
Quantum Mechanics MT 2019: Problem Sheet 3 (Christmas Break)

The simple harmonic oscillator

3.1 After choosing units in which everything, including h̄ = 1, the Hamiltonian of a harmonic oscillator may be
written Ĥ = 1

2 (p̂2 + x̂2), where [x̂, p̂] = i. Show that if |ψ〉 is a ket that satisfies H|ψ〉 = E|ψ〉, then

1

2
(p̂2 + x̂2)(x̂∓ ip̂)|ψ〉 = (E ± 1)(x̂∓ ip̂)|ψ〉.

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.

3.2 Given that â|n〉 = α|n− 1〉 and En = (n+ 1
2 )h̄ω, where the annihilation operator of the harmonic oscillator is

â ≡ mωx̂+ ip̂√
2mh̄ω

,

show that α =
√
n. Hint: consider |â|n〉|2.

3.3 The pendulum of a grandfather clock has a period of 1 s and makes excursions of 3 cm either side of dead
centre. Given that the bob weighs 0.2 kg, around what value of n would you expect its non-negligible quantum
amplitudes to cluster?

3.4 Show that the minimum value of E(p, x) ≡ p2/2m + 1
2mω

2x2 with respect to the real numbers p, x when they

are constrained to satisfy xp = 1
2 h̄, is 1

2 h̄ω. Explain the physical significance of this result.

3.5 How many nodes are there in the wavefunction 〈x|n〉 of the nth excited state of a harmonic oscillator?

3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is 〈x|2〉 = constant× (x2/`2−
1)e−x

2/4`2 , where ` ≡
√
h̄/2mω and find the normalising constant.

3.7 Use

x̂ =

√
h̄

2mω
(â+ â†) = `(â+ â†)

to show for a harmonic oscillator that in the energy representation the operator x̂ is

x̂jk = `
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Calculate the same entries for the matrix p̂jk.

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency ω is

|ψ〉 =
1

2
|N − 1〉+

1√
2
|N〉+

1

2
|N + 1〉.

Calculate the expectation value of x as a function of time and interpret your result physically in as much detail
as you can.
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More problems on basic quantum mechanics

3.9 A three-state system has a complete orthonormal set of states |1〉, |2〉, |3〉. With respect to this basis the operators

Ĥ and B̂ have matrices

Ĥ = h̄ω

1 0 0
0 −1 0
0 0 −1

 B̂ = b

1 0 0
0 0 1
0 1 0

 ,

where ω and b are real constants.

(a) Are Ĥ and B̂ Hermitian?

(b) Write down the eigenvalues of Ĥ and find the eigenvalues of B̂. Solve for the eigenvectors of both Ĥ and

B̂. Explain why neither matrix uniquely specifies its eigenvectors.

(c) Show that Ĥ and B̂ commute. Give a basis of eigenvectors common to Ĥ and B̂.

3.10 A system has a time-independent Hamiltonian that has spectrum {En}. Prove that the probability Pk that
a measurement of energy will yield the value Ek is is time-independent. Hint: you can do this either from
Ehrenfest’s theorem, or by differentiating 〈Ek, t|ψ〉 w.r.t. t and using the TDSE.

3.11 Let ψ(x) be a properly normalised wavefunction and Q̂ an operator on wavefunctions. Let {qr} be the spectrum

of Q̂ and {ur(x)} be the corresponding correctly normalised eigenfunctions. Write down an expression for the
probability that a measurement of Q will yield the value qr. Show that

∑
r P (qr|ψ) = 1. Show further that the

expectation of Q is 〈Q〉 ≡
∫∞
−∞ ψ∗Q̂ψ dx.

3.12 (a) Find the allowed energy values En and the associated normalized eigenfunctions φn(x) for a particle of mass
m confined by infinitely high potential barriers to the region 0 ≤ x ≤ a.

(b) For a particle with energy En = h̄2n2π2/2ma2 calculate 〈x〉.
(c) Without working out any integrals, show that

〈(x− 〈x〉)2〉 = 〈x2〉 − a2

4
.

Hence find 〈(x− 〈x〉)2〉 using the result that
∫ a

0
x2 sin2(nπx/a) dx = a3(1/6− 1/4n2π2).

(d) A classical analogue of this problem is that of a particle bouncing back and forth between two perfectly elastic
walls, with uniform velocity between bounces. Calculate the classical average values 〈x〉c and 〈(x−〈x〉)2〉c, and
show that for high values of n the quantum and classical results tend to each other.

3.13 A Fermi oscillator has Hamiltonian Ĥ = f̂†f̂ , where f̂ is an operator that satisfies

f̂2 = 0, f̂ f̂† + f̂†f̂ = 1.

Show that Ĥ2 = Ĥ, and thus find the eigenvalues of Ĥ. If the ket |0〉 satisfies Ĥ|0〉 = 0 with 〈0|0〉 = 1, what

are the kets (a) |a〉 ≡ f̂ |0〉, and (b) |b〉 ≡ f̂†|0〉?
In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible value of
the momentum of each particle type. A boson is an excitation of a harmonic oscillator, while a fermion in an

excitation of a Fermi oscillator. Explain the connection between the spectrum of f̂†f̂ and the Pauli exclusion
principle (which states that zero or one fermion may occupy a particular quantum state).
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Some off-syllabus stuff you may find interesting

3.14 Numerical solutions of the Schrödinger equation By following the discussion given in the lecture notes
construct numerical solutions for the first 10 eigenstates |φn〉 of the Hamiltonian

H =
p̂2

2m
+

1

2
mω2x̂2 + λx̂4.

for λ`4

h̄ω = 0.1. You can download a Mathematica file for doing this from the course webpage. Now use the
eigenvectors to obtain an expression for the ground state of the harmonic oscillator Hamiltonian (λ = 0) in
terms of the eigenstates of H

|0〉 ≈
N∑
n=0

〈φn|0〉 |φn〉.

Now assume that we initially prepare our system in the state |Φ(0)〉 = |0〉 and then consider time evolution
under the Hamiltonian H. We have

|Φ(t)〉 ≈
N∑
n=0

〈φn|0〉 e−
i
h̄Ent|φn〉. (1)

We now want to determine the probability density |〈x|Φ(t)〉|2 to find the particle at position x at time t. To do
this we express |Φ(t)〉 in terms of harmonic oscillator wave functions ψk(x)

〈x|Φ(t)〉 ≈
N∑
n=0

〈φn|0〉 e−
i
h̄Ent〈x|φn〉 =

N∑
n=0

〈φn|0〉 e−
i
h̄Ent〈x|

∞∑
k=0

|k〉〈k|φn〉

≈
N∑
k=0

N∑
n=0

〈φn|0〉 e−
i
h̄Ent〈k|φn〉 ψk(x). (2)

In the last step we have cut off the sum over k in the resolution of the identity, which is justified because
〈k|φn〉〈φn|0〉 are negligible for large k. We have explicit expression for the harmonic oscillator wave functions
and know 〈k|φn〉 and En from our numerics. We therefore can plot P (x, t) = |〈x|Φ(t)〉|2 for any given time. In
order to keep our discussion very general we note that we essentially have two dimensionful quantities in our
problem

• A time scale 1/ω.

• A length scale `.

We use these scales to introduce dimensionless variables parametrizing the time and position by x = z`, t = τ/ω.
The probability to observe our particle in the interval [x, x+ dx] is P (x, t)dx = p(z, τ)dz, where

p(z, τ) = |〈z`|Φ(τ/ω)〉|2`.

The nice thing is that p(z, τ) no longer contains any dimensionful quantities

p(z, τ) ≈

∣∣∣∣∣e−z
2/4

(2π)
1
4

N∑
k=0

N∑
n=0

〈φn|0〉 〈k|φn〉 e−i(En/h̄ω)τ Hk(z/
√

2)√
k!2k

∣∣∣∣∣
2

. (3)

Plot p(x, τ) as a function of z for some values of τ .


