
Quantum Mechanics HT 2020: Problem Sheet 5

Spin and S > 1 Systems

5.1 Write down the expression for the commutator [σi, σj ] of two Pauli matrices. Show that the anticommutator of
two Pauli matrices is

{σi, σj} = 2δij .

5.2 Let n be any unit vector and σ = (σx, σy, σz) be the vector whose components are the Pauli matrices. Why is
it physically necessary that n · σ satisfy (n · σ)2 = I, where I is the 2 × 2 identity matrix? Let m be a unit
vector such that m · n = 0. Why do we require that the commutator [m · σ,n · σ] = 2i(m × n) · σ? Prove
that these relations follow from the algebraic properties of the Pauli matrices. You should be able to show that
[m · σ,n · σ] = 2i(m× n) · σ for any two vectors n and m.

5.3 Let n be the unit vector in the direction with polar coordinates (θ, φ). Write down the matrix n · σ and find
its eigenvectors. Hence show that the state of a spin-half particle in which a measurement of the component of
spin along n is certain to yield 1

2 h̄ is

|+,n〉 = sin(θ/2) eiφ/2|−〉+ cos(θ/2) e−iφ/2|+〉,

where |±〉 are the states in which ± 1
2 is obtained when sz is measured. Obtain the corresponding expression for

|−,n〉. Explain physically why the amplitudes in the previous equation have modulus 2−1/2 when θ = π/2 and
why one of the amplitudes vanishes when θ = π.

5.4 For a spin-half particle at rest, the operator J is equal to the spin operator S. Use the properties of the Pauli
spin matrices to show that in this case the rotation operator U(α) ≡ exp(−iα · J/h̄) is

U(α) = I cos
(α

2

)
− iα̂ · σ sin

(α
2

)
,

where α̂ is the unit vector parallel to α. Comment on the value this gives for U(α) when α = 2π.

5.5 Explain why a spin- 12 particle in a magnetic field B has a Hamiltonian given by

H = −γS ·B,

where γ is the gyromagnetic ratio which you should define. In a coordinate system such that B lies along the
z-axis, a proton is found to be in a eigenstate |+, x〉 of Ŝx at t = 0. Find 〈Ŝx〉 and 〈Ŝy〉 for t > 0.

5.6 Write down the 3× 3 matrix that represents Sx for a spin-one system in the basis in which Sz is diagonal (i.e.,
the basis states are |0〉 and |±〉 with Sz|+〉 = |+〉, etc.)

A beam of spin-one particles emerges from an oven and enters a Stern–Gerlach filter that passes only particles
with Jz = h̄. On exiting this filter, the beam enters a second filter that passes only particles with Jx = h̄, and
then finally it encounters a filter that passes only particles with Jz = −h̄. What fraction of the particles stagger
right through?

5.7 A system that has spin angular momentum
√

6h̄ is rotated through an angle φ around the z-axis. Write down
the 5× 5 matrix that describes a rotation by an angle φ around the z-axis.

5.8 * Vector operators (Optional, off-syllabus problem)

(a) Show that expectation values of the position operators in a state |ψ〉 transform like a classical vector under
a rotation around an axis n by an angle α.
(b) Show that the commutation relations [V̂j , Ĵk] = ih̄εjklV̂l are equivalent to

V̂j +
dα

ih̄
[V̂j ,n · Ĵ] =

∑
k

(
R(ndα)

)
jk
V̂k ,

where n is a unit vector and R(ndα) is the rotation matrix around the axis n by an angle dα.
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Composite systems

5.10 A system AB consists of two non-interacting parts A and B. The dynamical state of A is described by |a〉, and
that of B by |b〉, so |a〉 satisfies the TDSE for A and similarly for |b〉. What is the ket describing the dynamical
state of AB? In terms of the Hamiltonians HA and HB of the subsystems, write down the TDSE for the evolution
of this ket and show that it is automatically satisfied. Do HA and HB commute? How is the TDSE changed
when the subsystems are coupled by a small dynamical interaction Hint? If A and B are harmonic oscillators,
write down HA, HB. The oscillating particles are connected by a weak spring. Write down the appropriate form
of the interaction Hamiltonian Hint. Does HA commute with Hint? Explain the physical significance of your
answer.

5.11 Explain what is implied by the statement that “the physical state of system A is correlated with the state of
system B.” Illustrate your answer by considering the momenta of cars on (i) London’s circular motorway (the
M25) at rush-hour, and (ii) the road over the Nullarbor Plain in southern Australia in the dead of night.

5.12 Consider a system of two particles of mass m that each move in one dimension along a given rod. Let |1;x〉
be the state of the first particle when it’s at x and |2; y〉 be the state of the second particle when it’s at y. A
complete set of states of the pair of particles is {|xy〉} = {|1;x〉|2; y〉}. Write down the Hamiltonian of this
system given that the particles attract one another with a force that’s equal to C times their separation.

Suppose that the particles experience an additional potential V (x, y) = 1
2C(x + y)2. Show that the dynamics

of the two particles is now identical with that of a single particle that moves in two dimensions in a particular
potential Φ(x, y), and give the form of Φ.

5.13 In the lectures we considered measurements by Alice and Bob on an entangled pair of spins prepared in a singlet
state. Bob measures the component of spin along an axis that is inclined by angle θ to that used by Alice.
Given the expression

|−, b〉 = cos(θ/2) eiφ/2|−〉 − sin(θ/2) e−iφ/2|+〉,

for the state of a spin-half particle in which it has spin − 1
2 along the direction b with polar angles (θ, φ), with |±〉

the states in which there is spin ± 1
2 along the z-axis, calculate the amplitude that Bob finds the positron’s spin

to be − 1
2 given that Alice has found + 1

2 for the electron’s spin. Hence show that the corresponding probability

is cos2(θ/2).


