. These are exactly the energies at which
the total cross section has spikes! The interpretation is now clear: for special energies the cross section is
large because the particle can get temporarily trapped between the barriers, until after some time it escapes
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to the left or the right. We say that there is a long-lived bound state between the barriers at that energy.
So the structure of the total cross section tells us about the energy levels of such long-lived bound states.
Long-lived bound states are related to certain types of radioactive decay.

In the case where the peaks in the cross section are very narrow, it follows from our explicit expression
for σ that they are approximately of the form

σ(E ≈ ER) ≈ const +
2(Γ/2)2

(Γ/2)2 + (E − ER)2
, (223)

where ER is the energy at which the peak is centred. The form (223) is called Breit-Wigner cross section
and is used widely to fit experimental data. It can be shown that the parameter Γ is inversely related to
the time it takes for the particle to escape from inside the well.

Eugene Wigner (Nobel Prize in Physics 1963).
“Where in the Schrödinger equation do you put the joy of
being alive?”

Wigner is also known for not being given tenure at Prince-
ton University in the 1930ies.

Homework 5: Wave Mechanics

2.7 Particles move in the potential

V (x) =

{
0 for x < 0

V0 for x > 0
.

Particles of mass m and energy E > V0 are incident from x = −∞. Show that the probability that a
particle is reflected is (

k −K
k +K

)2

,

where k ≡
√

2mE/~ andK ≡
√

2m(E − V0)/~. Show directly from the time-independent Schrödinger
equation that the probability of transmission is

4kK

(k +K)2

and check that the flux of particles moving away from the origin is equal to the incident particle flux.

2.8 Show that the energies of bound, odd-parity stationary states of the square potential well

V (x) =

{
0 for |x| < a

V0 > 0 otherwise
,

are governed by

cot(ka) = −

√
W 2

(ka)2
− 1 where W ≡

√
2mV0a2

~2
and k2 = 2mE/~2.
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Show that for a bound odd-parity state to exist, we require W > π/2.

2.9 A free particle of energy E approaches a square, one-dimensional potential well of depth V0 and
width 2a. Show that the probability of being reflected by the well vanishes when Ka = nπ/2, where
n is an integer and K = (2m(E + V0)/~2)1/2. Explain this phenomenon in physical terms.

2.10 A particle of energy E approaches from x < 0 a barrier in which the potential energy is
V (x) = Vδδ(x). Show that the probability of its passing the barrier is

Ptun =
1

1 + (K/2k)2
where k =

√
2mE

~2
, K =

2mVδ
~2

.

2.11 Given that the wavefunction is ψ = Aei(kz−ωt) +Be−i(kz+ωt), where A and B are constants, show
that the probability current density is

J = v
(
|A|2 − |B|2

)
ẑ,

where v = ~k/m. Interpret the result physically.

2.12 Consider a free particle in one dimension with Hamiltonian

H =
p̂2

2m
. (224)

Let the wave function of the particle at time t = 0 be a Gaussian wave packet

ψ(x, 0) = 〈x|ψ(0)〉 =
1

(2πσ2)
1
4

e−
x2

4σ2
+ i

~p0x . (225)

Show that in the momentum representation we have

〈p|ψ(0)〉 =

∫
dx 〈p|x〉〈x|ψ(0)〉 =

[
2σ2

π~2

] 1
4

e−
σ2

~2 (p−p0)2 . (226)

Comment on the relation between the forms of the state in the position and momentum representations
as a function of σ. By solving the TDSE show that the probability distribution function at time t
can be written in the form

|ψ(x, t)|2 =
σ√

2π~2|b(t)|2
e
− σ2

2~2|b(t)|2 (x−p0t/m)2
, (227)

and derive the form of the function b(t). Explain what happens physically to the particle as time
evolves.

6 Harmonic Oscillators

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing
levels of abstraction. Sidney Coleman.

Harmonic oscillations are ubiquitous in Physics as they describe small excursions from points of equilib-
rium. QM harmonic oscillators are extremely important as they are the basic building blocks of relativistic
Quantum Field Theories and the quantum theory of many-particle systems that describe solids.
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The Hamiltonian for a one dimensional harmonic oscillator is

H =
p̂2

2m
+

1

2
mω2x̂2. (228)

The corresponding TISE in the position representation reads

− ~2

2m

d2ψ(x)

dx2
+
mω2

2
x2ψ(x) = Eψ(x). (229)

One way of approaching the QM harmonic oscillator is to solve this differential equation by the Frobenius
method. Here we will follow a different approach and employ operator methods. We start by introducing
so called creation and annihilation operators by

a =

√
mω

2~
x̂+

i√
2mω~

p̂ ,

a† =

√
mω

2~
x̂− i√

2mω~
p̂ . (230)

Here a† is the Hermitian conjugate operator to a. Creation/annihilation operators fulfil the following
commutation relations

[a, a†] = − i

2~
[x̂, p̂] +

i

2~
[p̂, x̂] = 1.

(231)

The utility of these operators is that the Hamiltonian can be expressed in a simple way in terms of them.
We have

a†a =
mω

2~
x̂2 +

1

2m~ω
p̂2 − i

2~
[p̂, x̂] , (232)

which tells us that

H = ~ω
(
a†a+

1

2

)
.

(233)

Here

N̂ = a†a (234)

is referred to as the number operator. In order to proceed we will require the commutation relations of the
creation/annihilation operators with the Hamiltonian (or equivalently the number operator)

[a, N̂ ] = a , [a†, N̂ ] = −a†. (235)

These are established as follows

[a, N̂ ] = aa†a− a†aa = [a, a†]a = a . (236)

Now assume that we know an eigenstate |E〉 of H

H|E〉 = E|E〉. (237)

We will now show that both a†|E〉 and a|E〉 are eigenstates of H as well. Consider

Ha†|E〉 =
(

[H, a†] + a†H
)
|E〉 =

(
~ωa† + a†E

)
|E〉 = (E + ~ω) a†|E〉. (238)

That’s a bingo: a†|E〉 is an eigenstate with energy E + ~ω. Similarly we have

Ha|E〉 = ([H, a] + aH) |E〉 = (−~ωa+ aE) |E〉 = (E − ~ω) a|E〉. (239)
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So a|E〉 is an eigenstate with energy E − ~ω. Finally we consider the “length” 〈E|a†a|E〉 of the ket vector
a|E〉

0 ≤ 〈E|a†a|E〉 = 〈E| H
~ω
− 1

2
|E〉 =

E

~ω
− 1

2
. (240)

This tells us that the energy eigenvalues are bounded from below

E ≥ ~ω
2
. (241)

This means that there is an eigenstate with lowest energy E0, which we denote by |0〉. Using (239) we have

Ha|0〉 = (E0 − ~ω)a|0〉, (242)

so either a|0〉 is an eigenstate with energy E0 − ~ω or a|0〉 = 0. The former is impossible because E0 is by
construction to lowest energy eigenvalue, so we must have

a|0〉 = 0. (243)

This in turn tell us that the ground state energy is

H|0〉 =
~ω
2
|0〉 ⇒ E0 =

~ω
2
. (244)

This is the first interesting result: the ground state energy of the QM harmonic oscillator is not zero, but
E0 = ~ω

2 . This is called the zero-point energy. Using (238) repeatedly we can construct eigenstates of the
form

|n〉 =
1

Nn
(a†)n|0〉 , (245)

where Nn is a normalization constant. The energy of the states (245) is En = E0 + n~ω as each a† adds an
energy ~ω by virtue of (238), i.e.

En = ~ω
(
n+

1

2

)
.

(246)

We now observe that

[a, (a†)n] = a(a†)n − (a†)na = [a, a†](a†)n−1 + a†[a, a†](a†)n−2 + (a†)2[a, a†](a†)n−3 + . . .

= n(a†)n−1, (247)

which implies that
a|n〉 = αn|n− 1〉 . (248)

The constant αn is most easily calculated by considering

〈n|a†a|n〉 = |αn|2

= 〈n|N̂ |n〉 = n. (249)

Using that we can choose our normalization constants to be real we thus have

a|n〉 =
√
n|n− 1〉.

(250)

The analogous relation for the creation operator is

a†|n〉 =
√
n+ 1|n+ 1〉.

(251)
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It is established by noting that
a†|n〉 = βn|n+ 1〉 (252)

and then calculating
〈n|aa†|n〉 = |βn|2 = 〈n|N̂ + [a, a†]|n〉 = n+ 1. (253)

Using (251) repeatedly we have
(a†)n|0〉 =

√
n!|n〉 , (254)

which gives the normalization constant

Nn =
√
n!.

(255)

Nice.

6.1 Ground state of the Quantum Harmonic Oscillator

We now turn to a more detailed analysis of the ground state and its properties. Our starting point is the
fact the |0〉 is annihilated by a

a|0〉 = 0 =

[√
mω

2~
x̂+

i√
2mω~

p̂

]
|0〉. (256)

In the position representation this becomes

0 = 〈x|a|0〉 = 〈x|
[√

mω

2~
x̂+

i√
2mω~

p̂

]
|0〉

=

∫
dx′ 〈x|

[√
mω

2~
x+

i√
2mω~

p̂

]
|x′〉〈x′|0〉

=

√
mω

2~

∫
dx′ 〈x|x̂|x′〉︸ ︷︷ ︸

xδ(x−x′)

〈x′|0〉+
i√

2mω~

∫
dx′ 〈x|p̂|x′〉︸ ︷︷ ︸

−i~ d
dx
δ(x−x′)

〈x′|0〉

=

[√
mω

2~
x+

~√
2mω~

d

dx

]
〈x|0〉︸ ︷︷ ︸
ψ0(x)

. (257)

This is a first order differential equation for the ground state wave function ψ0(x). Its normalized solution
is

ψ0(x) =
1

(2π`2)
1
4

e−
x2

4`2 , ` =

√
~

2mω
.

(258)

We see that the ground state wave function is a Gaussian centred around zero. Its energy E0 = ~ω
2 is larger

than zero, in contrast to the lowest energy configuration of a classical harmonic oscillator. The existence
of a zero-point energy is a direct consequence of the Heisenberg uncertainty relation. In order to have zero
energy our quantum mechanical particle would need to have neither potential energy, i.e. be localized at
x = 0, nor kinetic energy, i.e. have zero momentum. These two requirements cannot be met simultaneously
because of the uncertainty relation.

We now turn to the calculation of ground state expectation values. We have

〈0|x̂|0〉 =

√
~

2mω
〈0|a+ a†|0〉 = 0 ,

〈0|p̂|0〉 = −i
√
m~ω

2
〈0|a− a†|0〉 = 0 , (259)
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where we have used that a|0〉 = 0 = 〈0|a†. This means that on average the particle in the ground state of
our harmonic oscillator is located at x = 0 and has zero momentum. The variances are

〈0|x̂2|0〉 =
~

2mω
〈0|(a+ a†)2|0〉 =

~
2mω

〈0|aa†|0〉 =
~

2mω
〈0|[a, a†]|0〉 =

~
2mω

,

〈0|p̂2|0〉 = −m~ω
2
〈0|(a− a†)2|0〉 =

m~ω
2
〈0|aa†|0〉 =

m~ω
2

. (260)

Putting everything together we have

∆x∆p =
~
2
.

(261)

This means that the ground state of the harmonic oscillator saturates the Heisenberg uncertainty relation,
i.e. it is a state of minimal uncertainty.

6.2 Excited states of the Quantum Harmonic Oscillator

We now turn to the wave functions for excited states. For the first excited state we have

ψ1(x) = 〈x|1〉 = 〈x|a†|0〉 = 〈x|
[√

mω

2~
x̂− i√

2mω~
p̂

]
|0〉

=

[
x

2`
− ` d

dx

]
〈x|0〉

=
1

(2π`2)
1
4

x

`
e−

x2

4`2 . (262)

For the higher excited states we have the following recurrence relation

ψn(x) = 〈x|n〉 =
1√
n
〈x|a†|n− 1〉

=
1√
n

[
x

2`
− ` d

dx

]
〈x|n− 1〉︸ ︷︷ ︸
ψn−1(x)

. (263)

Using this repeatedly we have

ψn(x) =
1√
n!

[
x

2`
− ` d

dx

]n
ψ0(x) ≡ 1√

n!
fn(x)ψ0(x) , (264)

where fn(x) is some polynomial in x. Substituting (264) into (263) we obtain a recurrence relation for fn(x)

fn(x) =
x

`
fn−1(x)− `f ′n−1(x) , f0(x) = 1 . (265)

Comparing this with the recurrence relation of the so-called Hermite polynomials Hn(z)

Hn(z) = 2zHn−1(z)−H ′n−1(z) , H0(z) = 1 , (266)

we conclude that

fn(x) =
1

2n/2
Hn

(
x√
2`

)
. (267)

This gives our final result

ψn(x) =
1√
n!2n

Hn

(
x√
2`

)
ψ0(x).

(268)

The first few Hermite polynomials are

H0(z) = 1 , H1(z) = 2z , H2(z) = 4z2 − 2 , H3(z) = 8z3 − 12z. (269)

From the properties of the Hermite polynomials it follows that
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• ψ2n(x) are even under parity x→ −x, i.e. ψ2n(−x) = ψ2n(x).

• ψ2n+1(x) are odd under parity x→ −x, i.e. ψ2n+1(−x) = −ψ2n+1(x).

• ψn(x) has n nodes.

Expectation values in excited states of the harmonic oscillator can be calculated from the following

〈n|a|n〉 = 0 , 〈n|a†|n〉 = 0 ,

〈n|a†a|n〉 = n , 〈n|aa†|n〉 = n+ 1 , 〈n|(a†)2|n〉 = 0 = 〈n|a2|n〉. (270)

Using these we can easily show that

〈n|x̂|n〉 = 0 = 〈n|p̂|n〉 ,

〈n|x̂2|n〉 =
~
mω

(
n+

1

2

)
, 〈n|p̂2|n〉 = ~mω

(
n+

1

2

)
(271)

The product of uncertainties is thus

∆x ∆p = ~
(
n+

1

2

)
. (272)

This tells us that only the ground state is a state of minimal uncertainty, and the uncertainties are larger
in highly excited states.

6.3 What oscillates in the quantum harmonic oscillator?

Let us now consider a harmonic oscillator initially prepared in a state |ψ(0)〉

|ψ(0)〉 =
∞∑
n=0

〈n|ψ(0)〉︸ ︷︷ ︸
an

|n〉 . (273)

The TDSE tells us that at time t the state of the system will be

|ψ(t)〉 =

∞∑
n=0

an e
−iωt(n+ 1

2
) |n〉 . (274)

The average position of our particle as a function of time is then given by the expectation value

〈ψ(t)|x̂|ψ(t)〉 =
∞∑

n,m=0

a∗mane
iωt(m−n)〈m|x̂|n〉 . (275)

Matrix elements of the position operator are readily worked out using (250), (251) and x̂ = `[a+ a†]

〈m|x̂|n〉 = `
[√
nδm,n−1 +

√
n+ 1δm,n+1

]
. (276)

Substituting (276) into (275) we have

〈ψ(t)|x̂|ψ(t)〉 = `
∞∑
n=1

√
n
[
ana

∗
n−1e

−iωt + an−1a
∗
ne
iωt
]

=
∞∑
n=1

bn cos(ωt+ an) , (277)

where 2
√
n`a∗nan−1 = bn exp(iφn). Eqn (277) proves that if we prepare the harmonic oscillator in a generic

initial state |ψ(0)〉 the expectation value of position oscillates with frequency ω. This is reassuring.
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6.4 Quantum vs classical harmonic oscillator

The solution of the equations of motion for the classical harmonic oscillator is

x(t) = x0 sin(ωt) , E =
mω2

2
x2

0 . (278)

Defining the probability density of finding the classical harmonic oscillator at position x by

Pcl(x)dx = 2
dt

T
, T =

2π

ω
, (279)

we have

Pcl(x) =
1

π
√
x2

0 − x2
=

1

2π`
√

E
~ω −

x2

4`2

(280)

In Fig. 9 we compare Pcl(x) to the probability distribution of a quantum harmonic oscillator at the same
energy E100 = 100.5~ω. We observe that the quantum mechanical probability is a strongly oscillatory func-

Figure 9: Probability distribution in a stationary state of the harmonic oscillator with n = 100.

tion with oscillations occurring on a length scale ∼ `/
√
n. Averaging the quantum mechanical probability

distribution over a very small range approaches the classical probability distribution in the large-n limit.

Aside 4: Coherent States

There are other states in the harmonic oscillator problem that are of great interest. Consider the
eigenvalue equation for the annihilation operator

a|α〉 = α|α〉. (281)

These are called coherent states for reasons that will become clear shortly. Recalling that

a =
x̂

2`
+
i`

~
p̂ , (282)

we can turn (281) into a differential equation by going to the position representation

〈x|a|α〉 = α〈x|α〉

=
x

2`
〈x|α〉+ `

d

dx
〈x|α〉. (283)

This is solved by

Φα(x) = 〈x|α〉 =
1

(2π`2)1/4
e−

(x−2`α)2

4`2 . (284)
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So the wave functions of coherent states are Gaussians centred at positions 2`α. We can express the
coherent states in terms of the energy eigenstates (which after all form a basis) as follows. Using the
eigenvalue equation together with (251) we obtain a recurrence relation

〈n|a|α〉 = α 〈n|α〉 =
√
n+ 1〈n+ 1|α〉. (285)

This is solved by

〈n|α〉 =
αn√
n!
〈0|α〉. (286)

This provides us with the desired expansion in terms of energy eigenstates

|α〉 =
∞∑
n=0

αn√
n!
〈0|α〉 |n〉. (287)

We note that coherent states are particular superpositions involving all energy eigenstates. We have

〈0|α〉 =

∫ ∞
−∞

dx Φα(x)Ψ∗0(x) = e−
α2

2 . (288)

What makes coherent states special is their time evolution. Using the expansion in terms of energy
eigenstates we have

|α, t〉 =
∞∑
n=0

αn√
n!
〈0|α〉 e−

i
~Ent|n〉. (289)

Using that En = ~ω(n+ 1/2) we have

|α, t〉 = e−i
ωt
2

∞∑
n=0

(
αe−iωt

)n
√
n!

〈0|αe−iωt〉
〈0|αe−iωt〉

〈0|α〉 |n〉,

= e−i
ωt
2

e−α
2/2

e−(αe−iωt)2/2
|αe−iωt〉 , (290)

where we have used (288) for both 〈0|α〉 and 〈0|αe−iωt〉. The corresponding wave functions are

Φα(x, t) = Φαt(x)e−i
ωt
2 e−

α2

2
(1−e2iωt). (291)

Here comes the joke: the probability density |Φα(x, t)|2 of a coherent state looks like a Gaussian
wave-packet that oscillates with frequency ω while precisely retaining its shape!

Aside 5: Solving the Schrödinger equation numerically

Most Schrödinger equations cannot be solved exactly in the way we have done in our various examples.
Therefore one typically resorts to numerical solutions. To be specific, let’s consider the following
example

H =
p̂2

2m
+

1

2
mω2x̂2 + λx̂4 ≡ H0 + λx̂4 , λ > 0. (292)

Let’s say that we are interested in determining the ground state wave function of this Hamiltonian.
One way of doing this is to use our knowledge of the eigenstates of the harmonic oscillator part H0

H0|n〉 = ~ω(n+
1

2
)|n〉. (293)
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Using that these states form an orthonormal basis of the space of quantum states we have

1 =
∞∑
n=0

|n〉〈n|, (294)

and therefore
H = 1H1 =

∑
n,m

〈m|H|n〉 |m〉〈n|. (295)

The eigenstates |ψn〉 of H can also be expressed in this basis

|ψn〉 =
∑
m

〈m|ψn〉 |m〉. (296)

The matrix elements of the Hamiltonian in this basis are

〈m|H|n〉 = ~ω(n+
1

2
)δn,m + λ〈m|x̂4|n〉. (297)

The matrix elements of the position operator can be determined either numerically by working out
the integrals

〈m|x̂4|n〉 =

∫ ∞
−∞

dx
[
ψ(0)
m (x)

]∗
x4ψ(0)

n (x), (298)

where ψ
(0)
n (x) are the harmonic oscillator wave functions, or by using our creation/annihilation oper-

ator algebra

〈m|x̂4|n〉 = `4〈m|(a+ a†)4|n〉

= `4
[√

n(n− 1)(n− 2)(n− 3)δm,n−4 + (4n− 2)
√
n(n− 1)δm,n−2

+(6n2 + 6n+ 3)δm,n +
√

(n+ 1)(n+ 2)(4n+ 6)δm,n+2

+
√

(n+ 1)(n+ 2)(n+ 3)(n+ 4)δm,n+4

]
≡ `4Vmn. (299)

The idea is now to truncate the sums in (295) by introducing a cutoff N . This turns H into an
(N + 1)× (N + 1) matrix

Hnm = ~ω

(n+
1

2
)δn,m +

λ`4

~ω︸︷︷︸
µ

Vnm

 , n,m = 0, . . . , N. (300)

We now simply diagonalize the (dimensionless) matrix H/(~ω) numerically and obtain approximate
values for the energies and eigenstates of H. We increase the cutoff N until the ground state energy
and wave function no longer change within our desired numerical accuracy. For example, taking
µ = 0.1 and N = 10 gives

E0 ≈ 0.668812~ω ,

|ψ0〉 ≈ −0.986914|0〉+ 0.160316|2〉 − 0.0133936|4〉 − 0.0086538|6〉+ 0.0064238|8〉 − 0.00223485|10〉.
(301)

Increasing the cutoff to N = 20 gives

E0 ≈ 0.668773~ω ,

|ψ0〉 ≈ −0.986896|0〉+ 0.160386|2〉 − 0.0134396|4〉 − 0.00875891|6〉+ 0.00682899|8〉
−0.00299289|10〉+ 0.000832743|12〉 − 0.0000103442|14〉 − 0.000169943|16〉
+0.000129011|18〉 − 0.0000507885|20〉 (302)

You get the idea. In general we choose an appropriate basis of states in which to express our Hamil-
tonian of interest and carry out the analogous procedure.
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Homework 6: The simple harmonic oscillator

3.1 After choosing units in which everything, including ~ = 1, the Hamiltonian of a harmonic oscillator
may be written Ĥ = 1

2(p̂2 + x̂2), where [x̂, p̂] = i. Show that if |ψ〉 is a ket that satisfies H|ψ〉 = E|ψ〉,
then

1

2
(p̂2 + x̂2)(x̂∓ ip̂)|ψ〉 = (E ± 1)(x̂∓ ip̂)|ψ〉.

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.

3.2 Given that â|n〉 = α|n−1〉 and En = (n+ 1
2)~ω, where the annihilation operator of the harmonic

oscillator is

â ≡ mωx̂+ ip̂√
2m~ω

,

show that α =
√
n. Hint: consider |â|n〉|2.

3.3 The pendulum of a grandfather clock has a period of 1 s and makes excursions of 3 cm either
side of dead centre. Given that the bob weighs 0.2 kg, around what value of n would you expect its
non-negligible quantum amplitudes to cluster?

3.4 Show that the minimum value of E(p, x) ≡ p2/2m + 1
2mω

2x2 with respect to the real numbers
p, x when they are constrained to satisfy xp = 1

2~, is 1
2~ω. Explain the physical significance of this

result.

3.5 How many nodes are there in the wavefunction 〈x|n〉 of the nth excited state of a harmonic
oscillator?

3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is
〈x|2〉 = constant × (x2/`2 − 1)e−x

2/4`2 , where ` ≡
√

~/2mω and find the normalising con-
stant.

3.7 Use

x̂ =

√
~

2mω
(â+ â†) = `(â+ â†)

to show for a harmonic oscillator that in the energy representation the operator x̂ is

x̂jk = `



0
√

1 0 0 . . .√
1 0

√
2 0

0
√

2 0
√

3 · · ·√
3 . . .

. . . . . . . . . . . .
. . . 0

√
n− 1 . . .√

n− 1 0
√
n√

n 0
√
n+ 1 · · ·√

n+ 1 0
· · · · · · · · · · · · · · ·


Calculate the same entries for the matrix p̂jk.

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency ω is

|ψ〉 =
1

2
|N − 1〉+

1√
2
|N〉+

1

2
|N + 1〉.
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Calculate the expectation value of x as a function of time and interpret your result physically in as
much detail as you can.

Homework 7: More problems on basic quantum mechanics

3.9 A three-state system has a complete orthonormal set of states |1〉, |2〉, |3〉. With respect to this
basis the operators Ĥ and B̂ have matrices

Ĥ = ~ω

1 0 0
0 −1 0
0 0 −1

 B̂ = b

1 0 0
0 0 1
0 1 0

 ,

where ω and b are real constants.
(a) Are Ĥ and B̂ Hermitian?
(b) Write down the eigenvalues of Ĥ and find the eigenvalues of B̂. Solve for the eigenvectors of both
Ĥ and B̂. Explain why neither matrix uniquely specifies its eigenvectors.
(c) Show that Ĥ and B̂ commute. Give a basis of eigenvectors common to Ĥ and B̂.

3.10 A system has a time-independent Hamiltonian that has spectrum {En}. Prove that the
probability Pk that a measurement of energy will yield the value Ek is is time-independent. Hint:
you can do this either from Ehrenfest’s theorem, or by differentiating 〈Ek, t|ψ〉 w.r.t. t and using the
TDSE.

3.11 Let ψ(x) be a properly normalised wavefunction and Q̂ an operator on wavefunctions. Let {qr}
be the spectrum of Q̂ and {ur(x)} be the corresponding correctly normalised eigenfunctions. Write
down an expression for the probability that a measurement of Q will yield the value qr. Show that∑

r P (qr|ψ) = 1. Show further that the expectation of Q is 〈Q〉 ≡
∫∞
−∞ ψ

∗Q̂ψ dx.

3.12 (a) Find the allowed energy values En and the associated normalized eigenfunctions φn(x) for a
particle of mass m confined by infinitely high potential barriers to the region 0 ≤ x ≤ a.
(b) For a particle with energy En = ~2n2π2/2ma2 calculate 〈x〉.
(c) Without working out any integrals, show that

〈(x− 〈x〉)2〉 = 〈x2〉 − a2

4
.

Hence find 〈(x− 〈x〉)2〉 using the result that
∫ a

0 x
2 sin2(nπx/a) dx = a3(1/6− 1/4n2π2).

(d) A classical analogue of this problem is that of a particle bouncing back and forth between two
perfectly elastic walls, with uniform velocity between bounces. Calculate the classical average values
〈x〉c and 〈(x− 〈x〉)2〉c, and show that for high values of n the quantum and classical results tend to
each other.

3.13 A Fermi oscillator has Hamiltonian Ĥ = f̂ †f̂ , where f̂ is an operator that satisfies

f̂2 = 0, f̂ f̂ † + f̂ †f̂ = 1.

Show that Ĥ2 = Ĥ, and thus find the eigenvalues of Ĥ. If the ket |0〉 satisfies Ĥ|0〉 = 0 with 〈0|0〉 = 1,
what are the kets (a) |a〉 ≡ f̂ |0〉, and (b) |b〉 ≡ f̂ †|0〉?
In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible
value of the momentum of each particle type. A boson is an excitation of a harmonic oscillator, while
a fermion in an excitation of a Fermi oscillator. Explain the connection between the spectrum of

48



f̂ †f̂ and the Pauli exclusion principle (which states that zero or one fermion may occupy a particular
quantum state).

Some optional (!) off-syllabus stuff you may find interesting
3.14* Numerical solutions of the Schrödinger equation By following the discussion given in
the lecture notes construct numerical solutions for the first 10 eigenstates |φn〉 of the Hamiltonian

H =
p̂2

2m
+

1

2
mω2x̂2 + λx̂4.

for λ`4

~ω = 0.1. You can download a Mathematica file for doing this from the course webpage.
Now use the eigenvectors to obtain an expression for the ground state of the harmonic oscillator
Hamiltonian (λ = 0) in terms of the eigenstates of H

|0〉 ≈
N∑
n=0

〈φn|0〉 |φn〉.

Now assume that we initially prepare our system in the state |Φ(0)〉 = |0〉 and then consider time
evolution under the Hamiltonian H. We have

|Φ(t)〉 ≈
N∑
n=0

〈φn|0〉 e−
i
~Ent|φn〉. (303)

We now want to determine the probability density |〈x|Φ(t)〉|2 to find the particle at position x at
time t. To do this we express |Φ(t)〉 in terms of harmonic oscillator wave functions ψk(x)

〈x|Φ(t)〉 ≈
N∑
n=0

〈φn|0〉 e−
i
~Ent〈x|φn〉 =

N∑
n=0

〈φn|0〉 e−
i
~Ent〈x|

∞∑
k=0

|k〉〈k|φn〉

≈
N∑
k=0

N∑
n=0

〈φn|0〉 e−
i
~Ent〈k|φn〉 ψk(x). (304)

In the last step we have cut off the sum over k in the resolution of the identity, which is justified
because 〈k|φn〉〈φn|0〉 are negligible for large k. We have explicit expression for the harmonic oscillator
wave functions and know 〈k|φn〉 and En from our numerics. We therefore can plot P (x, t) = |〈x|Φ(t)〉|2
for any given time. In order to keep our discussion very general we note that we essentially have two
dimensionful quantities in our problem

• A time scale 1/ω.

• A length scale `.

We use these scales to introduce dimensionless variables parametrizing the time and position by x =
z`, t = τ/ω. The probability to observe our particle in the interval [x, x+dx] is P (x, t)dx = p(z, τ)dz,
where

p(z, τ) = |〈z`|Φ(τ/ω)〉|2`.

The nice thing is that p(z, τ) no longer contains any dimensionful quantities

p(z, τ) ≈

∣∣∣∣∣e−z
2/4

(2π)
1
4

N∑
k=0

N∑
n=0

〈φn|0〉 〈k|φn〉 e−i(En/~ω)τHk(z/
√

2)√
k!2k

∣∣∣∣∣
2

. (305)

Plot p(x, τ) as a function of z for some values of τ .
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Part III

Transformations

Hermann Weyl
“The goal of mathematics is the symbolic comprehension of
the infinite with human, that is finite, means.”

7 Transformations and Symmetries

A very important concept in QM is that of a transformation. Our QM system is described by a ket |ψ〉. We
now want to ask the question how |ψ〉 changes if we move our quantum mechanical system by a distance
a, or rotate it by some angle around some axis. Of particular interest are transformations that leave our
system unchanged – these correspond to symmetries, which have been one of the most important organizing
principles of physics in the last century.

Aside 6: Active vs Passive Transformations

As our lectures follow the book by Binney and Skinner we will focus on transformations where
we change our QM system by e.g. moving it. These are call active transformations. There is an
equivalent viewpoint in which we leave our system unchanged, but transform our co-ordinate system.
Such transformations are called passive. The two kinds of transformations are related in a simple way.
For example, translating our system by a vector a is equivalent to moving our co-ordinate system by
−a.

7.1 Translations

If we move a quantum mechanical system in some state |ψ〉 by a distance a we expect that the ket describing
it will change to some new ket |ψ′〉. It turns out that we can obtain |ψ′〉 by acting with the translation
operator U(a)

|ψ′〉 = U(a)|ψ〉 . (306)

To see this, let us consider a basis of position eigenstates |x〉. On physical grounds these must transform
under a translation as

|x〉 −→ |x + a〉. (307)

The transformed ket can be written in terms of momentum eigenstates as

|x + a〉 =

∫
d3p 〈p|x + a〉 |p〉 =

∫
d3p

(2π~)3/2
e−

i
~ (x+a)·p |p〉

=

∫
d3p 〈p|x〉 e−

i
~a·p|p〉 =

∫
d3p 〈p|x〉 e−

i
~a·p̂|p〉

= e−
i
~a·p̂

∫
d3p 〈p|x〉 |p〉 = e−

i
~a·p̂|x〉. (308)
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This tells us that we have

|x + a〉 = U(a)|x〉 , U(a) = e−
i
~a·p̂.

(309)

As the three momentum operators commute we have

U(a)U †(a) = 1
, (310)

so U(a) is a unitary operator. By the same reasoning we have

U(a)U(b) = U(a + b) , U †(a) = U(−a), (311)

so translations form a group. Finally, because momentum eigenstates form a basis we can conclude that a
general state |ψ〉 transforms under a translation as

|ψ′〉 = U(a)|ψ〉. (312)

Indeed, expanding |ψ〉 in position eigenstates, we have

|ψ〉 =

∫
d3x〈x|ψ〉 |x〉 −→ |ψ′〉 =

∫
d3x〈x|ψ〉 |x + a〉 = U(a)

∫
d3x〈x|ψ〉 |x〉 = U(a)|ψ〉. (313)

7.1.1 Expectation values

The expectation value of the three position operators in the translated state are

〈ψ′|x̂|ψ′〉 =

∫
d3x′〈ψ′|x̂|x′〉〈x′|ψ′〉 =

∫
d3x′ x′ |ψ′(x′)|2

=

∫
d3x′ x′ |ψ(x′ − a)|2 =

∫
d3x (x + a) |ψ(x)|2

= 〈ψ|x̂ + a|ψ〉 = 〈ψ|x̂|ψ〉+ a. (314)

This result is as expected: the average position has been shifted by a by our transformation. Using that
|ψ′〉 = U(a)|ψ〉 and that in the above |ψ〉 is arbitrary we conclude that

U †(a)x̂U(a) = x̂ + a.
(315)

To arrive at this conclusion we have used the following

Theorem 3 Let A and B be two operators. If for any state |ψ〉

〈ψ|A|ψ〉 = 〈ψ|B|ψ〉, (316)

then A = B.

Proof: Take |ψ〉 = |χ1〉 + c|χ2〉. Then by the assumption that the expectation values in |ψ〉 are equal we
have

0 = 〈χ1|A−B|χ1〉+ |c|2〈χ2|A−B|χ2〉+ c〈χ1|A−B|χ2〉+ c∗〈χ2|A−B|χ1〉. (317)

Using that the expectation values of A and B in |χ1〉 and |χ2〉 are equal this simplifies to

0 = c〈χ1|A−B|χ2〉+ c∗〈χ2|A−B|χ1〉. (318)

Considering this equation for c = 1 and c = i we conclude that we must have

〈χ1|A−B|χ2〉 = 0. (319)
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As |χ1,2〉 are arbitrary this implies that A = B.
As U(a) only involves the momentum operators (which commute with one another) we conclude that

[U(a),p] = 0 or equivalently

U †(a)p̂U(a) = p̂.
(320)

Hence expectation values of the momentum operator do not change under translations

〈ψ′|p̂|ψ′〉 = 〈ψ|p̂|ψ〉. (321)

7.1.2 Wave functions

We can now ask how wave functions change under translations. This gives us information not only about the
average position but about the entire probability distribution. The original and translated wave functions
are

ψ(x) = 〈x|ψ〉 , ψ′(x) = 〈x|ψ′〉. (322)

They are related by
ψ′(x) = 〈x|U(a)|ψ〉 = 〈x− a|ψ〉 = ψ(x− a). (323)

Here we have used that U †(a) = U(−a) and

〈x|U(a)|ψ〉 = 〈ψ|U †(a)|x〉∗ = 〈ψ|x− a〉∗ = 〈x− a|ψ〉. (324)

An equivalent way of expressing the relation between wave functions is

ψ′(x + a) = ψ(x).
(325)

This makes perfect sense: the value of the new wave function at the new position equals the value of the
original wave function at the original position. The probability densities are related by

|ψ(x− a)|2 = |ψ′(x)|2, (326)

expressing the fact that the probability of finding the translated system at position x is the same as finding
the original system at position x− a.

7.1.3 Translational Invariance and momentum as a “good quantum number”

As we have seen the Hamiltonian plays a special role in Quantum Mechanics because it determines the time
evolution of quantum states. Because of this its behaviour under translations is particularly important. Let
H be the Hamiltonian of our system. We call our system translationally invariant if there exists a basis of
energy eigenstates |En〉 such that for any state |ψ〉

|〈En|ψ〉|2 = |〈En|U(a)|ψ〉|2. (327)

This condition is equivalent to energy measurements being unaffected by translations. Eqn (327) implies
that the states |En〉 are eigenstates of U(a), which in turn implies that U(a) and H commute

HU(a) = U(a)H. (328)

The condition of translational invariance can thus be cast in the form

U †(a)HU(a) = H.
(329)

In the above discussion the vector a has been arbitrary – our transformation depends on a continuous
parameter a and (329) expresses the fact that H possesses a continuous symmetry.
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Taking it infinitesimally small we have

U(dx) = 1− i

~
dx · p (330)

This allows us to recast translational invariance as the requirement that the Hamiltonian commutes with
the momentum operators

[H,p] = 0. (331)

This then implies that momentum and energy are compatible observables and there exists a simultaneous
basis of eigenstates. This in turn means that we can use the momentum eigenvalues to label the energy
eigenstates. We say that momentum is a good quantum number.

Let us look at a simple example of all this: a free particle in three spatial dimensions with Hamiltonian

H =
p̂2

2m
=

p̂2
x

2m
+

p̂2
y

2m
+

p̂2
z

2m
. (332)

Clearly this is translationally invariant

[p̂a, H] = 0 , a = x, y, z. (333)

Momentum is therefore a good quantum number and there is a basis of simultaneous eigenstates of energy
and momentum, namely that of momentum eigenstates

H|px, py, pz〉 =
p2
x + p2

y + p2
z

2m︸ ︷︷ ︸
E(px,py ,pz)

|px, py, pz〉. (334)

This principle generalizes: if we have a set of Hermitian operators I(n) (n = 1, . . . , N) such that

[I(n), I(m)] = 0 = [I(n), H] , 1 ≤ n,m ≤ N, (335)

there exists a basis of simultaneous eigenstates |E,λ〉 = |E, λ(1), . . . , λ(N)〉 of all these operators

I(n)|E,λ〉 = λ(n)|E,λ〉 ,
H|E,λ〉 = E|E,λ〉 . (336)

We see that we can use the eigenvalues λ(j) to label these states! You may ask why labelling the states by
just the energy is not enough. The answer is that

• the extra labels always tell us that we are dealing with an eigenstate not only of energy, but also of
the other observables I(n). This is clearly useful information!

• the energy eigenvalues are in general degenerate, i.e. there are several eigenstates with the same
eigenvalue. Just knowing the energy in such situations is insufficient for identifying energy eigenstates;

7.2 Reflections (Parity)

Parity plays a very important role in Quantum Field The-

ory and the Standard Model of Particle Physics.

C.N. Yang and T.D. Lee (Nobel Prize in Physics 1957)

C.S. Wu (Wolf Prize in Physics 1978)
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A very important transformation is spatial reflection or parity. It acts on position eigenstates as

P̂ |x〉 = | − x〉. (337)

So if the system was originally at position x with certainty, it will be at position −x after the parity
transformation. The parity operator is Hermitian P̂ = P̂ † because

〈x′|P̂ |x〉 = 〈x′| − x〉 = δ(3)(x′ + x) = 〈x|P̂ |x′〉∗. (338)

If we carry out the parity transformation twice we return to where we started. Therefore

P̂ 2 = 1 , (339)

which together with P̂ = P̂ † implies that P̂ is a unitary operator. Using (337) and

x̂ =

∫
d3x x |x〉〈x|, (340)

we can work out how the parity operator acts on the position operator

P̂ x̂P̂ = −x̂.
(341)

Similarly we find

〈x′|P̂ p̂aP̂ |x〉 = 〈−x′|p̂a| − x〉 = i~
∂

∂xa
δ(3)(x− x′) = −〈x′|p̂a|x〉, (342)

and hence

P̂ p̂P̂ = −p̂.
(343)

The wave function of a parity-transformed state is

ψ′(x) = 〈x|ψ′〉 = 〈x|P̂ |ψ〉 = 〈−x|ψ〉 = ψ(−x). (344)

By following through the same considerations as for translations we term a quantum system parity invariant
if

[H, P̂ ] = 0. (345)

Parity is an example of a discrete symmetry in QM – if we repeat the transformation twice we return
to where we started. In parity invariant systems there exists a basis of simultaneous eigenstates of the
Hamiltonian and the energy operator. As P̂ 2 = 1 the eigenvalues of P̂ can only be ±1. The corresponding
eigenstates are called parity-even and parity-odd states. We have encountered parity-symmetric systems
before, when we studied Hamiltonians of the form

H =
p̂2

2m
+ V (x̂). (346)

Parity invariance requires

H = P̂HP̂ =
p̂2

2m
+ V (−x̂)⇒ V (−x̂) = V (x̂). (347)

This is the case for the harmonic oscillator and various of the potential step problems we have considered
earlier. Let us now consider the implications of parity invariance for the infinite square well potential
considered in section 5.2. The Hamiltonian is invariant under a parity transformation around the centre of
the well x = a/2 and we therefore have a simultaneous basis of energy and parity eigenstates

Hψn(x) = Enψn(x) , Pa/2ψn(x) = pnψn(x) . (348)

Here we have denoted the position representation of the parity transformation operator by Pa/2. We know
that the parity eigenvalues can only be ±1, and hence

P̂a/2ψn(x) = ψn(a− x) = pnψn(x), (349)

which tells us that the wave functions of energy eigenstates must be either symmetric or antisymmetric
around a/2. This is indeed the case as we have seen before.
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Figure 10: Wave functions for the 3 lowest energy states in the infinite square well potential.

7.3 Rotations

We now turn to rotations. In QM there is a subtlety associated with rotations because of the existence of
spin. This is an intrinsic property of most particles and we will discuss it later. For now we restrict our
discussion to rotations for a spinless quantum mechanical particle.

Let’s consider a rotation around the z-axis by an infinitesimal angle dα

x′ = x− y dα ,
y′ = y + x dα ,

z′ = z. (350)
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This is the infinitesimal version ofx′y′
z′

 =

cosα − sinα 0
sinα cosα 0

0 0 1

xy
z

 . (351)

Let us parametrize this rotation in terms of the vector ezdα, where the direction of the vector denotes
the rotation axis and its magnitude the angle of rotation. Position eigenstates should therefore transform
as

U(ezdα)|x〉 = |x′〉. (352)

We can work out an explicit expression for U(ezdα) by using the results we obtained for translations

|x + dx〉 =

[
1− i

~
dx · p̂

]
|x〉. (353)

To reproduce (350) we require dx = (−ydα, xdα, 0), which depends on x and y itself and we therefore should
take

U(ezdα) = 1− i

~
(−ŷp̂x + x̂p̂y) dα ≡ 1− i

~
L̂z dα. (354)

Here we have defined the operator for the z-component of orbital angular momentum

L̂z = x̂p̂y − ŷp̂x.
(355)

In order to carry out a rotation by a finite angle we should consider

U(ezα) = lim
N→∞

[
U(ez

α

N
)
]N

= lim
N→∞

[
1− i

~
L̂z

α

N

]N
= e−

i
~αL̂z . (356)
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The last step can be proved in essentially the same way as the identity for numbers

lim
N→∞

[
1 +

x

N

]N
= ex. (357)

It is straightforward to repeat the above analysis for rotations around the x or y axis. These are induced
by the x and y components of the orbital angular momentum

L̂x = ŷp̂z − ẑp̂y ,
L̂y = ẑp̂x − x̂p̂z. (358)

A rotation by an angle α around a general direction n (where n is a vector of unit length) is generated by
the operator

U(nα) = e−
i
~αn·L̂.

(359)

8 Heisenberg picture and Heisenberg equation of motion

Recall that the TDSE can be written as

i~
d|ψ(t)〉
dt

= H|ψ(t)〉. (360)

You can check by taking the derivative with respect to time that the formal solution of this equation is (for
time-independent Hamiltonians)

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉. (361)

The operator

U(t) = e−
i
~Ht

(362)

is called time-evolution operator. As H is Hermitian U(t) is unitary

U(t)U †(t) = 1. (363)

This shows that quantum mechanical time evolution can be viewed as a unitary transformation of states. So
far our discussion has been based on time-independent operators and time evolving states. This is known as
the Schrödinger picture of QM. In daily quantum mechanical practice the objects of interest are not states
but rather matrix elements of operators

〈ψ(t)|O|φ(t)〉. (364)

In the Schrödinger picture we work out the states at time t and then use them to obtain the desired matrix
element. Using the time evolution operator we can write our matrix element as

〈ψ(t)|O|φ(t)〉 = 〈ψ(0)|U †(t)OU(t)|φ(0)〉. (365)

Defining a time-dependent operator
OH(t) = U †(t)OU(t), (366)

we can write matrix elements as
〈ψ(0)|OH(t)|φ(0)〉. (367)

This is known as the Heisenberg picture: here we fix a basis of quantum states once and for all, but operators
evolve in time. This turn out to be often a more convenient approach! The time evolution of operators is
governed by the Heisenberg equation of motion

d

dt
OH(t) =

i

~
[H,OH(t)] .

(368)
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To see this we simply use that HU(t) = U(t)H (which holds as the Hamiltonian commutes with itself) and

d

dt
U †(t) =

i

~
HU †(t) ,

d

dt
U(t) = − i

~
U(t)H . (369)

Homework 8: Transformations and Heisenberg Equations of Motion

4.1 Reflection symmetry around a point x0

Let Px0 be the operator that induces reflections around a point x0. Argue that

P̂x0 |x0 + x〉 = |x0 − x〉 ,
P̂x0 x̂P̂x0 = 2x01− x̂ ,

P̂x0p̂P̂x0 = −p̂, (370)

and that the transformed wave function fulfils

ψ′(x) = ψ(2x0 − x). (371)

4.2 For which potentials V is the Hamiltonian H = p̂2

2m + V (x̂) translationally invariant?

4.3 Show that the orbital angular momentum operators L̂a (a = x, y, z) are Hermitian.

4.4 A spinless QM system is called rotationally invariant if its Hamiltonian commutes with the orbital
angular momentum operators [H, L̂a] = 0, a = x, y, z. Rotational invariance expresses the fact the
energy measurements remain unchanged under rotations of the system. If the Hamiltonian commutes
only with L̂z it is called invariant under rotations around the z-axis. Consider Hamiltonians of the
form

H =
p̂2

2m
+ V (x̂). (372)

Show that potentials that depend only on the distance ||x|| lead to rotationally symmetric Hamil-
tonians, while potentials that depend on x and y only through the combination x2 + y2 leads to
Hamiltonians that invariant under rotations around the z-axis.

4.5 Show that

lim
N→∞

[
1 +

x

N

]N
= ex. (373)

Give arguments that an analogous formula holds for operators.

4.6 Heisenberg equations of motion for the SHO
Derive the Heisenberg equations of motion for the creation and annihilation operators in the simple
harmonic oscillator and show that their solution is

a(t) = a(0)e−iωt , a†(t) = a†(0)eiωt . (374)

From these, obtain equations of motion for the position and momentum operators. Comment on the
relation of your results to Ehrenfest’s theorem.
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Part IV

Angular Momentum

We have seen above that angular momentum generates rotations in QM. For spinless particles rotations are
induced by the orbital angular momentum operators, which can be written compactly as

L̂i = εijkx̂j p̂k. (375)

NB 7

In order to arrive at this compact set of notations we have made the identifications

x̂ = x̂1 , ŷ = x̂2 , ẑ = x̂3 , p̂x = p̂1 , p̂y = p̂2 , p̂z = p̂3 . (376)

Using the commutation relations for position and momentum operators [x̂j , p̂k] = i~δj,k we can derive
commutation relations between the components of angular momentum

[L̂j , L̂k] = i~εjklL̂l .
(377)

Let’s see how this works for one example:

[L̂x, L̂y] = [ŷp̂z − ẑp̂y, ẑp̂x − x̂p̂z] = [ŷp̂z, ẑp̂x] + [ẑp̂y, x̂p̂z]

= ŷp̂x[p̂z, ẑ] + p̂yx̂[ẑ, p̂z] = −i~ŷp̂x + i~p̂yx̂ = i~L̂z. (378)

Here we have used in the first line that

[A+B,C +D] = [A,C] + [A,D] + [B,C] + [B,D] (379)

and
[ŷp̂z, x̂p̂z] = 0 = [ẑp̂y, ẑp̂x]. (380)

In the second line we have used e.g. that

ŷp̂z ẑp̂x = ŷp̂xp̂z ẑ , (381)

which follows from the fact that p̂x commutes with ẑ and p̂z.

Aside 7: Angular momentum and SU(2)

he commutation relations (377) give rise to a mathematical structure known as a Lie algebra. In the
case of angular momentum this algebra is called SU(2).

9 Rotational invariance and angular momentum as a good quantum

number

We have seen above that the angular momentum operators L̂i induce rotations. A QM system with Hamil-
tonian H is called rotationally symmetric if the results of energy measurements are insensitive to rotations.
This is equivalent to the requirement

U(nα)H = HU(nα) , (382)

where the rotation axis n and angle α are arbitrary. By virtue of (359) this is equivalent to the requirement
that H commutes with the angular momentum operators

[H, L̂a] = 0 , a = x, y, z. (383)
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In analogy with translations we would like to use angular momentum as a good quantum number to label
energy eigenstates. In contrast to the momentum operators relevant for translational invariance angular
momentum operators do not commute, cf. (377). It is therefore impossible to find a basis of simultaneous
eigenstates of different angular momentum operators. However, given that [H, L̂a] = 0 any function of the
angular momentum operators will also commute with H! In particular we have

[H, L̂2] = 0 , L̂2 = L̂2
x + L̂2

y + L̂2
z. (384)

Moreover we have
[L̂2, L̂j ] = 0. (385)

For example we have

[L̂2, L̂z] = [L̂2
x + L̂2

y, L̂z] = L̂x[L̂x, L̂z] + [L̂x, L̂z]L̂x + L̂y[L̂y, L̂z] + [L̂y, L̂z]L̂y

= −i~L̂xL̂y − i~L̂yL̂x + i~L̂yL̂x + i~L̂xL̂y = 0. (386)

The maximal set of operators involving angular momentum that commute with one another and with the
Hamiltonian is L2 and any one component L̂j . It is customary to choose this to be L̂z. Note that this is not
a restriction for a rotationally invariant system as we can always choose our co-ordinate system such that
the z-axis is along any direction we want.

To summarize, for a rotationally invariant system we have

[H, L̂2] = 0 = [H, L̂z] = [L̂2, L̂z].
(387)

This means that the eigenvalues of L̂z and L̂2 are good quantum numbers and can be used to label energy
eigenstates. This will be very useful and in order to exploit this fact we construct a basis of simultaneous
eigenstates of L̂z and L̂2 next.

10 Eigenstates of L2 and L̂z

As L̂2 and L̂z commute there exists a basis of simultaneous eigenstates

L̂2|β,m〉 = β~2|β,m〉 ,
L̂z|β,m〉 = m~|β,m〉 . (388)

We will assume that these can be normalized

〈β,m|β′,m′〉 = δβ,β′δm,m′ . (389)

Importantly m must be integers, because a rotation by 2π around the z-axis must be equal to the identity

U(2πez) = e−
2πi
~ L̂z = 1. (390)

Acting with this on an L̂z eigenstate shows that e2πim = 1, i.e. m are integers. In order to learn more about
the structure of these states we now employ a procedure that is somewhat similar to the use of creation and
annihilation operators for the harmonic oscillator. We start by defining so-called ladder operators

L̂± = L̂x ± iL̂y , L̂†± = L̂x ∓ iL̂y . (391)

Using the commutation relations (377) we find

[L̂±, L̂
2] = 0 , [L̂±, L̂z] = ∓~L̂± . (392)
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Acting with ladder operators on eigenstates gives other eigenstates:

L̂2L̂±|β,m〉 = β~2L̂±|β,m〉 ,

L̂zL̂±|β,m〉 =
(

[L̂z, L̂±] + L̂±L̂z

)
|β,m〉 =

(
±~L̂± + L̂±L̂z

)
|β,m〉 = (m± 1)~L̂±|β,m〉 . (393)

These tell us that L̂±〉|β,m〉 is a simultaneous eigenstate of L̂2 and L̂z with eigenvalues ~2β and ~(m± 1)
respectively. Writing

L̂±|β,m〉 = α±|β,m± 1〉 , (394)

we can work out α± as follows. On the one hand we have

〈β,m|L̂∓L̂±|β,m〉 = 〈β,m± 1|α∗±α±|β,m± 1〉 = |α±|2 , (395)

while on the other hand

〈β,m|L̂∓L̂±|β,m〉 = 〈β,m|L̂2
x + L̂2

y ± i[L̂x, L̂y]|β,m〉 = 〈β,m|L̂2 − L̂2
z ∓ ~L̂z|β,m〉

= β~2 − ~2m2 ∓ ~2m = β~2 − ~2m(m± 1). (396)

Combining (395) and (396) and using that the overall phase of the eigenstates can be chosen freely we
conclude that

L̂±|β,m〉 = ~
√
β −m(m± 1)|β,m± 1〉. (397)

What we mean by this is that without loss of generality we may define the eigenstate |β,m ± 1〉 through
this relation. A constraint on the allowed range of the eigenvalues ~m can be obtained by noting that as
L̂†i = L̂i we have 〈ψ|L̂2

i |ψ〉 = 〈φ|φ〉 ≥ 0, where |φ〉 = L̂i|ψ〉. As a consequence we have

β~2 = 〈β,m|L̂2|β,m〉 = 〈β,m|L̂2
x + L̂2

y + L̂2
z|β,m〉 ≥ 〈β,m|L̂2

z|β,m〉 = ~2m2. (398)

This implies that we cannot act indefinitely with ladder operators in order to produce new angular momen-
tum eigenstates, but that eventually we must obtain zero once we have reached maximal/minimal values of
m defined by

β −mmax(mmax + 1) = 0 , β −mmin(mmin − 1) = 0 . (399)

The only solution to these requirements with mmin ≤ mmax is

mmin = −mmax. (400)

At this point it is customary to introduce notations ` = mmax and use the integer quantum number ` =
0, 1, 2, . . . rather than β to label the states:

L̂2|`,m〉 = ~2`(`+ 1)|`,m〉 ,
L̂z|`,m〉 = ~m|`,m〉 ,

L̂±|`,m〉 = ~
√
`(`+ 1)−m(m± 1)|`,m± 1〉.

(401)

The structure of eigenstates is shown in Fig. There are 2`+1 eigenstates with the same L̂2 quantum number
`, but different L̂z quantum numbers m, which range in integer steps between −` and `.

10.1 Matrix representations

As we have seen before, given a basis of states we can obtain matrix representations of operators. Let
us see how this works for angular momentum operators. A basis of states is given by {|`,m〉} with m =
−`,−`+ 1, . . . , `− 1, ` and

〈`,m|`′,m′〉 = δ`,`′δm,m′ . (402)
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Figure 11: Angular momentum eigenstates of a “spin-`” representation of angular momentum.

To obtain a matrix representation we wish to work out the matrix elements

〈`,m|L̂j |`′,m′〉 . (403)

Importantly it follows from (401) that 〈`,m|L̂j |`′,m′〉 ∝ δ`,`′ . This implies that if we order our basis states
as {|0, 0〉, |1, 1〉, |1, 0〉, |1,−1〉, |2, 2〉, |2, 1〉, |2, 0〉, |2,−1〉, |2,−2〉, . . . } the angular momentum operators will be
of “block-diagonal” form, cf. Fig. 12. The blocks can be labelled by the L̂2 quantum number ` and have

Figure 12: Angular momentum eigenstates of a “spin-`” representation of angular momentum.

dimension 2`+ 1. The blocks are known as spin-` representations of angular momentum.

10.1.1 Spin-1 representation

It is instructive (and required by the syllabus) to work out the simplest block, which corresponds to ` = 1.
To ease notations we will assume that we know that for our QM system we have ` = 1, so that this is in fact
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the only block. Given that the basis states are eigenstates of L̂z with known eigenvalues we can immediately
write down the corresponding matrix

L̂z = ~

1 0 0
0 0 0
0 0 −1

 .

(404)

In order to obtain the representations of L̂x and L̂y it is convenient to consider L̂±. It follows from (401)
that

〈1,m′|L̂±|1,m〉 = ~
√

2−m(m± 1)δm′,m±1. (405)

This results in the following matrix representations

L̂+ = ~

0
√

2 0

0 0
√

2
0 0 0

 , L̂− = ~

 0 0 0√
2 0 0

0
√

2 0

 . (406)

Using that L̂± = L̂x ± iL̂y we conclude that

L̂x =
~√
2

0 1 0
1 0 1
0 1 0

 , L̂y =
~√
2

0 −i 0
i 0 −i
0 i 0

 .

(407)

You can check by explicitly carrying out the matrix multiplications that these matrices fulfil the angular
momentum commutation relations (377). We say that the matrices furnish a spin-1 representation of the
angular momentum algebra.

10.2 Measurements

Now that we have worked out eigenstates and eigenvalues of angular momentum we can address questions
regarding angular momentum measurements. Apart from its physical relevance this topic has a habit of
cropping up in exam question, so it is perhaps worthwhile to spend a few lines on it. The basic principles
of QM of course still apply. If we know that our system in a state |ψ〉 we should express it as a linear
superposition of angular momentum eigenstates, i.e.

|ψ〉 =
∑
`,m

〈`,m|ψ〉 |`,m〉. (408)

Let us assume that we now measure the z-component of angular momentum and obtain the result m0.
Recalling that |m| ≤ ` this tells us that after our measurement the system can be in any of the states |`,m0〉
with ` ≥ |m0|, i.e. after the measurement the normalized ket describing our system is

|ψafter〉 =
1

N
∑
`≥|m0|

〈`,m0|ψ〉 |`,m0〉 , N 2 =
∑
`≥|m0|

|〈`,m0|ψ〉|2. (409)

The interesting aspect here is that the measurement does not select a single angular momentum eigenstate!
The probability of obtaining the outcome m0 when measuring L̂z is given by

P (m0) =
∑
`≥m0

|〈`,m0|ψ〉|2 . (410)

To see this imagine you are measuring L̂2 simultaneously. Then the probability of the measurement outcome
(`0,m0) is |〈`0,m0|ψ〉|2, but as we have no information about `0 we need to sum these probabilities of all
possible values `0.
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Another way to understand this is as follows: Previously we talked about measurements of observables
with non-degenerate eigenvalues in a state |ψ〉. We worked out the probability for a particular measurement
outcome λ by writing |ψ〉 as a linear combination of a normalized ket |ψλ〉 in which the measurement outcome
was certain to be λ and an orthogonal “rest” |ψ′〉

|ψ〉 = A|ψλ〉+ |ψ′〉 . (411)

The probability of measuring λ was then |A|2 = |〈ψλ|ψ〉|2 and the system was in the normalized state |ψλ〉
after the measurement. In the degenerate case we do exactly the same: We decompose |ψ〉 as

|ψ〉 = N 1

N
∑
`≥|m0|

〈`,m0|ψ〉 |`,m0〉︸ ︷︷ ︸
|ψm0 〉

+
∑

`,m 6=m0

〈`,m|ψ〉 |`,m〉, (412)

The probability of obtaining m0 is
|〈ψ|ψm0〉|2 = N 2 (413)

and after the measurement the system is in the normalized state |ψm0〉.

11 Position representation and angular momentum

As we have seen before, the position representation can be very useful for analyzing Hamiltonians of the
form

H =
p̂2

2m
+ V (x̂). (414)

In particular we saw that the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (415)

can be re-cast as a partial differential equation for the wave function:

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|H|ψ(t)〉 ⇔ i~

∂ψ(x, t)

∂t
= Hψ(x, t) , (416)

where ψ(x, t) = 〈x|ψ(t)〉 and

H = − ~2

2m
∇2 + V (x) . (417)

An analogous construction holds for the angular momentum operators as we will now show. Let us consider
the position representation of the state L̂j |ψ〉

〈x|L̂j |ψ〉 = εjkl〈x|x̂kp̂l|ψ〉 . (418)

Using that x̂k|x〉 = xk|x〉 and

〈x|p̂l|ψ〉 = −i~∂ψ(x)

∂xl
, (419)

we find

〈x|L̂j |ψ〉 = −i~εjklxk
∂ψ(x)

∂xl
≡ L̂jψ(x). (420)

Here L̂j are differential operators

L̂j = −i~εjklxk
∂

∂xl
.

(421)

So when working with wave functions the angular momentum operators are given by (421).
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11.1 Spherical polar co-ordinates

Rather than using Cartesian co-ordinates we can express the position eigenvalues in spherical polar co-
ordinates

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ. (422)

We denote the corresponding position eigenstates as |r, θ, φ〉 and the wave-function associated with a state
|ψ〉 would be

ψ(r, θ, φ) = 〈r, θ, φ|ψ〉. (423)

NB 8

In the way we have introduced the states they amount to a mere change of labelling for the usual
position eigenstates |x〉. This however has important ramifications for their normalization: let (r, θ, φ)
and (r′, θ′, φ′) be parametrizations of x and x′ respectively. Then

〈x|x′〉 = 〈r, θ, φ|r′, θ′, φ′〉 = δ(3)(x− x′) =
δ(r − r′)δ(θ − θ′)δ(φ− φ′)

r2 sin θ
. (424)

An easy way to see that the extra factor in the denominator must be there is by integrating the last
equation over x

1 =

∫
dxdydz δ(3)(x− x′) (425)

and note that dxdydz = r2 sin θdrdθdφ. Similarly the normalization condition for wave functions (of
bound states) becomes

1 =

∫
d3x|ψ(x)|2 =

∫
d3x|〈x|ψ〉|2 =

∫
drdθdφ r2 sin θ| 〈r, θ, φ|ψ〉︸ ︷︷ ︸

ψ(r,θ,φ)

|2 (426)

So remember the volume element in spherical polar co-ordinates!

The differential operators L̂j can be readily transformed to spherical polar co-ordinates using the chain
rule, e.g.

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ
. (427)

The required partial derivatives can be worked out using e.g.

r =
√
x2 + y2 + z2 , tanφ =

y

x
, sin θ =

√
x2 + y2

r
. (428)

This gives

∂

∂x
= cosφ sin θ

∂

∂r
+

cosφ cos θ

r

∂

∂θ
− sinφ

r sin θ

∂

∂φ
,

∂

∂y
= sinφ sin θ

∂

∂r
+

sinφ cos θ

r

∂

∂θ
+

cosφ

r sin θ

∂

∂φ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (429)
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Combining (422) and (429) we can express the differential operators L̂j in spherical polar co-ordinates

L̂x = −i~
[
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

]
,

L̂y = −i~
[
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

]
,

L̂z = −i~ ∂

∂φ
.

(430)

These allow us to work out how the total angular momentum operator acts on wave functions

〈r, θ, φ|L̂2|ψ〉 = L̂2ψ(r, θ, φ) ,

L̂2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (431)

11.2 Spherical harmonics

The differential operators L̂2 and L̂z only involve the angular variables by virtue of (401) their eigenvalue
equations reads

L̂2Y`,m(θ, φ) = ~2`(`+ 1)Y`,m(θ, φ) ,

L̂zY`,m(θ, φ) = ~mY`,m(θ, φ) .
(432)

The eigenfunctions Y`,m are called spherical harmonics. We can work out their explicit expressions by solving
the differential equations (432). The lowest spherical harmonic fulfils the equations

L̂2Y0,0(θ, φ) = 0 = L̂zY0,0(θ, φ) . (433)

These are solved by Y0,0(θ, φ) = const. The constant is fixed by the normalization condition∫ π

0
dθ sin θ

∫ 2π

0
dφ |Y`,m(θ, φ)|2 = 1 , (434)

where the sin θ arises because the volume element in spherical polar co-ordinates is dV = r2 sin θdr dθ dφ.
This then leads to

Y0,0(θ, φ) =
1√
4π
.

(435)

The ` = 1 spherical harmonics fulfil the differential equations

−
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y1,m(θ, φ) = 2Y1,m(θ, φ) ,

∂

∂φ
Y1,m(θ, φ) = imY1,m(θ, φ) . (436)

The second equation tells us that the φ-dependence is

Y1,m(θ, φ) ∝ eimφ. (437)

Substituting this into the first equation we can rewrite it as

[sin θ∂θ(sin θ∂θ)−m2 + 2 sin2 θ]Y1,m(θ, φ) = 0. (438)

This allows us to infer the θ-dependencies and conclude that

Y1,±1(θ, φ) = A sin θ e±iφ, Y1,0(θ, φ) = B cos θ . (439)
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Finally we fix A and B through the normalization2 to obtain

Y1,0(θ, φ) =

√
6

8π
cos θ , Y1,±1(θ, φ) = ∓

√
3

8π
sin θ e±iφ .

(440)

Homework 9: Orbital Angular Momentum

4.7
(a) Show by explicit calculation using L̂i = εijkx̂j p̂k that [L̂i, x̂j ] = i~εijkx̂k and [L̂i, p̂j ] = i~εijkp̂k.
(b) Evaluate [L̂x, L̂y] by writing L̂y = ẑp̂x − x̂p̂z and using the results from part (a) of this question.
(c) Show that in the position representation we have

〈x|L̂i|ψ〉 = L̂iψ(x) , (441)

and obtain explicit expressions for the differential operators L̂i. Show that for any differentiable
function f

(L̂xL̂y − L̂yL̂x)f(x, y, z) = i~L̂zf(x, y, z).

Since this holds for any f it can be written as an operator equation [L̂x, L̂y] = L̂xL̂y − L̂yL̂x = i~L̂z ,
as you will have found in part (b). Deduce similar expressions for [L̂y, L̂z] and [L̂z, L̂x].

(d) Defining L̂2 = L̂2
x + L̂2

y + L̂2
z, show that (Hint: remember [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ)

[L̂x, L̂
2] = [L̂y, L̂

2] = [L̂z, L̂
2] = 0.

(e) Show that in spherical polar co-ordinates the differential operators L̂i take the form

L̂x = i sinφ
∂

∂θ
+ i cot θ cosφ

∂

∂φ
, L̂y = −i cosφ

∂

∂θ
+ i cot θ sinφ

∂

∂φ
, L̂z = −i ∂

∂φ
. (442)

4.8 (a) Verify that the three functions cos θ, sin θ eiφ and sin θ e−iφ are all eigenfunctions of L̂2 and L̂z.

(b) Find normalization constants N for each of the above functions so that∫ 2π

0
dφ

∫ π

0
dθ sin θ N2 |ψ(θ, φ)|2 = 1.

(c) Once normalized, these functions are called spherical harmonics and given the symbol Y m
` (θ, φ).

Hence deduce that your results are consistent with the functions:

Y 0
1 (θ, φ) =

√
3

4π
cos θ; Y 1

1 (θ, φ) = −
√

3

8π
sin θ eiφ; Y −1

1 (θ, φ) =

√
3

8π
sin θ e−iφ.

(Note, you can’t use this method to get the signs of Y 0
1 , Y 1

1 and Y −1
1 . The minus sign in Y 1

1 can be
deduced by using a raising operator L̂+ on Y 0

1 . This is not required.)

(d) Rewrite these functions in terms of Cartesian variables [x = r sin θ cosφ, y = r sin θ sinφ,
z = r cos θ]. Sketch |Y 0

1 |2, |Y 1
1 |2 and |Y −1

1 |2. (They are angular functions, so keep r fixed and look
only at the angle dependence. A cross section in the x–z plane will do. Why?)

4.9 The angular part of a system’s wavefunction is

〈θ, φ|ψ〉 ∝ (
√

2 cos θ + sin θ e−iφ − sin θ eiφ).

2As usual this does not allows us to determine the overall phase of the wave function, but as this is not observable we
can fix it as we like. The phases in (440) are chosen in order to reproduce the definition of the spherical harmonics from the
mathematical literature.
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What are the possible results of measurement of (a) L̂2, and (b) L̂z, and their probabilities? What
is the expectation value of L̂z?

4.10 A system’s wavefunction is proportional to sin2 θ e2iφ. What are the possible results of
measurements of (a) L̂z and (b) L̂2?

4.11 A system’s wavefunction is proportional to sin2 θ. What are the possible results of measurements
of (a) L̂z and (b) L̂2? Give the probabilities of each possible outcome.

4.12 A particle of mass m is described the Hamiltonian

Ĥ = − ~2

2m
∇2 − e2

4πε0r
− eE x̂.

(a) What is the physical origin of the last term in Ĥ?

(b) Which of the observables represented by the operators L̂2, L̂x, L̂y and L̂z are constants of the
motion assuming (i) E = 0; (ii) E 6= 0 (Hint: Use the results for [L̂i, x̂] from 4.7.)

4.13 Show that L̂i commutes with x̂ · p̂.

11.3 Spherically symmetric potentials

An important class of problems involves potentials with spherical symmetry, i.e. potentials depend only on
the distance r

H =
p̂2

2m
+ V (r̂) , r̂2 = x̂2 + ŷ2 + ẑ2. (443)

This Hamiltonian is rotationally invariant, which means that we can use the angular momentum quantum
numbers ` and m to label energy eigenstates. Let’s denote the corresponding simultaneous eigenstates by
|n, `,m〉, where we introduced a label n to allow for the possibility that there will be energy eigenstates with
the same values of ` and m but different energies

H|n, `,m〉 = En,`,m|n, `,m〉. (444)

The TISE then takes the following form in the position representation in spherical polar co-ordinates

〈r, θ, φ|H|n, `,m〉 = En,`,m〈r, θ, φ|n, `,m〉 ⇔
[
− ~2

2m
∇2 + V (r)

]
ψn,`,m(r, θ, φ) = En,`,mψn,`,m(r, θ, φ) ,

(445)
where ψn,`,m(r, θ, φ) = 〈r, θ, φ|n, `,m〉 and

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2

[
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2

]
. (446)

Comparing (446) with (431) we observe that

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2

L̂2

~2
.

(447)

This implies that for spherically symmetric potentials we can solve the TISE for the wave function by
separation of variables

ψn,`,m(r, θ, φ) = Rn,`(r)Y`,m(θ, φ).
(448)
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Substituting (448) into the TDSE we obtain an equation for the radial wave function Rn,`(r) only[
p̂2
r

2m
+

~2`(`+ 1)

2mr2
+ V (r)

]
Rn,`(r) = En,`,mRn,`(r), (449)

where we have defined the radial momentum operator

p̂r = −i~
[
∂

∂r
+

1

r

]
. (450)

Eqn (449) is sometimes called radial Schrödinger equation. It has a nice physical interpretation: the term
p̂2
r/2m is the kinetic energy due to radial motion, while ~2`(`+1)/2mr2 is the kinetic energy associated with

tangential motion. One immediate implication of (449) is that the energy eigenvalues are in fact independent
of the quantum number m. This means that in rotationally invariant problems we always have degenerate
energy eigenvalues.

Now you see why angular momentum eigenstates and eigenvalues are so important in QM: they solve
the angular part of the Schrödinger equation for any rotationally invariant problem!

12 Angular momentum and magnetic moments

Let us consider a charged particle moving in a constant magnetic field B. The corresponding vector potential
is

A(x) =
1

2
B× x. (451)

The Hamiltonian for this problem is given by

H =

(
p̂− eA(x̂)

)2
2m

=
p̂2

2m
− e [A(x̂) · p̂ + p̂ ·A(x̂)] + e2A2(x̂) . (452)

Let’s assume that we can neglect the A2 term (which is justified in the context of atoms we are interested
in here). Then the Hamiltonian can be written as

H =
p̂2

2m
− e

2m
B · L̂ , (453)

where L̂ is a vector made from the three angular momentum operators. This is just what we would have if
the charged particle induced a magnetic moment proportional to its angular momentum

µ =
e

2m
L̂.

(454)

Let us now put our magnetic field along the z-direction

H =
p̂2

2m
− eB

2m
L̂z . (455)

We have
[H, p̂2] = 0 = [H, L̂z] = [p̂2, L̂z] , (456)

and therefore can use the kinetic energy eigenvalue EK and the L̂z quantum number m to label energy
eigenstates. Let us now consider two eigenstates with the same kinetic energy but opposite L̂z eigenvalues
±n (n ≥ 0). We have

H|EK ,±n〉 =

[
Ek ∓

eBn

2m

]
|EK ,±n〉 . (457)
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Figure 13: Setup for the Stern-Gerlach experiment.

This tells us that the energy of |EK , n〉 decreases if we increase B, while the energy |EK ,−n〉 increases.
Classically the force on a particle is minus the gradient of its potential energy. This suggests that if our
magnetic field was slightly varying in space, the particle in the |EK , n〉 state would move towards regions of
larger magnetic field, while in the state |EK ,−n〉 the particle would move into the regions of lower magnetic
field. This observation is the basis of the celebrated Stern-Gerlach experiment.

The idea is to have a magnetic field gradient along the z-axis, which according to the arguments we just
presented should result in

• Particles with positive L̂z quantum number m will be deflected upwards;

• Particles with negative L̂z quantum number m will be deflected downwards;

• Particles with L̂z quantum number m = 0 will pass through the apparatus with being deflected.

The original beam of particles is such that each emitted particle will have equal probability to have any m
value. According to our theory for orbital angular momentum, the experiments should show

• A single beam for particles with ` = 0 quantum number;

• Three symmetrically split beams for particles with ` = 1 quantum number, corresponding to m = 0
and m = ±1 respectively;

• Five symmetrically split beams for particles with ` = 2 quantum number, corresponding to m = 0,
m = ±1 and m = ±2 respectively.

In particular, there always should be particles that do not get deflected. This is not what was observed in
the experiments. In particular, electrons are always split into an even number of beams! This suggests that
for some reason the angular momentum eigenvalues are not integers, but half-odd integers.
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13 Spin and total angular momentum

Wolfgang Pauli (Nobel Prize in Physics 1945)

“I do not mind if you think slowly, but I do object when you publish
more quickly than you think.”

“This is not only not correct, it is not even wrong.”

Apart from his ground breaking contributions to Physics Pauli is known

for the Pauli-effect, which refers to numerous instances in which demon-

strations involving equipment suffered technical problems only when he

was present. For fear of the Pauli effect, the experimental physicist Otto

Stern banned Pauli from his laboratory in spite of their friendship. One

incident occurred in the physics laboratory at the University of Göttingen.

An expensive measuring device, for no apparent reason, suddenly stopped

working, although Pauli was in fact absent. James Franck, the director

of the institute, reported the incident with the humorous remark that at

least this time Pauli was innocent. However, it turned out that Pauli had

been on a railway journey to Copenhagen and had switched trains at the

Göttingen rail station at about the time of the failure.

The resolution of the puzzle posed by the Stern-Gerlach experiments is that position alone is insufficient
to specify the quantum states of electrons, and additional quantum numbers are required. These are called
spin quantum numbers. Let us denote the position eigenstates for the time being by

|x, s〉 , (458)

where the index s specifies the spin state of the particle. To figure out how to think of these states let’s work
backwards from the observation that the Stern-Gerlach experiment would be compatible with our theory if
the L̂z eigenvalues were half integer numbers. Going all the way back to rotations, we now have

|x′, s′〉 = U(nα)|x, s〉 . (459)

The important point is that spin quantum numbers can and do transform under rotations as well. As we
have seen above, the orbital angular momentum operators generate rotations of the position. The idea is
then to write the operator that describes the rotation as the product of rotations of the position and spin
respectively

U(nα) = e−
i
~αn·Le−

i
~αn·S. (460)

Here we have introduced spin angular momentum operators Ŝx, Ŝy and Ŝz that fulfil the angular momentum
algebra

[Ŝj , Ŝk] = i~εjklŜl , (461)

and commute with the orbital angular momentum operators

[L̂j , Ŝk] = 0. (462)

The total angular momentum operators are defined as the sums of orbital and spin angular momentum
operators

Ĵj = L̂j + Ŝj . (463)

By construction they also fulfil the angular momentum algebra

[Ĵj , Ĵk] = i~εjklĴl .
(464)
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Following the spinless case we can now construct simultaneous eigenstates of Ĵz and J2. We can in fact
repeat the construction of angular momentum eigenstates we have carried out for the spinless case step by
step with only on crucial difference: in the spinless case we had required

U(2πez) = 1 , spinless case, (465)

which forced the L̂z eigenvalues to be integers. In order to accommodate the Stern-Gerlach experiment we
want the eigenvalues of Ĵz to be half-integer numbers and therefore require

U(4πez) = 1 . (466)

In particular we do not require that the spin state of the system is unchanged under a rotation by 2π. The
simultaneous eigenstates of Ĵz and Ĵ2 fulfil

Ĵ2|j, jz〉 = ~2j(j + 1)|j, jz〉 ,
Ĵz|j, jz〉 = ~jz|j, jz〉 ,

Ĵ±|j, jz〉 = ~
√
j(j + 1)− jz(jz ± 1)|j, jz ± 1〉 ,

(467)

where

−j ≤ jz ≤ j , j = 0,
1

2
, 1,

3

2
, 2, . . .

(468)

The crucial difference to orbital angular momentum is that the total angular momentum quantum number
now takes half-integer values.

Aside 8: Spin and the Stern-Gerlach experiment

The existence of spin fixes our problem with Stern-Gerlach experiments as follows. The Hamiltonian
describing the motion of an electron in a magnetic field follows from the Dirac equation and turns
out to be given by

H =
p̂2

2m
− eB

2m
(L̂z + gsŜz) , (469)

where gs = 2 is the so-called gyromagnetic ratio. Repeating our previous arguments we see that
electrons without orbital angular momentum are split into two beams.

13.1 Spin-1/2 representation and Pauli matrices

The simplest representation of total angular momentum has Ĵ2 quantum number j = 1/2. There are two
states with Ĵz quantum numbers ±1/2 ∣∣∣∣12 ,±1

2

〉
. (470)

These states are sometimes called | ↑〉 and | ↓〉 respectively and as they span a linear vector space of
dimension two they can be represented as

| ↑〉 =
(
1 0

)
, | ↓〉 =

(
0 1

)
. (471)

The total angular momentum operators in this representation can be expressed in terms of 2 × 2 matrices
called Pauli matrices (

〈↑ |Ĵj | ↑〉 〈↑ |Ĵj | ↓〉
〈↓ |Ĵj | ↑〉 〈↓ |Ĵj | ↓〉

)
=

~
2
σj , j = x, y, z , (472)

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(473)
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13.2 Spin angular momentum

The spin angular momentum is described by the Hermitian operators Ŝj that fulfil the angular momentum
algebra. By the same arguments as for orbital and total angular momenta we can therefore construct
simultaneous eigenstates of Ŝz and Ŝ2

Ŝ2|s, sz〉 = ~2s(s+ 1)|s, sz〉 ,
Ŝz|s, sz〉 = ~sz|s, sz〉 ,

Ŝ±|s, sz〉 = ~
√
s(s+ 1)− sz(sz ± 1)|s, sz ± 1〉 ,

(474)

The sz quantum numbers are half-integers because rotations by 4π must be equivalent to the identity.
The total spin quantum number s is an intrinsic property of quantum mechanical particles. In particular,
electrons, neutrinos, quarks, neutrons and protons are all spin-1/2 objects.

13.3 Stern-Gerlach filters

As we have seen, the Stern-Gerlach experiment separates particles according to their angular momentum.
This can be viewed as providing a measurement of the component of angular momentum in the direction
of the applied magnetic field. Combining Stern-Gerlach filters with different orientations provides a very
nice playground for understanding the mechanics of measurements in QM. Let’s consider the example of a
beam of particles incident on a SG filter aligned along the z-direction. Let’s assume that the particles have
Ĵz quantum numbers ±~/2 with equal probabilities and the total angular momentum quantum number is
j = 1/2. So there are two relevant states

|1
2
,
1

2
〉 = | ↑〉 =

(
1
0

)
, |1

2
,−1

2
〉 = | ↓〉 =

(
0
1

)
. (475)

The angular momentum operators can be represented as

Ĵx =
~
2

(
0 1
1 0

)
, Ĵy =

~
2

(
0 −i
i 0

)
, Ĵz =

~
2

(
1 0
0 −1

)
. (476)

The SG filter splits the beam into two, and the particles deflected upwards will have quantum numbers
jz = 1/2. We can think of this as a measurement of Ĵz. After this “measurement” the particles will be
in the quantum state | ↑〉. Let us then pass this beam of particles through a second SG filter, but with a
magnetic field pointing along a direction n = (0, sin(θ), cos(θ)). The angular momentum along n is

J · n = cos(θ)Ĵz + sin(θ)Ĵy =
~
2

(
cos θ −i sin θ
i sin θ − cos θ

)
. (477)

In order to work out the outcomes of measuring J · n we require its eigenvalues and eigenvectors. The
eigenvalues are ±~/2 and the corresponding eigenvectors are

|θ, ↓〉 =

(
i sin(θ/2)
cos(θ/2)

)
, |θ, ↑〉 =

(
cos(θ/2)
i sin(θ/2)

)
. (478)

We now write the state of the system after the first SG filter as a linear combination of these two eigenstates

| ↑〉 = cos(θ/2)|θ, ↑〉 − i sin(θ/2)|θ, ↓〉 . (479)

This tells us that after the second SG filter we will have two beams corresponding to particles with angular
momentum ±~/2 along the n direction but with different intensities, because

P (~/2) = |〈↑ |θ, ↑〉|2 = cos2(θ/2) ,

P (−~/2) = |〈↑ |θ, ↓〉|2 = sin2(θ/2) . (480)
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Aside 9: Vector operators

In classical physics a vector is a quantity that transforms under rotations as

V ′i =

3∑
j=1

RijVj , (481)

where R is a rotation matrix. It is natural to ask whether quantum mechanical vector operators
like (x̂, ŷ, ẑ) have analogous transformation properties. We know that position eigenstates transform
under rotations as

|x′〉 = |R(nα)x〉 = U(nα)|x〉 , (482)

where R(nα) is a rotation matrix describing rotations by an angle α around the axis n and U(nα)
is the associated quantum mechanical rotation operator. Matrix elements of the position operators
transform as

〈x′|x̂i|y′〉 = x′i〈x′|y′〉 = x′i〈x|U †(nα)U(nα)|y〉 = x′i〈x|y〉 =
(
R(nα)

)
ij
xj〈x|y〉 = 〈x|

(
R(nα)

)
ij
x̂j |y〉.

(483)
Combining this with

〈x′|x̂i|y′〉 = 〈x|U †(nα)x̂iU(nα)|y〉 (484)

we conclude that
U †(nα)x̂iU(nα) =

(
R(nα)

)
ij
x̂j . (485)

In our shorthand vector notation these become

U †(nα)x̂U(nα) = R(nα)x̂. (486)

Vectors of operators V̂ that fulfil

U †(nα)V̂U(nα) = R(nα)V̂.
(487)

are called vector operators. An equivalent definition can be arrived at by considering infinitesimal
rotations

U(ndα) = 1− idα

~
n · Ĵ . (488)

Substituting this into (487) gives

V̂j +
dα

i~
[V̂j ,n · Ĵ] =

∑
k

(
R(ndα)

)
jk
V̂k . (489)

These in turn are equivalent to

[V̂j , Ĵk] = i~εjklV̂l .
(490)

Operators that fulfil these commutation relations are vector operators. Examples are position, mo-
mentum and angular momentum.
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Homework 10: Spin and total angular momentum

5.1 Write down the expression for the commutator [σi, σj ] of two Pauli matrices. Show that the
anticommutator of two Pauli matrices is

{σi, σj} = 2δij .

5.2 Let n be any unit vector and σ = (σx, σy, σz) be the vector whose components are the Pauli
matrices. Why is it physically necessary that n · σ satisfy (n · σ)2 = I, where I is the 2× 2 identity
matrix? Let m be a unit vector such that m · n = 0. Why do we require that the commutator
[m · σ,n · σ] = 2i(m× n) · σ? Prove that these relations follow from the algebraic properties of the
Pauli matrices. You should be able to show that [m ·σ,n ·σ] = 2i(m×n) ·σ for any two vectors n
and m.

5.3 Let n be the unit vector in the direction with polar coordinates (θ, φ). Write down the matrix n·σ
and find its eigenvectors. Hence show that the state of a spin-half particle in which a measurement
of the component of spin along n is certain to yield 1

2~ is

|+,n〉 = sin(θ/2) eiφ/2|−〉+ cos(θ/2) e−iφ/2|+〉,

where |±〉 are the states in which ±1
2 is obtained when sz is measured. Obtain the corresponding

expression for |−,n〉. Explain physically why the amplitudes in the previous equation have modulus
2−1/2 when θ = π/2 and why one of the amplitudes vanishes when θ = π.

5.4 For a spin-half particle at rest, the operator J is equal to the spin operator S. Use the properties
of the Pauli spin matrices to show that in this case the rotation operator U(α) ≡ exp(−iα · J/~) is

U(α) = I cos
(α

2

)
− iα̂ · σ sin

(α
2

)
,

where α̂ is the unit vector parallel to α. Comment on the value this gives for U(α) when α = 2π.

5.5 Explain why a spin-1
2 particle in a magnetic field B has a Hamiltonian given by

H = −γS ·B,

where γ is the gyromagnetic ratio which you should define.
In a coordinate system such that B lies along the z-axis, a proton is found to be in a eigenstate
|+, x〉 of Ŝx at t = 0. Find 〈Ŝx〉 and 〈Ŝy〉 for t > 0.

5.6 Write down the 3× 3 matrix that represents Sx for a spin-one system in the basis in which Sz is
diagonal (i.e., the basis states are |0〉 and |±〉 with Sz|+〉 = |+〉, etc.)
A beam of spin-one particles emerges from an oven and enters a Stern–Gerlach filter that passes only
particles with Jz = ~. On exiting this filter, the beam enters a second filter that passes only particles
with Jx = ~, and then finally it encounters a filter that passes only particles with Jz = −~. What
fraction of the particles stagger right through?

5.7 A system that has spin angular momentum
√

6~ is rotated through an angle φ around the z-axis.
Write down the 5× 5 matrix that describes a rotation by an angle φ around the z-axis.

Some optional (!) hard problems on off syllabus topics
5.8* Vector operators
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(a) Show that expectation values of the position operators in a state |ψ〉 transform like a classical
vector under a rotation around an axis n by an angle α.
(b) Show that the commutation relations

[V̂j , Ĵk] = i~εjklV̂l , (491)

are equivalent to

V̂j +
dα

i~
[V̂j ,n · Ĵ] =

∑
k

(
R(ndα)

)
jk
V̂k , (492)

where n is a unit vector and R(ndα) is the rotation matrix around the axis n by an angle dα.
(c) Let e1,2,3 be three orthonormal vectors. Show that the operators ej(x̂, ŷ, ẑ) defined through their
actions on position eigenstates

ej(x̂, ŷ, ẑ)|x〉 =

x ej · ex
y ej · ey
z ej · ez

 |x〉 (493)

are vector operators.

Part V

Composite Systems

So far we have focussed on the QM of a single particle. Most QM systems involve several particles that
interact with one another, e.g. the electron and nucleus in a hydrogen atom. In order to understand them
we have to develop a description of quantum mechanical systems that are composed of several parts. In
order to do so we first consider QM systems composed of two parts, e.g. two particles.

14 QM systems composed of two parts

Let A and B be two quantum mechanical systems and {|A; j〉}, {|B; k〉} two corresponding bases of quantum
states. A basis of states of the composite system is then obtained by taking3

|AB; j, k〉 = |A; j〉|B; k〉 . (494)

In these states A and B are in quantum states |A; j〉 and |B; k〉 respectively. For example, if we have two
independent (distinguishable) particles a basis of position eigenstates is given by

|AB;x1, x2〉 = |A;x1〉|B;x2〉 , (495)

in which the first particle is at position x1 with certainty, while the second particle is at position x2 with
certainty. The bra states corresponding to (494) are denoted by

〈AB; j, k| = 〈A; j|〈B; k|, (496)

and scalar products fulfil
〈AB; j, k|AB;m,n〉 = 〈A; j|A;m〉 〈B; k|B;n〉. (497)

3The mathematical structure we are describing here is a tensor product of two linear vector spaces.
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A general state of the composite system can then be written as a linear combination of basis states (as
usual)

|AB;ψ〉 =
∑
j,k

〈AB; j, k|AB;ψ〉 |AB; j, k〉. (498)

Example 4: Two spins 1/2

Let us consider a system composed of two spins 1/2. For each spin there are two basis states | ↑〉 and
| ↓〉 and a basis of the composite system is then given by

| ↑↑〉 = | ↑〉| ↑〉 , | ↑↓〉 = | ↑〉| ↓〉 , | ↓↑〉 = | ↓〉| ↑〉 , | ↓↓〉 = | ↓〉| ↓〉. (499)

An arbitrary state can be written as a linear combination of these four basis states

|ψ〉 = 〈↑↑ |ψ〉| ↑↑〉+ 〈↑↓ |ψ〉| ↑↓〉+ 〈↓↑ |ψ〉| ↓↑〉+ 〈↓↓ |ψ〉| ↓↓〉. (500)

14.1 Operators

Let OA and OB be operators acting only on parts A and B of our composite system. We can define their
actions on states |ψ〉 of the composite system as follows:

• Write |ψ〉 as a linear combination of the basis states |AB; j, k〉 defined above

|ψ〉 =
∑
j,k

〈AB; j, k|ψ〉 |AB; j, k〉 =
∑
j,k

〈AB; j, k|ψ〉 |A; j〉|B; k〉 (501)

• Now define the actions of OA and OB on |ψ〉 by

OA|ψ〉 =
∑
j,k

〈AB; j, k|ψ〉
(
OA|A; j〉

)
|B; k〉 ,

OB|ψ〉 =
∑
j,k

〈AB; j, k|ψ〉 |A; j〉
(
OB|B; k〉

)
. (502)

A general operator acting on the composite system will have the form

∑
j,k

cj,kOA,jOB,k ,

(503)

where OA,j and OB,k are operators acting only on systems A and B respectively and cj,k are complex
numbers.

Example 5: Two spins 1/2

Denote the spin operators of the first and second particles by Ŝ
(1)
j and Ŝ

(2)
j respectively. Then

Ŝ
(1)
j | ↑↑〉 =

(
Ŝ

(1)
j | ↑〉

)
| ↑〉 , Ŝ

(2)
j | ↑↑〉 = | ↑〉

(
Ŝ

(2)
j | ↑〉

)
, . . . (504)

More general operators act e.g. as

S(1)
x S(2)

z | ↑↑〉 =
(
S(1)
x | ↑〉

)(
S(2)
z | ↑〉

)
=
(~

2
| ↓〉
)(~

2
| ↑〉
)

=
~2

4
| ↓↑〉. (505)
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14.2 Position representation

A very important case of a composite system are several particles that have kinetic energy and interact with
one another by e.g. the Coulomb interaction. A basis of position eigenstates of a system with two particles
is provided by the states

|x1,x2〉 . (506)

The resolution of the identity reads

1 =

∫
d3x1

∫
d3x2 |x1,x2〉〈x1,x2|. (507)

The Hamiltonian would contain terms describing the kinetic energies of the two particles as well as potential
energy terms that include the interactions between the two particles. This leads to a Hamiltonian of the
form

H =
p̂2

1

2m1
+

p̂2
2

2m2
+ V1(x̂1) + V2(x̂2) + Vint(x̂1, x̂2). (508)

Importantly, in case we have independent particles (Vint = 0) the Hamiltonian is the sum of the Hamiltonians
of the individual particles. The position representation is now constructed by following the single-particle
case. Let’s take the TDSE as our starting point

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 . (509)

Projecting onto a position eigenbra gives

i~
d

dt
〈x1,x2|ψ(t)〉︸ ︷︷ ︸
ψ(x1,x2,t)

= 〈x1,x2|H|ψ(t)〉 . (510)

The right-hand side is worked out by inserting a resolution of the identity

〈x1,x2|H|ψ(t)〉 =

∫
d3x′1

∫
d3x′2 〈x1,x2|H|x′1,x′2〉 〈x′1,x′2|ψ(t)〉. (511)

The action of the various terms on position eigenstates follows from (502), e.g.

〈x1,x2|V1(x̂1)|x′1,x′2〉 = 〈x1|V1(x̂′1)|x′1〉〈x2|x′2〉 = V1(x′1) δ(3)(x1 − x′1)δ(3)(x2 − x′2) ,

〈x1,x2|p̂1,α|x′1,x′2〉 = 〈x1|p̂1,α|x′1〉〈x2|x′2〉

=

(
−i~ ∂

∂x1,α
δ(3)(x1 − x′1)

)
δ(3)(x2 − x′2) , α = x, y, z. (512)

When working out matrix elements of the interaction potential we use that

x̂j |x′1,x′2〉 = x′j |x′1,x′2〉 , j = 1, 2, (513)

and hence
Vint(x̂1, x̂2)|x′1,x′2〉 = Vint(x

′
1,x
′
2)|x′1,x′2〉. (514)

Carrying out the integrals over the delta-functions we arrive at

〈x1,x2|H|ψ(t)〉 =

[
− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V1(x1) + V2(x2) + Vint(x1,x2)

]
ψ(x1,x2, t) (515)

Altogether the TDSE in the position representation becomes

i~
∂

∂t
ψ(x1,x2, t) =

[
− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V1(x1) + V2(x2) + Vint(x1,x2)

]
ψ(x1,x2, t).

(516)
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14.2.1 Independent particles

It is instructive to consider the case of independent particles, e.g.

H =
p̂2

1

2m1
+

p̂2
2

2m2
+ V1(x̂1) + V2(x̂2) = H1 +H2 . (517)

Here the Hamiltonians H1 and H2 only act on the first and second particles respectively. Let us denote the
energy eigenstates of H1,2 by |En, 1〉 and |E′n, 2〉 respectively

H1|En, 1〉 = En|En, 1〉 , H2|E′n, 2〉 = E′n|E′n, 2〉 , (518)

we can immediately construct the eigenstates of H as (tensor) products

H|En, 1〉 |E′m, 2〉 =
(
H1|En, 1〉

)
|E′m, 2〉+ |En, 1〉

(
H2|E′m, 2〉

)
= (En + E′m)|En, 1〉 |E′m, 2〉 .

(519)

This structure carries over to the position representation: the wave functions of energy eigenstates are
products of the wave functions of the energy eigenstates of H1 and H2. Denoting

〈x1|En, 1〉 = ψn(x1) , 〈x2|E′n, 2〉 = φn(x2) , (520)

and then using the position representation of the TISE, cf. (516), we have[
− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V1(x1) + V2(x2)

]
ψn(x1)φm(x2) = (En + E′m)ψn(x1)φm(x2) . (521)

The wave function of a general state |χ〉 can be expressed as a linear combination of these energy eigenstates

χ(x1,x2) =
∑
n,m

cn,mψn(x1)φm(x2) . (522)

Exercise 1

Show that the coefficients cn,m are given by

cn,m =
(
〈En, 1|〈E′m, 2|

)
|χ〉 . (523)

14.3 Measurements

Let us now imagine that we measure a physical property of only one of the parts of our system. As a
simple example let’s consider measuring the position of the first particle when the composite system is in a
quantum state |ψ〉 and obtain the result x1. To understand this process we express |ψ〉 as a superposition
of position eigenstates

|ψ〉 =

∫
d3x′1

∫
d3x′2 〈x′1,x′2|ψ〉 |x′1,x′2〉 =

∫
d3x′1

∫
d3x′2 ψ(x′1,x

′
2) |x′1〉|x′2〉 . (524)

Recalling that |ψ(x1,x
′
2)|2 is the probability density for the first and second particles to be at positions x1

and x′2 respectively, we conclude that the probability of obtaining the result x1 when measuring the position
of the first particle is

P (x1) =

∫
d3x′2 |ψ(x1,x

′
2)|2. (525)
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After the measurement the system will be in the normalized state

|ψ〉after =
1

N

∫
d3x′2 ψ(x1,x

′
2) |x1〉|x′2〉 , (526)

where

N =

[∫
d3x′2 |ψ(x1,x

′
2)|2
]1/2

. (527)

As a second example let us consider measuring S
(1)
z in the normalized state

|ψ〉 =
1

2
| ↑↑〉+

√
3

4
| ↓↑〉. (528)

The possible outcomes are ±~/2. To work out the probability for obtaining ~/2 we decompose |ψ〉 into a
linear combination of states which lead to the observed outcome and an orthogonal component

|ψ〉 =
1

2
| ↑↑〉︸︷︷︸
|ψ+〉

+

√
3

4
| ↓↑〉︸︷︷︸
|ψ−〉

(529)

According to our general rule we then have

P

(
~
2

)
= |〈ψ+|ψ〉|2 =

1

4
. (530)

After the measurement the system is in the normalized state

|ψ〉after,+ = | ↑↑〉 . (531)

The probability for obtaining the result −~/2 is

P

(
−~

2

)
= |〈ψ−|ψ〉|2 =

3

4
, (532)

and the measurement leaves the system in the state

|ψ〉after,− = | ↓↑〉 . (533)

15 Product States vs entangled states

In composite systems there is a particular class of states called product states. Their defining characteristic
is that they can be written as products of states of the constituent parts. For two subsystems A and B such
states take the form

|AB;ψ〉 = |A;ψA〉|B;ψB〉 . (534)

For a system made from two spin-1/2 product states can be written in the form(
α1| ↑〉+ β1| ↓〉

)(
α2| ↑〉+ β2| ↓〉

)
. (535)

A particular example is the state in (528) as it can be written as

|ψ〉 =
(1

2
| ↑〉+

√
3

4
| ↓〉
)
| ↑〉. (536)

Product states have the particular property that measuring only one part of the system does not affect the

other part. So see what we mean by this let’s return to the example of measuring S
(1)
z in the state (528): the
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outcomes of measuring S
(2)
j are independent of the outcomes of measuring S

(1)
z . Indeed, depending on what

result we obtained in the S
(1)
z measurement the system will be either in state |ψ〉after,+ or in state |ψ〉after,−.

However, in both cases the second spin is in state | ↑〉 with certainty and measuring S
(2)
z will therefore

give identical results. Product states are rather special and typically measuring one part of a composite
system will affect subsequent measurements on the other part. This property is called entanglement. Let
us consider our two spin-1/2 system in the state

|φ〉 =
1√
2

[
| ↑↓〉 − | ↓↑〉

]
, (537)

which you’ll hear a lot more about later on in the course. Let us measure first S
(1)
z and then S

(2)
z . The first

measurement yields the results ±~/2 with equal probabilities 1/2, but leaves the system in different states

|φ〉after,+ = | ↑↓〉 , |φ〉after,− = | ↓↑〉 . (538)

This tells us that if the outcome of the first measurement was ~/2, the second measurement with give
−~/2 with probability 1. On the other hand, if the outcome of the first measurement was −~/2, the second
measurement with give ~/2 with probability 1. Entanglement expresses the fact that in general the quantum
state of each spin cannot be described independently of the state of the other. As a result measurements of
position, momentum, spin etc performed on entangled particles are correlated.

15.1 Entanglement Growth

Under time evolution quantum mechanical systems consisting of many particles become more entangled.
This ultimately explains how statistical mechanics can arise from QM. To see how entanglement can be
induced by time evolving a quantum mechanical system let’s return to our system made from two spins-1/2.
Let’s assume that initially the system is in the state |ψ(0)〉 = | ↑↑〉, and that the Hamiltonian of the system
is

H =
4J

~
S(1)
x S(2)

x . (539)

The time evolved state is given by

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉 . (540)

Using that
H| ↑↑〉 = J~| ↓↓〉 , H| ↓↓〉 = J~| ↑↑〉 , (541)

and expanding the exponential in a power series in H we find that

|ψ(t)〉 = e−
i
~Ht| ↑↑〉 = cos(Jt)| ↑↑〉 − i sin(Jt)| ↓↓〉. (542)

This shows that while |ψ(0)〉 is a product state and thus unentangled, |ψ(t > 0〉 is entangled as the outcome
of a measurement of the first spin affects the possible outcomes of subsequent measurements of the second
spin. Time evolution has generated entanglement. For small systems as the one discussed here the time
evolution of entanglement is not monotonic. We can see this because at time t = π/2J our state becomes
again unentangled. This changes when we have many particles in the sense that entanglement keeps on
growing on “experimentally relevant” time scales.

16 Addition of angular momenta

Let us consider a composite system of two angular momenta with Hamiltonian

H = λĴ1 · Ĵ2 . (543)
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The angular momenta of the individual parts are not good quantum numbers because

[Ĵ1,j , H] = iλεjklĴ1,lĴ2,k 6= 0. (544)

However, total angular momentum Ĵ1 + Ĵ2 does provide good quantum numbers because

[Ĵ1,j + Ĵ2,j , H] = iλεjkl

(
Ĵ1,lĴ2,k + Ĵ1,kĴ2,l

)
= 0. (545)

This provides a typical example of the following problem: given a composite system with two angular
momenta Ĵ1, Ĵ2, how do we construct eigenstates of the total angular momentum Ĵ1 + Ĵ2 ?

Example 6: Two particles interacting by a central potential

Another example is provided by a rotationally invariant system composed of two spinless particles
interacting by a central potential

H =
p̂2

1

2m
+

p̂2
2

2m
+ V

(
(x̂1 − x̂2)2

)
. (546)

The angular momenta of the first/second particle are not good quantum numbers in this case because

[L̂1,j , H] 6= 0 , [L̂2,j , H] 6= 0 . (547)

To see this we first note that as we have established before the kinetic energy terms do commute with
the angular momenta, but

[L̂1,j , (x̂1 − x̂2)2 = εjklx̂1,k[p̂1,l, (x̂1 − x̂2)2 + (ŷ1 − ŷ2)2 + (ẑ1 − ẑ2)2]

= −2i~εjklx̂1,k(x̂1,l − x̂2,l) = 2i~εjklx̂1,kx̂2,l. (548)

On the other hand we see that
[L̂1,j + L̂2,j , (x̂1 − x̂2)2] = 0 , (549)

which tells us that total orbital angular momentum is conserved.

Our starting point are the bases of angular momentum eigenstates of the the two parts

Ĵ2
1|j1, j1,z〉 = ~2j1(j1 + 1)|j1, j1,z〉 ,

Ĵ1,z|j1, j1,z〉 = ~j1,z|j1, j1,z〉 ,
Ĵ2

2|j2, j2,z〉 = ~2j2(j2 + 1)|j2, j2,z〉 ,
Ĵ2,z|j2, j2,z〉 = ~j2,z|j2, j2,z〉 . (550)

We know that a basis of states of the composite system is given by the products

|j1, j1,z〉|j2, j2,z〉 . (551)

We wish to know how these states are related to the eigenstates of total angular momentum Ĵ = Ĵ1 + Ĵ2.
We know that these eigenstates can be labelled by the Ĵ2 and Ĵz quantum numbers, but because

[Ĵ2
1, Ĵj ] = 0 = [Ĵ2

2, Ĵj ] , j = x, y, z , (552)

there are altogether four good quantum numbers

Ĵ2|j1, j2, j, jz〉 = ~2j(j + 1)|j1, j2, j, jz〉 ,
Ĵz|j1, j2, j, jz〉 = ~jz|j1, j2, j, jz〉 ,
Ĵ2
α|j1, j2, j, jz〉 = ~2jα(jα + 1)|j1, j2, j, jz〉 , α = 1, 2. (553)
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The question is now how the states |j1, j1,z〉|j2, j2,z〉 and |j1, j2, j, jz〉 are related. Let us first give the answer
and then explain how to derive it. For fixed j1 and j2 we have

|j1, j1,z〉|j2, j2,z〉 =

j1+j2∑
j=|j1−j2|

j∑
jz=−j

C(j, jz; j1, j1,z, j2, j2,z) |j1, j2, j, jz〉 ,

(554)

where the amplitudes C(j, jz; j1, j1,z, j2, j2,z) are called Clebsch-Gordan coefficients. As the Clebsch-Gordan
coefficients are tabulated we will not get into the details of how they are calculated in the general case. We
note that the Clebsch-Gordan coefficients can be written as probability amplitudes

C(j, jz; j1, j1,z, j2, j2,z) = 〈j1, j2, j, jz|
(
|j1, j1,z〉|j2, j2,z〉

)
. (555)

So if we have a system of two “gyros” in a state of well-defined angular momentum, the Clebsch-Gordan
coefficients provide the probability amplitudes for finding the first and second gyros in angular momentum
eigenstates with quantum numbers j1,z and j2,z respectively.

16.1 Adding two spins 1/2

Let us investigate how these relations come about by considering the simplest case of j1 = j2 = 1/2. A basis
of states is given by the products

| ↑↑〉 , | ↑↓〉 , | ↓↑〉 , | ↓↓〉 . (556)

The eigenvalues of Ĵz = Ĵ1,z + Ĵ2,z are easily worked out

Ĵz| ↑↑〉 = ~| ↑↑〉 , Ĵz| ↑↓〉 = 0 = Ĵz| ↓↑〉 , Ĵz| ↓↓〉 = −~| ↓↓〉 . (557)

This tells us that | ↑↑〉 is an eigenstate of Ĵz and as the corresponding eigenvalue is non-degenerate it must
also be an eigenstate of Ĵ2.

Exercise 2

Show that the total angular momentum operator can be written as

Ĵ2 = Ĵ2
1 + Ĵ2

2 + Ĵ1,+Ĵ2,− + Ĵ1,−Ĵ2,+ + 2Ĵ1,zĴ2,z , (558)

where J1,± = J1,x ± iJ1,y are ladder operators. Use this to show that

Ĵ2| ↑↑〉 = 2~2| ↑↑〉. (559)

The ladder operators for total angular momentum are defined as

Ĵ± = Ĵ1,± + Ĵ2,± , Jα,± = Jα,x ± iJα,y , α = 1, 2. (560)

As [Ĵ−, Ĵ
2] = 0 we can use these to construct eigenstates with the same Ĵ2 quantum number from | ↑↑〉.

Recalling that Ĵ1,−| ↑〉 = ~| ↓〉 we find that

Ĵ−| ↑↑〉 = ~
(
| ↓↑〉+ | ↑↓〉

)
, Ĵ2

−| ↑↑〉 = 2~2| ↓↓〉 . (561)

Correctly normalizing the eigenstates we obtain a j = 1 representation of angular momentum

| ↑↑〉 , 1√
2

(
| ↓↑〉+ | ↑↓〉

)
, | ↓↓〉 .

(562)
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The Ĵz quantum numbers of the three states are 1, 0,−1 respectively. The states (562) are called triplet
states. In terms of our general notations introduced earlier the three states are denoted by

|1
2
,
1

2
, 1, 1〉 , |1

2
,
1

2
, 1, 0〉 , |1

2
,
1

2
, 1,−1〉. (563)

We are left with one eigenstate with jz = 0. As this has to be orthogonal to the jz = 0 triplet state we
conclude that it must be given by

1√
2

(
| ↓↑〉 − | ↑↓〉

)
.

(564)

This state is called singlet and has Ĵ2 quantum numbers zero. In our general notations it is denoted by

|1
2
,
1

2
, 0, 0〉 . (565)

The Clebsch-Gordan coefficients can now be read off:

C(1, 1;
1

2
,
1

2
,
1

2
,
1

2
) = 1 ,

C(1, 0;
1

2
,
1

2
,
1

2
,−1

2
) =

1√
2
, C(1, 0;

1

2
,−1

2
,
1

2
,
1

2
) =

1√
2
,

C(1,−1;
1

2
,−1

2
,
1

2
,−1

2
) = 1 ,

C(0, 0;
1

2
,−1

2
,
1

2
,
1

2
) =

1√
2
, C(0, 0;

1

2
,
1

2
,
1

2
,−1

2
) = − 1√

2
. (566)

Summary 2: Adding two spins 1/2

1. The eigenvalues of Ĵz on product states |στ〉 is easy to calculate;

2. Note that maximal value of jz, and hence j, is one. The jz = 1 state is | ↑↑〉;

3. Use the ladder operator Ĵ− to obtain all other j = 1 states; This gives the triplet.

4. There remains one jz = 0 state, which must be orthogonal to the j = 1, jz = 0 state. This gives
the singlet.

16.2 Adding two spins 1

The idea behind adding two spins 1 is the same. We first note that the action of Ĵz on product states is
simple

Ĵz|1, j1,z〉|1, j2,z〉 = ~(j1,z + j2,z)|1, j1,z〉|1, j2,z〉 . (567)

This immediately tells us that the maximal value of jz, and hence j, is 2 and

|1, 1, 2, 2〉 = |1, 1〉|1, 1〉 . (568)

Using that the ladder operators act as

Ĵ1,−|1, jz〉 ∝ |1, jz − 1〉 , (569)

we can construct the other states in the j = 2 representation

Ĵ−|1, 1, 2, 2〉 ∝ |1, 0〉|1, 1〉+ |1, 1〉|1, 0〉 ,
Ĵ2
−|1, 1, 2, 2〉 ∝ |1,−1〉|1, 1〉+ 2|1, 0〉|1, 0〉+ |1, 1〉|1,−1〉 ,
Ĵ3
−|1, 1, 2, 2〉 ∝ |1,−1〉|1, 0〉+ |1, 0〉|1,−1〉 ,
Ĵ4
−|1, 1, 2, 2〉 ∝ |1,−1〉|1,−1〉 . (570)
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Normalizing the states we have

|1, 1, 2, 2〉 = |1, 1〉|1, 1〉 ,

|1, 1, 2, 1〉 =
1√
2

(
|1, 0〉|1, 1〉+ |1, 1〉|1, 0〉

)
,

|1, 1, 2, 0〉 =
1√
6

(
|1,−1〉|1, 1〉+ 2|1, 0〉|1, 0〉+ |1, 1〉|1,−1〉

)
,

|1, 1, 2,−1〉 =
1√
2

(
|1, 0〉|1,−1〉+ |1,−1〉|1, 0〉

)
,

|1, 1, 2,−2〉 = |1,−1〉|1,−1〉 . (571)

According to our general rule the next representation we need to consider has j = 1. The jz = 1 state must
be orthogonal to |1, 1, 2, 1〉, which tells us that

|1, 1, 1, 1〉 =
1√
2

(
|1, 0〉|1, 1〉 − |1, 1〉|1, 0〉

)
. (572)

Acting again with the ladder operator and normalizing the resulting states gives

|1, 1, 1, 0〉 =
1√
2

(
|1,−1〉|1, 1〉 − |1, 1〉|1,−1〉

)
,

|1, 1, 1,−1〉 =
1√
2

(
|1,−1〉|1, 0〉 − |1, 0〉|1,−1〉

)
. (573)

This leaves us with one missing state, which has j = jz = 0. It must be orthogonal to both |1, 1, 2, 0〉 and
|1, 1, 1, 0〉, which fixes it to be

|1, 1, 0, 0〉 =
1√
3

(
|1,−1〉|1, 1〉 − |1, 0〉|1, 0〉+ |1, 1〉|1,−1〉

)
. (574)

Bingo!

17 EPR experiment and Bell inequalities

Entanglement has very strange and counterintuitive consequences. A nice example is provided by the
Gedankenexperiment put forward by Einstein, Podolsky and Rosen in 1935. They considered the conse-
quences of the quantum mechanical prediction for such kinds of experiments to be so disturbing that they
advocated the idea that QM cannot be the whole story. A simplified version of their Gedankenexperiment
is shown in Fig. 14. A source creates electron/positron pairs through the decay of nuclei from between two

Figure 14: Setup for an EPR-like experiment.

states with both zero momentum and zero angular momentum. As electrons and positions are spin-1/2
particles the angular momentum part of the corresponding quantum state is therefore

|ψ〉 =
1√
2

(
| ↑↓〉 − | ↓↑〉

)
. (575)
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Electron and positrons move away from the source with equal but opposite momenta and eventually reach
two detectors (SG filters) operated by two physicists called Bob and Alice. The detectors measure the angular
momentum along directions nα = (0, sin(α), cos(α)) and nβ = (0, sin(β), cos(β)) respectively. As we have
seen before in our discussion of SG filters, Bob and Alice will always measure ±~/2, but with probabilities
that depend on α and β. In order to describe the measurement outcomes we require the relation between
the eigenstates |θ, ↑〉 of the angular momentum operator in nθ direction and the eigenstates | ↑〉 | ↓〉 of Ĵz

| ↑〉 = cos(α/2)|α, ↑〉 − i sin(α/2)|α, ↓〉 ,
| ↓〉 = −i sin(α/2)|α, ↑〉+ cos(α/2)|α, ↓〉 . (576)

Expressing |Ψ〉 in terms of these states gives

|Ψ〉 =
i√
2

sin
(α− β

2

)[
| ↑, α〉| ↑, β〉 − | ↓, α〉| ↓, β〉

]
+

1√
2

cos
(α− β

2

)[
| ↑, α〉| ↓, β〉 − | ↓, α〉| ↑, β〉

]
. (577)

Let us first consider repeated separate measurements by Alice and Bob. Both of them will obtain results
±~/2 with equal probabilities 1/2. So far so good. Things start to look strange once we consider combined
measurements by Alice and Bob. Denoting the probability of Alice obtaining the result σ~/2 and Bob the
result σ′~/2 by P (α, σ|β, σ′) where σ = ±, σ′ = ±, we have

P (α,+|β,+) = |
(
〈α, ↑ |〈β, ↑ |

)
|ψ〉|2 =

1

2
sin2

(α− β
2

)
,

P (α,+|β,−) = |
(
〈α, ↑ |〈β, ↓ |

)
|ψ〉|2 =

1

2
cos2

(α− β
2

)
,

P (α,−|β,+) = |
(
〈α, ↓ |〈β, ↑ |

)
|ψ〉|2 =

1

2
cos2

(α− β
2

)
,

P (α,−|β,−) = |
(
〈α, ↓ |〈β, ↓ |

)
|ψ〉|2 =

1

2
sin2

(α− β
2

)
. (578)

A useful quantity to consider is the correlation coefficient defined as the probability of equal outcomes minus
the probability of different outcomes

C(α, β) =
∑
σ=±

P (α, σ|β, σ)− P (α, σ|β,−σ) = − cos(α− β). (579)

To see that (578) is quite strange consider the case α = β. Let say Alice measures first and obtains the
result ~/2 (−~/2). Then Bob will obtain the result −~/2 (~/2) with certainty. It is as if the particle Bob
measures somehow knew the outcome of Alice’s result! We can arrange things in such a way that the
time elapsed between Bob’s and Alice’s measurements is too short to enable information to travel between
them, which makes the perfect correlation between the measurements look absurd. One way of avoiding
is to introduce hidden variables. Let’s postulate that the probabilistic nature of QM is merely a result
of our lack of knowledge of certain deterministic properties of the two particles. We could for example
assume that the particles carry common information which determines measurement outcomes. The first
and second particles could be characterized by some functions σA(α, λ) = ±1/2 and σB(β, λ) = ±1/2
that deterministically determine the outcome of angular momentum measurements along angles α and β
respectively. Importantly, as the two particles were created together, the two functions could be correlated.
For example we could have σB(α, λ) = −σA(α, λ) and this could explain the perfect anticorrelation of
the measurements in this case. The parameter λ is unknown, and measurements correspond to averages
over λ with some probability density ρ(λ). Equipped with this model we can now make predictions for
measurements, e.g.

P (α,+) =

∫
dλ ρ(λ)

(1

2
+ σA(α, λ)

)
,

P (α,−) =

∫
dλ ρ(λ)

(1

2
− σA(α, λ)

)
. (580)
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To agree with the quantum mechanical predictions we want these to equal 1/2. Joint probabilities can be
calculated analogously

P (α, τ |β, τ ′) =

∫
dλ ρ(λ)

(1

2
+ τσA(α, λ)

) (1

2
+ τ ′σB(β, λ)

)
. (581)

Using these results we find that the correlation coefficient can be written as

C(α, β) = 4

∫
dλ ρ(λ) σA(α, λ) σB(β, λ). (582)

Let us now consider a situation where Alice (Bob) chooses among two measurement directions parametrized
by angles α and α′ (β and β′). Then the quantity

s(λ, α, α′, β, β′) = σA(α, λ)
[
σB(β, λ)− σB(β′, λ)

]
+ σA(α′, λ)

[
σB(β, λ) + σB(β′, λ)

]
(583)

can only take the values ±1
2 . Hence

−1

2
≤
∫
dλρ(λ) s(λ, α, α′, β, β′) ≤ 1

2
. (584)

Expressing the integral in terms of correlation coefficients gives Bell’s inequality

|C(α, β)− C(α, β′) + C(α′, β) + C(α′, β′)| ≤ 2.
(585)

Importantly the quantum mechanical result (579) violates this inequality, i.e. there are choices for α, α′, β, β′

such that the left hand side exceeds 2. To see this recall that the QM result for the correlation coefficient
is C(α, β) = − cos(α− β). Choosing

α = 0 , α′ =
π

2
, β =

π

4
, β′ =

3π

4
(586)

gives
|C(α, β)− C(α, β′) + C(α′, β) + C(α′, β′)| = 2

√
2 > 2. (587)

As measurements are found to be in agreement with QM predictions, this means that they are incompatible
with hidden variable theories of the class discussed here!

Homework 11: Composite Systems

5.10 A system AB consists of two non-interacting parts A and B. The dynamical state of A is
described by |a〉, and that of B by |b〉, so |a〉 satisfies the TDSE for A and similarly for |b〉. What
is the ket describing the dynamical state of AB? In terms of the Hamiltonians HA and HB of the
subsystems, write down the TDSE for the evolution of this ket and show that it is automatically
satisfied. Do HA and HB commute? How is the TDSE changed when the subsystems are coupled by
a small dynamical interaction Hint? If A and B are harmonic oscillators, write down HA, HB. The
oscillating particles are connected by a weak spring. Write down the appropriate form of the interac-
tion Hamiltonian Hint. Does HA commute with Hint? Explain the physical significance of your answer.

5.11 Explain what is implied by the statement that “the physical state of system A is correlated with
the state of system B.” Illustrate your answer by considering the momenta of cars on (i) London’s
circular motorway (the M25) at rush-hour, and (ii) the road over the Nullarbor Plain in southern
Australia in the dead of night.
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5.12 Consider a system of two particles of mass m that each move in one dimension along a given
rod. Let |1;x〉 be the state of the first particle when it’s at x and |2; y〉 be the state of the second
particle when it’s at y. A complete set of states of the pair of particles is {|xy〉} = {|1;x〉|2; y〉}.
Write down the Hamiltonian of this system given that the particles attract one another with a force
that’s equal to C times their separation.
Suppose that the particles experience an additional potential V (x, y) = 1

2C(x + y)2. Show that
the dynamics of the two particles is now identical with that of a single particle that moves in two
dimensions in a particular potential Φ(x, y), and give the form of Φ.

5.13 In the lectures we considered measurements by Alice and Bob on an entangled pair of spins
prepared in a singlet state. Bob measures the component of spin along an axis that is inclined by
angle θ to that used by Alice. Given the expression

|−, b〉 = cos(θ/2) eiφ/2|−〉 − sin(θ/2) e−iφ/2|+〉,

for the state of a spin-half particle in which it has spin −1
2 along the direction b with polar angles

(θ, φ), with |±〉 the states in which there is spin ±1
2 along the z-axis, calculate the amplitude that

Bob finds the positron’s spin to be −1
2 given that Alice has found +1

2 for the electron’s spin. Hence
show that the corresponding probability is cos2(θ/2).

Part VI

The Hydrogen Atom

One of the great early triumphs of QM was to provide an explanation for emission spectra of atoms. We
now have all pieces in place to work out the quantum theory of the gross structure of the simplest atom,
hydrogen. For later convenience we will consider the case of hydrogen-like ions, where a single electron is
bound to a nucleus of charge Ze. In order to arrive at an exactly solvable problem we will make the following
simplifying assumptions:

1. We will ignore the fact that both the electron and the nucleus have spin;

2. We neglect relativistic effects and take the interaction between the electron and the nucleus to be
described by the Coulomb interaction;

These assumptions lead to the following Hamiltonian

H =
p2
n

2mn
+

p2
e

2me
− Ze2

4πε0|x̂e − x̂n|
. (588)

This Hamiltonian has the attractive feature that its energy eigenvalues and eigenfunctions can be calculated
exactly. You will see later how to take the spin degrees of freedom and relativistic effects into account. It
turns out that these only lead to small corrections (which however can be measured).

18 Position representation

We have seen before that the position representation of the TISE takes the form[
− ~2

2mn
∇2
n −

~2

2me
∇2
e −

Ze2

4πε0|xe − xn|

]
ψ(xe,xn) = Eψ(xe,xn) . (589)
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We first rewrite this equation in terms of centre-of-mass co-ordinates

X =
mexe +mnxn
me +mn

, r = xe − xn . (590)

After some calculations we find that

− ~2

2mn
∇2
n −

~2

2me
∇2
e = −~2

2

[
1

me +mn
∇2

X +
1

µ
∇2

r

]
, (591)

where the reduced mass µ is given by

µ =
memn

me +mn
.

(592)

In the case of hydrogen we have mn = 1836me and hence µ = 0.99945me, so the reduced mass is extremely
close to the electron mass. Substituting (589) back into (587) we arrive at

[
− ~2

2(me +mn)
∇2

X −
~2

2µ
∇2

r −
Ze2

4πε0|r|

]
ψ(X, r) = Eψ(X, r) .

(593)

This PDE can be solved by separation of variables. Substituting

ψ(X, r) = φ(X)χ(r) (594)

back into (591) and dividing by ψ(X, r)we obtain

1

φ(X)

[
− ~2

2(me +mn)
∇2

Xφ(X)

]
+

1

χ(r)

[
− ~2

2µ
∇2

r −
Ze2

4πε0|r|

]
χ(r) = E. (595)

As the first term only depends on X and the second depends only on r they can sum up to a constant only
if they both are constant. This breaks the TISE into two pieces

− ~2

2(me +mn)
∇2

Xφ(X) = ECMφ(X) ,[
− ~2

2µ
∇2

r −
Ze2

4πε0|r|

]
χ(r) = Erχ(r) ,

(596)

where the energy eigenvalue equals the sum of the energies of the centre of mass motion and the relative
motion

E = ECM + Er. (597)

We see that the problem splits into two parts

• The centre of mass has only kinetic energy and the corresponding wave functions are plane waves

φ(X) =
1

(2π~)3/2
eiK·X , ECM =

~2K2

2(mn +me)
. (598)

• The TISE describing the relative motion looks like the TISE for a particle with mass µ in a Coulomb
potential centred at zero. Our task in to solve this differential equation.
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19 Rotational invariance and radial Schrödinger equation

We may now use our previous result on Schrödinger equations for particles in rotationally symmetric po-
tentials. Recalling that in spherical polar co-ordinates we have

∇2
r =

∂2

∂r2
+

2

r

∂

∂r
− 1

r2

L̂2

~2
, (599)

we can solve our PDE for the wave function by separation of variables

χ(r) = Rn`(r)Y`m(θ, φ) . (600)

Substituting (598) into the TISE we have[
− ~2

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− 1

r2

L̂2

~2

)
− Ze2

4πε0|r|
− En`

]
Rn`(r)Y`m(θ, φ) = 0. (601)

Using that L̂2Y`m(θ, φ) = ~2`(` + 1)Y`m(θ, φ) and dividing the resulting equation by Y`m(θ, φ) we arrive at
the radial Schrödinger equation(

− ~2

2µ

[
d2

dr2
+

2

r

d

dr

]
+

~2`(`+ 1)

2µr2
− Ze2

4πε0r

)
Rn`(r) = En`Rn`(r) .

(602)

It is useful to rewrite this differential equation in terms of the dimensionless variable

ρ =
r

aZ
, aZ =

4πε0~2

µe2Z
. (603)

Replacing µ by me and setting Z = 1 the length scale aZ reduces to the Bohr radius

a0 =
4πε0~2

me2
= 5.2917721067(12)× 10−11m . (604)

After the change of variables the radial Schrödinger equation reads

−R′′n`(ρ)− 2

ρ
R′n`(ρ) +

(
`(`+ 1)

ρ2
− 2

ρ

)
Rn`(ρ) = εn`Rn`(ρ) ,

(605)

where

εn` =
2µa2

Z

~2
En`. (606)

19.1 Small-ρ behaviour

For ρ→ 0 we have a highly divergent term proportional to `(`+ 1)/ρ2, which for ` ≥ 1 is much larger than
the terms proportional to Ze2/(4πε0ρ) and εn`. The leading behaviour for ρ→ 0 is therefore determined by
the simpler ODE

−R′′n`(ρ)− 2

ρ
R′n`(ρ) +

`(`+ 1)

ρ2
Rn`(ρ) = 0 , ρ→ 0. (607)

Making the Ansatz Rn` ∝ ρs and substituting it back into (605) we obtain two solutions

s+ = ` , s− = −(`+ 1) . (608)

The second solution is not allowed as the wave function would be non-normalizable due to the singularity
at the origin. Hence we have

Rn`(ρ) ∝ ρ` , for ρ→ 0. (609)

We have shown this for ` ≥ 1 but it turns out that it is correct for ` = 0 as well (see below).
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19.2 Large-ρ behaviour

For large values of ρ we can neglect the terms proportional to `(`+ 1)/ρ2 and Ze2/(4πε0ρ) compared to the
term proportional to εn`. The radial Schrödinger equation can then be rewritten as

R′′n`(ρ)

Rn`(ρ)
+

2

ρ

R′n`(ρ)

Rn`(ρ)
= −εn` , ρ→∞. (610)

Now we use that we are interested in bound state solutions to the TISE, that is radial wave functions that
vanish at infinity. This tells us that the behaviour at large ρ is exponential

Rn`(ρ) ∝ ραe−λn`ρ , λ2
n` = −εn` > 0. (611)

This tells us that bound state solutions correspond to negative energy

En` < 0 . (612)

We note that the power-law factor ρα is not fixed by the simple ρ→∞ argument.

19.3 Full solution

We now make the following Ansatz for the radial wave functions

Rn`(ρ) = ρ`e−λn`ρFn`(ρ) . (613)

Substituting this into (603) we obtain an ODE for the unknown functions Fn`(ρ)

−ρF ′′n`(ρ)− 2(`+ 1− λn`ρ)F ′n`(ρ) + 2(λn`(`+ 1)− 1)Fn`(ρ) = 0. (614)

Finally we change variables to
y = 2ρλn` . (615)

Defining Fn`(ρ) = fn`(y) we arrive at the following ODE for fn`(y)

yf ′′n`(y) + f ′n`(y)
(
2`+ 2− y

)
+
( 1

λn`
− `− 1

)
fn`(y) = 0.

(616)

We can recognize this as a generalized Laguerre equation. The standard form of the latter is

yg′′(y) + g′(y)
(
α+ 1− y

)
+ kg(y) = 0. (617)

We seek solutions to this equation that grow sufficiently slowly when y → ∞ so that the associated radial
part of the wave function Rn`(ρ) still vanishes when ρ → ∞ (as we are looking for bound state solutions).
This is the case only when k are non-negative integers, and the corresponding solutions to (615) are the
Laguerre polynomials

g(y) = L
(α)
k (y) , k = 0, 1, 2, . . . (618)

We can map our problem onto this by taking

α = 2`+ 1 , k =
1

λn`
− `− 1 . (619)

The requirement that the solutions to our differential equation vanish when ρ → ∞ quantizes the allowed
values of λn` and hence the energy! As k is a non-negative integer 1/λn` must be a positive integer such
that

λn` =
1

n
, n ≥ 1 , ` < n.

(620)
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Putting everything together we arrive at the following result for the solutions of the radial Schrödinger
equation

Rn`(r) = Nn` r
` L

(2`+1)
n−`−1(2r/naZ) e−(r/naZ) ,

(621)

where Nn` are normalizations fixed by the requirement that the wave function is normalized

1 =

∫ ∞
0

drr2

∫ π

0
dθ sin(θ)

∫ 2π

0
dφ|Rn`(r)Y`m(θ, φ)|2 =

∫ ∞
0

drr2|Rn`(r)|2. (622)

20 Energy eigenvalues and emission spectra of hydrogen

We have succeeded in constructing solutions to the TISE of the form

ψn`m(r, θ, φ) = Rn`(r)Y`m(θ, φ) ,
(623)

labelled by three good quantum numbers

• The positive integer n is called principal quantum number ;

• The non-negative integer ` is the quantum number associated with total orbital angular momentum
and has a range

0 ≤ ` ≤ n− 1 ;
(624)

• The integer m is the quantum number associated with the z-component of orbital angular momentum
and has a range

−` ≤ m ≤ `.
(625)

The energy eigenvalues associated with ψn`m(r, θ, φ) are

En = −ER
n2

µZ2

me
, ER =

mee
4

2(4πε0)2~2
= 13.605693eV

. (626)

Here ER is called Rydberg energy. Importantly the energies only depend on the principal quantum number
n. This means that the energy eigenstates are degenerate with degeneracies

n−1∑
`=0

(2`+ 1) = n2. (627)

20.1 Emission spectra

The emission spectra of hydrogen are obtained by considering transitions between different energy eigen-
states. You will see why this is in the Further QM course. The basic idea is that the atom is initially in an
eigenstate with energy Em and then undergoes a transition to another energy eigenstate En by emitting a
photon (hence we must have m > n). The photon energy is

hν = Em − En =
µ

me
ER

(
1

n2
− 1

m2

)
. (628)

The photon energies can be grouped in so-called series. The first few of these are
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Figure 15: Lyman series for hydrogen atom spectral lines.

1. Lyman series: n = 1, m = 2, 3, 4 . . .

This was discovered by Theodore Lyman between 1906 and 1914. All the wavelengths in the Lyman
series are in the ultraviolet.

2. Balmer series: n = 2, m = 3, 4, 5 . . .

This is named after Johann Balmer, who discovered the Balmer formula, an empirical equation to
predict the Balmer series, in 1885.

Figure 16: The four visible hydrogen emission spectrum lines in the Balmer series.

3. Paschen series: n = 3, m = 4, 5, 6 . . .

Named after the German physicist Friedrich Paschen who first observed them in 1908. The Paschen
lines all lie in the infrared.

A good question is how well our “gross structure” calculation accounts for these spectral lines. Our results
for the Lyman series are λj = 121.569, 102.574, 97.2556, 94.9762, 93.7822, while the measured values are
are λj = 121.57, 102.57, 97.254, 94.974, 93.780. We see that that our simple theory already gives an
excellent account of experimental observations! Spin and relativistic effects account for the differences.

Homework 12: The Hydrogen Atom

6.1 Some things about hydrogen’s gross structure that it’s important to know (ignore spin through-
out, and you may set the reduced mass to be equal to the electron mass):

(a) What quantum numbers characterise stationary states of hydrogen?

(b) What combinations of values of these numbers are permitted?

(c) Give the formula for the energy of a stationary state in terms of the Rydberg R. What is the
value of R in eV?
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(d) How many stationary states are there in the first excited level and in the second excited level?

(e) What is the wavefunction of the ground state?

(f) Write down an expression for the mass of the reduced particle.

(g) We can apply hydrogenic formulae to any two charged particles that are electrostatically bound.
How does the ground-state energy then scale with (i) the mass of the reduced particle, and (ii) the
charge Ze on the nucleus? (iii) How does the radial scale of the system scale with Z?

6.2 An electron is in the ground state of a hydrogen-like atom with nuclear charge +Ze. For
simplicity neglect the difference between the reduced mass and the electron mass.

(a) What is its average distance from the nucleus?

(b) At what distance from the nucleus is it most likely to be found?

(c) Show that the expectation value of the potential energy of the electron is the same as that given
by the Bohr model, namely −Ze2/4πε0r0 where r0 = a0/Z.

(d) Show that the expectation value of the kinetic energy is equal to the value given by the Bohr
model, namely Ze2/8πε0r0.

(e) Hence verify that the expectation value of the total energy agrees with the Bohr model.

6.3 Show that the speed of a classical electron in the lowest Bohr orbit is v = αc, where α = e2/4πε0~c
is the fine-structure constant. What is the corresponding speed for a hydrogen-like Fe ion (atomic
number Z = 26)? Given these results, what fractional errors must we expect in the energies of states
that we derive from non-relativistic quantum mechanics.

6.4 Show that the electric field experienced by an electron in the ground state of hydrogen is of
order 5× 1011 V m−1. Why is it impossible to generate comparable macroscopic fields using charged
electrodes. Lasers are available that can generate beam fluxes as big as 1022 W m−2. Show that the
electric field in such a beam is of comparable magnitude.

6.5 Positronium consists of an electron e− and a positron e+ (both spin-half and of equal mass) in
orbit around one another. What are its energy levels? By what factor is a positronium atom bigger
than a hydrogen atom?

6.6 Muonium consists of an electron e− and a positive muon µ+ (both spin-half particles but
mµ = 206.7me) in orbit around one another. What are its energy levels? By what factor is muonium
atom bigger than a hydrogen atom?

6.7 The emission spectrum of the He+ ion contains the Pickering series of spectral lines that is
analogous to the Lyman, Balmer and Paschen series in the spectrum of hydrogen

Balmer i = 1, 2, . . . 0.456806 0.616682 0.690685 0.730884
Pickering i = 2, 4, . . . 0.456987 0.616933 0.690967 0.731183

The table gives the frequencies (in 1015 Hz) of the first four lines of the Balmer series and the first
four even-numbered lines of the Pickering series. The frequencies of these lines in the Pickering series
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are almost coincident with the frequencies of lines of the Balmer series. Explain this finding. Provide
a quantitative explanation of the small offset between these nearly coincident lines in terms of the
reduced mass of the electron in the two systems. (In 1896 E.C. Pickering identified the odd-numbered
lines in his series in the spectrum of the star ζ Puppis. Helium had yet to be discovered and he
believed that the lines were being produced by hydrogen. Naturally he confused the even-numbered
lines of his series with ordinary Balmer lines.)

21 Explicit form of the wave functions

21.1 Ground state

The ground state has quantum numbers n = 1, ` = m = 0. Its normalized wave function is

χ100(r, θ, φ) =
1√
πa3

Z

e−r/aZ . (629)

21.2 n = 2 states

For principal quantum number n = 2 there are two allowed values of `. The so-called 2s state has ` = m = 0
and its wave function is

χ200(r, θ, φ) =
1√

8πa3
Z

[
1− r

2aZ

]
e−r/2aZ . (630)

The other allowed value is ` = 1. There are altogether three such states with L̂z quantum numbersm = 0,±1.
The wave-functions of these so-called 2p states are

χ211(r, θ, φ) = − 1

8
√
πa3

Z

r

aZ
e−r/2aZ sin(θ)eiφ ,

χ210(r, θ, φ) = − 1

4
√

2πa3
Z

r

aZ
e−r/2aZ cos(θ) ,

χ21−1(r, θ, φ) =
1

8
√
πa3

Z

r

aZ
e−r/2aZ sin(θ)e−iφ . (631)

21.3 Radial probability density

Given that the reduced mass µ is very close to the electron mass we can think of |χn`m(r, θ, φ)|2 as the
probability density to find the electron at co-ordinates (r, θ, φ). The probability of finding the electron
between (r, θ, φ) and (r+dr, θ+dθ, φ+dφ) is obtained by multiplying with the volume element in spherical
polar co-ordinates, i.e.

P (r, θ, φ) = |χn`m(r, θ, φ)|2 r2 sin(θ)dr dθ dφ (632)

The radial part of this expression
P (r) dr = |Rn`(r)|2r2 dr (633)

is shown in Fig. 17. We see that in its ground state the electron is most likely to be found at a distance of
one Bohr radius from the nucleus.
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Figure 17: r2|Rn`(r)|2 for the first few energy eigenstates in hydrogen.

21.4 Visualising the angular dependence

The angular dependence is described by |Y`m(θ, φ)|2 and a useful way of visualising the angular dependence
is to use that |Y`m(θ, φ)|2 is in fact independent of φ, i.e. rotationally symmetric around the z-axis. Plotting
for each value of θ a point at distance r = |Y`m(θ, φ)|2 from the origin then produces a contour r(θ), and
rotating it around the z-axis gives an account of the angular probability distribution.
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Figure 18: r2|Rn`(r)|2 for the first few energy eigenstates in hydrogen.
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Richard Feynman (Nobel Prize in Physics 1965).

We started with Feynman, and we will finish with him as
well: If you think you understand Quantum Mechanics, you
don’t understand Quantum Mechanics.
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