Quantum Mechanics MT 2019: Problem Sheet 3 (Christmas Break)

The simple harmonic oscillator

3.1 After choosing units in which everything, including 7 = 1, the Hamiltonian of a harmonic oscillator may be
written H = £ (p? + 2?), where [2,p] = i. Show that if [¢)) is a ket that satisfies H[¢) = E|¢), then
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Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.
3.2 Given that a|n) = a|n — 1) and E,, = (n + 3)hw, where the annihilation operator of the harmonic oscillator is
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show that o = y/n. Hint: consider |a|n)|?.

3.3 The pendulum of a grandfather clock has a period of 1s and makes excursions of 3cm either side of dead
centre. Given that the bob weighs 0.2 kg, around what value of n would you expect its non-negligible quantum
amplitudes to cluster?

2

3.4 Show that the minimum value of E(p,z) = p?/2m + %mw 22 with respect to the real numbers p, z when they

are constrained to satisfy xp = %h, is %hw. Explain the physical significance of this result.
3.5 How many nodes are there in the wavefunction (z|n) of the nth excited state of a harmonic oscillator?

3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is (x|2) = constant x (22/¢2 —
1)63_3”2/4527 where ¢ = y/h/2mw and find the normalising constant.

3.7 Use
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to show for a harmonic oscillator that in the energy representation the operator Z is
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Calculate the same entries for the matrix pjy.

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency w is
1
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Calculate the expectation value of x as a function of time and interpret your result physically in as much detail
as you can.
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More problems on basic quantum mechanics

A three-state system has a complete orthonormal set of states |1),]2),|3). With respect to this basis the operators
H and B have matrices

A 10 0 A 100
H=hw|0 -1 0 B=bl001],
00 -1 010

where w and b are real constants.
(a) Are H and B Hermitian?
(b) Write down the eigenvalues of H and find the eigenvalues of B. Solve for the eigenvectors of both H and

B. Explain why neither matrix uniquely specifies its eigenvectors.
(c) Show that H and B commute. Give a basis of eigenvectors common to H and B.
A system has a time-independent Hamiltonian that has spectrum {E,}. Prove that the probability Pj that

a measurement of energy will yield the value Fj is is time-independent. Hint: you can do this either from
Ehrenfest’s theorem, or by differentiating (E}, t|1)) w.r.t. ¢t and using the TDSE.

Let 1 (x) be a properly normalised wavefunction and Q an operator on wavefunctions. Let {g.} be the spectrum

of Q and {u,(z)} be the corresponding correctly normalised eigenfunctions. Write down an expression for the
probability that a measurement of @ will yield the value g,. Show that ) P(g.|¢)) = 1. Show further that the

expectation of Q is (Q) = [7 *Qu da.

(a) Find the allowed energy values E,, and the associated normalized eigenfunctions ¢, (z) for a particle of mass
m confined by infinitely high potential barriers to the region 0 < z < a.

(b) For a particle with energy E, = h*n?n?/2ma? calculate ().

(¢) Without working out any integrals, show that

Hence find ((z — (2))?) using the result that [ 22 sin®(nmz/a) dz = a3(1/6 — 1/4nx?).
(d) A classical analogue of this problem is that of a particle bouncing back and forth between two perfectly elastic

walls, with uniform velocity between bounces. Calculate the classical average values (x)¢ and {(z — (x))?)¢, and
show that for high values of n the quantum and classical results tend to each other.

A Fermi oscillator has Hamiltonian H = fT f , where f is an operator that satisfies

=0, fit+fif=1
Show that H2 = H, and thus find the eigenvalues of H. If the ket |0) satisfies H|0) = 0 with (0|0) = 1, what
are the kets (a) |a) = £|0), and (b) |b) = £1]0)?
In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible value of
the momentum of each particle type. A boson is an excitation of a harmonic oscillator, while a fermion in an

excitation of a Fermi oscillator. Explain the connection between the spectrum of fT f and the Pauli exclusion
principle (which states that zero or one fermion may occupy a particular quantum state).



SOME OFF-SYLLABUS STUFF YOU MAY FIND INTERESTING

3.14 Numerical solutions of the Schrédinger equation By following the discussion given in the lecture notes
construct numerical solutions for the first 10 eigenstates |¢,,) of the Hamiltonian
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for 2 h— = 0.1. You can download a MATHEMATICA file for doing this from the course webpage. Now use the

eigenvectors to obtain an expression for the ground state of the harmonic oscillator Hamiltonian (A = 0) in
terms of the eigenstates of H
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Now assume that we initially prepare our system in the state |®(0)) = |0) and then consider time evolution
under the Hamiltonian H. We have
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We now want to determine the probability density |(z|®(¢))|? to find the particle at position z at time ¢. To do

this we express |®(¢)) in terms of harmonic oscillator wave functions ¢y (x)
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In the last step we have cut off the sum over k in the resolution of the identity, which is justified because
(k|én)(#n|0) are negligible for large k. We have explicit expression for the harmonic oscillator wave functions
and know (k|¢,,) and E,, from our numerics. We therefore can plot P(z,t) = |(x|®(t)}|? for any given time. In
order to keep our discussion very general we note that we essentially have two dimensionful quantities in our
problem

e A time scale 1/w.

e A length scale £.

We use these scales to introduce dimensionless variables parametrizing the time and position by x = 24, t = 7/w.
The probability to observe our particle in the interval [z, z + dz] is P(x,t)dz = p(z,7)dz, where

p(z,7) = (2| (7 /w)) L.

The nice thing is that p(z,7) no longer contains any dimensionful quantities
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Plot p(z,7) as a function of z for some values of 7.



