Quantum Mechanics MT 2019: Problem Sheet 3 (Christmas Break)

The simple harmonic oscillator

3.1 After choosing units in which everything, including $\hbar = 1$, the Hamiltonian of a harmonic oscillator may be written $\hat{H} = \frac{1}{2}(\hat{p}^2 + \hat{x}^2)$, where $[\hat{x}, \hat{p}] = i$. Show that if $|\psi\rangle$ is a ket that satisfies $H|\psi\rangle = E|\psi\rangle$, then

$$\frac{1}{2}(\hat{p}^2 + \hat{x}^2)(\hat{x} \mp i\hat{p})|\psi\rangle = (E \pm 1)(\hat{x} \mp i\hat{p})|\psi\rangle.$$

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.

3.2 Given that $\hat{a}|n\rangle = \alpha |n-1\rangle$ and $E_n = (n+\frac{1}{2})\hbar\omega$, where the annihilation operator of the harmonic oscillator is

$$\hat{a} \equiv \frac{m\omega\hat{x} + \mathrm{i}\hat{p}}{\sqrt{2m\hbar\omega}},$$

show that $\alpha = \sqrt{n}$. Hint: consider $|\hat{a}|n\rangle|^2$.

- 3.3 The pendulum of a grandfather clock has a period of 1s and makes excursions of 3 cm either side of dead centre. Given that the bob weighs 0.2 kg, around what value of n would you expect its non-negligible quantum amplitudes to cluster?
- 3.4 Show that the minimum value of $E(p, x) \equiv p^2/2m + \frac{1}{2}m\omega^2 x^2$ with respect to the real numbers p, x when they are constrained to satisfy $xp = \frac{1}{2}\hbar$, is $\frac{1}{2}\hbar\omega$. Explain the physical significance of this result.
- 3.5 How many nodes are there in the wavefunction $\langle x|n\rangle$ of the nth excited state of a harmonic oscillator?
- 3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is $\langle x|2 \rangle = \text{constant} \times (x^2/\ell^2 1)e^{-x^2/4\ell^2}$, where $\ell \equiv \sqrt{\hbar/2m\omega}$ and find the normalising constant.
- 3.7 Use

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}) = \ell(\hat{a} + \hat{a}^{\dagger})$$

to show for a harmonic oscillator that in the energy representation the operator \hat{x} is

Calculate the same entries for the matrix \hat{p}_{ik} .

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency ω is

$$|\psi\rangle = \frac{1}{2}|N-1\rangle + \frac{1}{\sqrt{2}}|N\rangle + \frac{1}{2}|N+1\rangle$$

Calculate the expectation value of x as a function of time and interpret your result physically in as much detail as you can.

More problems on basic quantum mechanics

3.9 A three-state system has a complete orthonormal set of states $|1\rangle$, $|2\rangle$, $|3\rangle$. With respect to this basis the operators \hat{H} and \hat{B} have matrices

$$\hat{H} = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \hat{B} = b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

where ω and b are real constants.

- (a) Are \hat{H} and \hat{B} Hermitian?
- (b) Write down the eigenvalues of \hat{H} and find the eigenvalues of \hat{B} . Solve for the eigenvectors of both \hat{H} and \hat{B} . Explain why neither matrix uniquely specifies its eigenvectors.
- (c) Show that \hat{H} and \hat{B} commute. Give a basis of eigenvectors common to \hat{H} and \hat{B} .
- 3.10 A system has a time-independent Hamiltonian that has spectrum $\{E_n\}$. Prove that the probability P_k that a measurement of energy will yield the value E_k is is time-independent. Hint: you can do this either from Ehrenfest's theorem, or by differentiating $\langle E_k, t | \psi \rangle$ w.r.t. t and using the TDSE.
- 3.11 Let $\psi(x)$ be a properly normalised wavefunction and \hat{Q} an operator on wavefunctions. Let $\{q_r\}$ be the spectrum of \hat{Q} and $\{u_r(x)\}$ be the corresponding correctly normalised eigenfunctions. Write down an expression for the probability that a measurement of Q will yield the value q_r . Show that $\sum_r P(q_r|\psi) = 1$. Show further that the expectation of Q is $\langle Q \rangle \equiv \int_{-\infty}^{\infty} \psi^* \hat{Q} \psi \, dx$.
- 3.12 (a) Find the allowed energy values E_n and the associated normalized eigenfunctions $\phi_n(x)$ for a particle of mass m confined by infinitely high potential barriers to the region $0 \le x \le a$.
 - (b) For a particle with energy $E_n = \hbar^2 n^2 \pi^2 / 2ma^2$ calculate $\langle x \rangle$.
 - (c) Without working out any integrals, show that

$$\langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \frac{a^2}{4}$$

Hence find $\langle (x - \langle x \rangle)^2 \rangle$ using the result that $\int_0^a x^2 \sin^2(n\pi x/a) dx = a^3(1/6 - 1/4n^2\pi^2).$

(d) A classical analogue of this problem is that of a particle bouncing back and forth between two perfectly elastic walls, with uniform velocity between bounces. Calculate the classical average values $\langle x \rangle_{\rm C}$ and $\langle (x - \langle x \rangle)^2 \rangle_{\rm C}$, and show that for high values of n the quantum and classical results tend to each other.

3.13 A Fermi oscillator has Hamiltonian $\hat{H} = \hat{f}^{\dagger}\hat{f}$, where \hat{f} is an operator that satisfies

$$\hat{f}^2 = 0, \quad \hat{f}\hat{f}^{\dagger} + \hat{f}^{\dagger}\hat{f} = 1.$$

Show that $\hat{H}^2 = \hat{H}$, and thus find the eigenvalues of \hat{H} . If the ket $|0\rangle$ satisfies $\hat{H}|0\rangle = 0$ with $\langle 0|0\rangle = 1$, what are the kets (a) $|a\rangle \equiv \hat{f}|0\rangle$, and (b) $|b\rangle \equiv \hat{f}^{\dagger}|0\rangle$?

In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible value of the momentum of each particle type. A boson is an excitation of a harmonic oscillator, while a fermion in an excitation of a Fermi oscillator. Explain the connection between the spectrum of $\hat{f}^{\dagger}\hat{f}$ and the Pauli exclusion principle (which states that zero or one fermion may occupy a particular quantum state).

3.14 Numerical solutions of the Schrödinger equation By following the discussion given in the lecture notes construct numerical solutions for the first 10 eigenstates $|\phi_n\rangle$ of the Hamiltonian

$$H = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 + \lambda \hat{x}^4.$$

for $\frac{\lambda \ell^4}{\hbar \omega} = 0.1$. You can download a MATHEMATICA file for doing this from the course webpage. Now use the eigenvectors to obtain an expression for the ground state of the harmonic oscillator Hamiltonian ($\lambda = 0$) in terms of the eigenstates of H

$$|0\rangle\approx\sum_{n=0}^N\langle\phi_n|0\rangle~|\phi_n\rangle$$

Now assume that we initially prepare our system in the state $|\Phi(0)\rangle = |0\rangle$ and then consider time evolution under the Hamiltonian *H*. We have

$$|\Phi(t)\rangle \approx \sum_{n=0}^{N} \langle \phi_n | 0 \rangle \ e^{-\frac{i}{\hbar} E_n t} | \phi_n \rangle.$$
(1)

We now want to determine the probability density $|\langle x|\Phi(t)\rangle|^2$ to find the particle at position x at time t. To do this we express $|\Phi(t)\rangle$ in terms of harmonic oscillator wave functions $\psi_k(x)$

$$\langle x|\Phi(t)\rangle \approx \sum_{n=0}^{N} \langle \phi_{n}|0\rangle \ e^{-\frac{i}{\hbar}E_{n}t} \langle x|\phi_{n}\rangle = \sum_{n=0}^{N} \langle \phi_{n}|0\rangle \ e^{-\frac{i}{\hbar}E_{n}t} \langle x|\sum_{k=0}^{\infty}|k\rangle\langle k|\phi_{n}\rangle$$

$$\approx \sum_{k=0}^{N} \sum_{n=0}^{N} \langle \phi_{n}|0\rangle \ e^{-\frac{i}{\hbar}E_{n}t} \langle k|\phi_{n}\rangle \ \psi_{k}(x).$$

$$(2)$$

In the last step we have cut off the sum over k in the resolution of the identity, which is justified because $\langle k | \phi_n \rangle \langle \phi_n | 0 \rangle$ are negligible for large k. We have explicit expression for the harmonic oscillator wave functions and know $\langle k | \phi_n \rangle$ and E_n from our numerics. We therefore can plot $P(x,t) = |\langle x | \Phi(t) \rangle|^2$ for any given time. In order to keep our discussion very general we note that we essentially have two dimensionful quantities in our problem

- A time scale $1/\omega$.
- A length scale ℓ .

We use these scales to introduce dimensionless variables parametrizing the time and position by $x = z\ell$, $t = \tau/\omega$. The probability to observe our particle in the interval [x, x + dx] is $P(x, t)dx = p(z, \tau)dz$, where

$$p(z,\tau) = |\langle z\ell | \Phi(\tau/\omega) \rangle|^2 \ell.$$

The nice thing is that $p(z, \tau)$ no longer contains any dimensionful quantities

$$p(z,\tau) \approx \left| \frac{e^{-z^2/4}}{(2\pi)^{\frac{1}{4}}} \sum_{k=0}^{N} \sum_{n=0}^{N} \langle \phi_n | 0 \rangle \langle k | \phi_n \rangle e^{-i(E_n/\hbar\omega)\tau} \frac{H_k(z/\sqrt{2})}{\sqrt{k!2^k}} \right|^2.$$
(3)

Plot $p(x,\tau)$ as a function of z for some values of τ .