Quantum Mechanics HT 2020: Problem Sheet 5

Spin and $S>1$ Systems

5.1 Write down the expression for the commutator $\left[\sigma_{i}, \sigma_{j}\right]$ of two Pauli matrices. Show that the anticommutator of two Pauli matrices is

$$
\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j}
$$

5.2 Let \boldsymbol{n} be any unit vector and $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ be the vector whose components are the Pauli matrices. Why is it physically necessary that $\boldsymbol{n} \cdot \boldsymbol{\sigma}$ satisfy $(\boldsymbol{n} \cdot \boldsymbol{\sigma})^{2}=I$, where I is the 2×2 identity matrix? Let \boldsymbol{m} be a unit vector such that $\boldsymbol{m} \cdot \boldsymbol{n}=0$. Why do we require that the commutator $[\boldsymbol{m} \cdot \boldsymbol{\sigma}, \boldsymbol{n} \cdot \boldsymbol{\sigma}]=2 \mathrm{i}(\boldsymbol{m} \times \boldsymbol{n}) \cdot \boldsymbol{\sigma}$? Prove that these relations follow from the algebraic properties of the Pauli matrices. You should be able to show that $[\boldsymbol{m} \cdot \boldsymbol{\sigma}, \boldsymbol{n} \cdot \boldsymbol{\sigma}]=2 \mathrm{i}(\boldsymbol{m} \times \boldsymbol{n}) \cdot \boldsymbol{\sigma}$ for any two vectors \boldsymbol{n} and \boldsymbol{m}.
5.3 Let \boldsymbol{n} be the unit vector in the direction with polar coordinates (θ, ϕ). Write down the matrix $\boldsymbol{n} \cdot \boldsymbol{\sigma}$ and find its eigenvectors. Hence show that the state of a spin-half particle in which a measurement of the component of spin along \boldsymbol{n} is certain to yield $\frac{1}{2} \hbar$ is

$$
|+, \boldsymbol{n}\rangle=\sin (\theta / 2) \mathrm{e}^{\mathrm{i} \phi / 2}|-\rangle+\cos (\theta / 2) \mathrm{e}^{-\mathrm{i} \phi / 2}|+\rangle
$$

where $| \pm\rangle$ are the states in which $\pm \frac{1}{2}$ is obtained when s_{z} is measured. Obtain the corresponding expression for $|-, \boldsymbol{n}\rangle$. Explain physically why the amplitudes in the previous equation have modulus $2^{-1 / 2}$ when $\theta=\pi / 2$ and why one of the amplitudes vanishes when $\theta=\pi$.
5.4 For a spin-half particle at rest, the operator \boldsymbol{J} is equal to the spin operator \boldsymbol{S}. Use the properties of the Pauli spin matrices to show that in this case the rotation operator $U(\boldsymbol{\alpha}) \equiv \exp (-\mathrm{i} \boldsymbol{\alpha} \cdot \boldsymbol{J} / \hbar)$ is

$$
U(\boldsymbol{\alpha})=I \cos \left(\frac{\alpha}{2}\right)-\mathrm{i} \hat{\boldsymbol{\alpha}} \cdot \boldsymbol{\sigma} \sin \left(\frac{\alpha}{2}\right)
$$

where $\hat{\boldsymbol{\alpha}}$ is the unit vector parallel to $\boldsymbol{\alpha}$. Comment on the value this gives for $U(\boldsymbol{\alpha})$ when $\alpha=2 \pi$.
5.5 Explain why a spin- $\frac{1}{2}$ particle in a magnetic field \boldsymbol{B} has a Hamiltonian given by

$$
H=-\gamma \boldsymbol{S} \cdot \boldsymbol{B}
$$

where γ is the gyromagnetic ratio which you should define. In a coordinate system such that \boldsymbol{B} lies along the z-axis, a proton is found to be in a eigenstate $|+, x\rangle$ of \hat{S}_{x} at $t=0$. Find $\left\langle\hat{S}_{x}\right\rangle$ and $\left\langle\hat{S}_{y}\right\rangle$ for $t>0$.
5.6 Write down the 3×3 matrix that represents S_{x} for a spin-one system in the basis in which S_{z} is diagonal (i.e., the basis states are $|0\rangle$ and $| \pm\rangle$ with $S_{z}|+\rangle=|+\rangle$, etc.)
A beam of spin-one particles emerges from an oven and enters a Stern-Gerlach filter that passes only particles with $J_{z}=\hbar$. On exiting this filter, the beam enters a second filter that passes only particles with $J_{x}=\hbar$, and then finally it encounters a filter that passes only particles with $J_{z}=-\hbar$. What fraction of the particles stagger right through?
5.7 A system that has spin angular momentum $\sqrt{6} \hbar$ is rotated through an angle ϕ around the z-axis. Write down the 5×5 matrix that describes a rotation by an angle ϕ around the z-axis.
5.8 * Vector operators (Optional, off-syllabus problem)
(a) Show that expectation values of the position operators in a state $|\psi\rangle$ transform like a classical vector under a rotation around an axis \mathbf{n} by an angle α.
(b) Show that the commutation relations $\left[\hat{V}_{j}, \hat{J}_{k}\right]=i \hbar \epsilon_{j k l} \hat{V}_{l}$ are equivalent to

$$
\hat{V}_{j}+\frac{d \alpha}{i \hbar}\left[\hat{V}_{j}, \mathbf{n} \cdot \hat{\mathbf{J}}\right]=\sum_{k}(R(\mathbf{n} d \alpha))_{j k} \hat{V}_{k}
$$

where \mathbf{n} is a unit vector and $R(\mathbf{n} d \alpha)$ is the rotation matrix around the axis \mathbf{n} by an angle $d \alpha$.

Composite systems

5.10 A system AB consists of two non-interacting parts A and B . The dynamical state of A is described by $|a\rangle$, and that of B by $|b\rangle$, so $|a\rangle$ satisfies the TDSE for A and similarly for $|b\rangle$. What is the ket describing the dynamical state of AB ? In terms of the Hamiltonians H_{A} and H_{B} of the subsystems, write down the TDSE for the evolution of this ket and show that it is automatically satisfied. Do H_{A} and H_{B} commute? How is the TDSE changed when the subsystems are coupled by a small dynamical interaction $H_{\text {int }}$? If A and B are harmonic oscillators, write down $H_{\mathrm{A}}, H_{\mathrm{B}}$. The oscillating particles are connected by a weak spring. Write down the appropriate form of the interaction Hamiltonian H_{int}. Does H_{A} commute with H_{int}. Explain the physical significance of your answer.
5.11 Explain what is implied by the statement that "the physical state of system A is correlated with the state of system B." Illustrate your answer by considering the momenta of cars on (i) London's circular motorway (the M25) at rush-hour, and (ii) the road over the Nullarbor Plain in southern Australia in the dead of night.
5.12 Consider a system of two particles of mass m that each move in one dimension along a given rod. Let $|1 ; x\rangle$ be the state of the first particle when it's at x and $|2 ; y\rangle$ be the state of the second particle when it's at y. A complete set of states of the pair of particles is $\{|x y\rangle\}=\{|1 ; x\rangle|2 ; y\rangle\}$. Write down the Hamiltonian of this system given that the particles attract one another with a force that's equal to C times their separation.
Suppose that the particles experience an additional potential $V(x, y)=\frac{1}{2} C(x+y)^{2}$. Show that the dynamics of the two particles is now identical with that of a single particle that moves in two dimensions in a particular potential $\Phi(x, y)$, and give the form of Φ.
5.13 In the lectures we considered measurements by Alice and Bob on an entangled pair of spins prepared in a singlet state. Bob measures the component of spin along an axis that is inclined by angle θ to that used by Alice. Given the expression

$$
|-, \boldsymbol{b}\rangle=\cos (\theta / 2) \mathrm{e}^{\mathrm{i} \phi / 2}|-\rangle-\sin (\theta / 2) \mathrm{e}^{-\mathrm{i} \phi / 2}|+\rangle
$$

for the state of a spin-half particle in which it has spin $-\frac{1}{2}$ along the direction \boldsymbol{b} with polar angles (θ, ϕ), with $| \pm\rangle$ the states in which there is spin $\pm \frac{1}{2}$ along the z-axis, calculate the amplitude that Bob finds the positron's spin to be $-\frac{1}{2}$ given that Alice has found $+\frac{1}{2}$ for the electron's spin. Hence show that the corresponding probability is $\cos ^{2}(\theta / 2)$.

