## Quantum Mechanics MT: Problem Sheet 3 (Christmas Break)

## The simple harmonic oscillator

3.1 After choosing units in which everything, including $\hbar=1$, the Hamiltonian of a harmonic oscillator may be written $\hat{H}=\frac{1}{2}\left(\hat{p}^{2}+\hat{x}^{2}\right)$, where $[\hat{x}, \hat{p}]=\mathrm{i}$. Show that if $|\psi\rangle$ is a ket that satisfies $H|\psi\rangle=E|\psi\rangle$, then

$$
\frac{1}{2}\left(\hat{p}^{2}+\hat{x}^{2}\right)(\hat{x} \mp \mathrm{i} \hat{p})|\psi\rangle=(E \pm 1)(\hat{x} \mp \mathrm{i} \hat{p})|\psi\rangle .
$$

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.
3.2 Given that $\hat{a}|n\rangle=\alpha|n-1\rangle$ and $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, where the annihilation operator of the harmonic oscillator is

$$
\hat{a} \equiv \frac{m \omega \hat{x}+\mathrm{i} \hat{p}}{\sqrt{2 m \hbar \omega}}
$$

show that $\alpha=\sqrt{n}$. Hint: consider $|\hat{a}| n\rangle\left.\right|^{2}$.
3.3 The pendulum of a grandfather clock has a period of 1 s and makes excursions of 3 cm either side of dead centre. Given that the bob weighs 0.2 kg , around what value of $n$ would you expect its non-negligible quantum amplitudes to cluster?
3.4 Show that the minimum value of $E(p, x) \equiv p^{2} / 2 m+\frac{1}{2} m \omega^{2} x^{2}$ with respect to the real numbers $p, x$ when they are constrained to satisfy $x p=\frac{1}{2} \hbar$, is $\frac{1}{2} \hbar \omega$. Explain the physical significance of this result.
3.5 How many nodes are there in the wavefunction $\langle x \mid n\rangle$ of the $n$th excited state of a harmonic oscillator?
3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is $\langle x \mid 2\rangle=$ constant $\times\left(x^{2} / \ell^{2}-\right.$ 1) $\mathrm{e}^{-x^{2} / 4 \ell^{2}}$, where $\ell \equiv \sqrt{\hbar / 2 m \omega}$ and find the normalising constant.
3.7 Use

$$
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right)=\ell\left(\hat{a}+\hat{a}^{\dagger}\right)
$$

to show for a harmonic oscillator that in the energy representation the operator $\hat{x}$ is

Calculate the same entries for the matrix $\hat{p}_{j k}$.
3.8 At $t=0$ the state of a harmonic oscillator of mass $m$ and frequency $\omega$ is

$$
|\psi\rangle=\frac{1}{2}|N-1\rangle+\frac{1}{\sqrt{ } 2}|N\rangle+\frac{1}{2}|N+1\rangle .
$$

Calculate the expectation value of $x$ as a function of time and interpret your result physically in as much detail as you can.

## More problems on basic quantum mechanics

3.9 A three-state system has a complete orthonormal set of states $|1\rangle,|2\rangle,|3\rangle$. With respect to this basis the operators $\hat{H}$ and $\hat{B}$ have matrices

$$
\hat{H}=\hbar \omega\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \hat{B}=b\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

where $\omega$ and $b$ are real constants.
(a) Are $\hat{H}$ and $\hat{B}$ Hermitian?
(b) Write down the eigenvalues of $\hat{H}$ and find the eigenvalues of $\hat{B}$. Solve for the eigenvectors of both $\hat{H}$ and
$\hat{B}$. Explain why neither matrix uniquely specifies its eigenvectors.
(c) Show that $\hat{H}$ and $\hat{B}$ commute. Give a basis of eigenvectors common to $\hat{H}$ and $\hat{B}$.
3.10 A system has a time-independent Hamiltonian that has spectrum $\left\{E_{n}\right\}$. Prove that the probability $P_{k}$ that a measurement of energy will yield the value $E_{k}$ is is time-independent. Hint: you can do this either from Ehrenfest's theorem, or by differentiating $\left\langle E_{k}, t \mid \psi\right\rangle$ w.r.t. $t$ and using the TDSE.
3.11 Let $\psi(x)$ be a properly normalised wavefunction and $\hat{Q}$ an operator on wavefunctions. Let $\left\{q_{r}\right\}$ be the spectrum of $\hat{Q}$ and $\left\{u_{r}(x)\right\}$ be the corresponding correctly normalised eigenfunctions. Write down an expression for the probability that a measurement of $Q$ will yield the value $q_{r}$. Show that $\sum_{r} P\left(q_{r} \mid \psi\right)=1$. Show further that the expectation of $Q$ is $\langle Q\rangle \equiv \int_{-\infty}^{\infty} \psi^{*} \hat{Q} \psi \mathrm{~d} x$.
3.12 (a) Find the allowed energy values $E_{n}$ and the associated normalized eigenfunctions $\phi_{n}(x)$ for a particle of mass $m$ confined by infinitely high potential barriers to the region $0 \leq x \leq a$.
(b) For a particle with energy $E_{n}=\hbar^{2} n^{2} \pi^{2} / 2 m a^{2}$ calculate $\langle x\rangle$.
(c) Without working out any integrals, show that

$$
\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\frac{a^{2}}{4}
$$

Hence find $\left\langle(x-\langle x\rangle)^{2}\right\rangle$ using the result that $\int_{0}^{a} x^{2} \sin ^{2}(n \pi x / a) \mathrm{d} x=a^{3}\left(1 / 6-1 / 4 n^{2} \pi^{2}\right)$.
(d) A classical analogue of this problem is that of a particle bouncing back and forth between two perfectly elastic walls, with uniform velocity between bounces. Calculate the classical average values $\langle x\rangle_{\mathrm{C}}$ and $\left\langle(x-\langle x\rangle)^{2}\right\rangle_{\mathrm{C}}$, and show that for high values of $n$ the quantum and classical results tend to each other.
3.13 A Fermi oscillator has Hamiltonian $\hat{H}=\hat{f}^{\dagger} \hat{f}$, where $\hat{f}$ is an operator that satisfies

$$
\hat{f}^{2}=0, \quad \hat{f} \hat{f}^{\dagger}+\hat{f}^{\dagger} \hat{f}=1
$$

Show that $\hat{H}^{2}=\hat{H}$, and thus find the eigenvalues of $\hat{H}$. If the ket $|0\rangle$ satisfies $\hat{H}|0\rangle=0$ with $\langle 0 \mid 0\rangle=1$, what are the kets (a) $|a\rangle \equiv \hat{f}|0\rangle$, and (b) $|b\rangle \equiv \hat{f}^{\dagger}|0\rangle$ ?
In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible value of the momentum of each particle type. A boson is an excitation of a harmonic oscillator, while a fermion in an excitation of a Fermi oscillator. Explain the connection between the spectrum of $\hat{f}^{\dagger} \hat{f}$ and the Pauli exclusion principle (which states that zero or one fermion may occupy a particular quantum state).

## Some off-syllabus stuff you may find interesting

3.14 Numerical solutions of the Schrödinger equation By following the discussion given in the lecture notes construct numerical solutions for the first 10 eigenstates $\left|\phi_{n}\right\rangle$ of the Hamiltonian

$$
H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}+\lambda \hat{x}^{4} .
$$

for $\frac{\lambda \ell^{4}}{\hbar \omega}=0.1$. You can download a Mathematica or Matlab file for doing this from the course webpage. Now use the eigenvectors to obtain an expression for the ground state of the harmonic oscillator Hamiltonian $(\lambda=0)$ in terms of the eigenstates of $H$

$$
|0\rangle \approx \sum_{n=0}^{N}\left\langle\phi_{n} \mid 0\right\rangle\left|\phi_{n}\right\rangle .
$$

Now assume that we initially prepare our system in the state $|\Phi(0)\rangle=|0\rangle$ and then consider time evolution under the Hamiltonian $H$. We have

$$
\begin{equation*}
|\Phi(t)\rangle \approx \sum_{n=0}^{N}\left\langle\phi_{n} \mid 0\right\rangle e^{-\frac{i}{\hbar} E_{n} t}\left|\phi_{n}\right\rangle . \tag{1}
\end{equation*}
$$

We now want to determine the probability density $|\langle x \mid \Phi(t)\rangle|^{2}$ to find the particle at position $x$ at time $t$. To do this we express $|\Phi(t)\rangle$ in terms of harmonic oscillator wave functions $\psi_{k}(x)$

$$
\begin{align*}
\langle x \mid \Phi(t)\rangle & \approx \sum_{n=0}^{N}\left\langle\phi_{n} \mid 0\right\rangle e^{-\frac{i}{\hbar} E_{n} t}\left\langle x \mid \phi_{n}\right\rangle=\sum_{n=0}^{N}\left\langle\phi_{n} \mid 0\right\rangle e^{-\frac{i}{\hbar} E_{n} t}\langle x| \sum_{k=0}^{\infty}|k\rangle\left\langle k \mid \phi_{n}\right\rangle \\
& \approx \sum_{k=0}^{N} \sum_{n=0}^{N}\left\langle\phi_{n} \mid 0\right\rangle e^{-\frac{i}{\hbar} E_{n} t}\left\langle k \mid \phi_{n}\right\rangle \psi_{k}(x) . \tag{2}
\end{align*}
$$

In the last step we have cut off the sum over $k$ in the resolution of the identity, which is justified because $\left\langle k \mid \phi_{n}\right\rangle\left\langle\phi_{n} \mid 0\right\rangle$ are negligible for large $k$. We have explicit expression for the harmonic oscillator wave functions and know $\left\langle k \mid \phi_{n}\right\rangle$ and $E_{n}$ from our numerics. We therefore can plot $P(x, t)=|\langle x \mid \Phi(t)\rangle|^{2}$ for any given time. In order to keep our discussion very general we note that we essentially have two dimensionful quantities in our problem

- A time scale $1 / \omega$.
- A length scale $\ell$.

We use these scales to introduce dimensionless variables parametrizing the time and position by $x=z \ell, t=\tau / \omega$. The probability to observe our particle in the interval $[x, x+d x]$ is $P(x, t) d x=p(z, \tau) d z$, where

$$
p(z, \tau)=|\langle z \ell \mid \Phi(\tau / \omega)\rangle|^{2} \ell .
$$

The nice thing is that $p(z, \tau)$ no longer contains any dimensionful quantities

$$
\begin{equation*}
p(z, \tau) \approx\left|\frac{e^{-z^{2} / 4}}{(2 \pi)^{\frac{1}{4}}} \sum_{k=0}^{N} \sum_{n=0}^{N}\left\langle\phi_{n} \mid 0\right\rangle\left\langle k \mid \phi_{n}\right\rangle e^{-i\left(E_{n} / \hbar \omega\right) \tau} \frac{H_{k}(z / \sqrt{2})}{\sqrt{k!2^{k}}}\right|^{2} . \tag{3}
\end{equation*}
$$

Plot $p(x, \tau)$ as a function of $z$ for some values of $\tau$.

### 3.15 A time-dependent scattering problem

Consider the a particle in a potential of the form $\left(V_{0}>0\right)$

$$
V(x)= \begin{cases}0 & \text { if }|x|>a,  \tag{4}\\ V_{0} & \text { if }|x|<a .\end{cases}
$$

(a) Show that the energy eigenstates with $E>V_{0}$ are given by

$$
\psi_{k}(x)= \begin{cases}D e^{i k x}+r e^{-i k x} & \text { if } x<-a  \tag{5}\\ A e^{-i K x}+B e^{i K x} & \text { if }|x|<a \\ t e^{i k x}+C e^{-i k x} & \text { if } x>a\end{cases}
$$

where $E=\frac{\hbar^{2} k^{2}}{2 m}=V_{0}+\frac{\hbar^{2} K^{2}}{2 m}$ and

$$
\begin{align*}
t & =\frac{2 K k e^{-2 i k a}}{-i\left(k^{2}+K^{2}\right) \sin (2 K a)+2 k K \cos (2 K a)}, \\
r & =\frac{-I e^{-2 i k a}\left(k^{2}-K^{2}\right) \sin (2 K a)}{-i\left(k^{2}+K^{2}\right) \sin (2 K a)+2 k K \cos (2 K a)}, \\
A & =\frac{e^{-i K a}}{2 K}\left[e^{-i k a}(K-k)+r e^{i k a}(K+k)\right] \\
B & =\frac{e^{i K a}}{2 K}\left[e^{-i k a}(K+k)+r e^{i k a}(K-k)\right] . \tag{6}
\end{align*}
$$

(b) At time $t=0$ we prepare the system in a superposition of the energy eigenstates with $E>V_{0}$

$$
\begin{equation*}
\phi(x)=\frac{1}{N} \int_{\sqrt{2 m V_{0} / \hbar^{2}}}^{\infty} d k e^{-\alpha\left(k-k_{0}\right)^{2}-i k x_{0}} \psi_{k}(x) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha>0, \quad k_{0}>\sqrt{2 m V_{0} / \hbar^{2}}, \quad x_{0}<0, \tag{8}
\end{equation*}
$$

and the normalization factor $N$ ensures that our initial wave function is normalized to one

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x|\phi(x)|^{2}=1 \tag{9}
\end{equation*}
$$

Argue that the time evolved wave-function is given by

$$
\begin{equation*}
\phi(x, t)=\frac{1}{N} \int_{\sqrt{2 m V_{0} / \hbar^{2}}}^{\infty} d k e^{-\alpha\left(k-k_{0}\right)^{2}-i k x_{0}} e^{-\frac{i \hbar k^{2}}{2 m} t} \psi_{k}(x) . \tag{10}
\end{equation*}
$$

Use the Mathematica program provided on the course web-page (or write your own Matlab file) to plot the probability density $|\phi(x, t)|^{2}$ to find the particle at position $x$ at time $t$ (it is useful to transform to dimensionless variables first as is done in the lecture notes). Interpret the evolution in terms of a scattering process.

