Quantum Mechanics MT: Problem Sheet 1

Dirac notation

- 1.1 What physical phenomenon requires us to work with probability amplitudes rather than with probabilities?
- **1.2** Given that $|\psi\rangle = e^{i\pi/5}|a\rangle + e^{i\pi/4}|b\rangle$, express $\langle\psi|$ as a linear combination of $\langle a|$ and $\langle b|$.
- 1.3 An electron can be in one of two potential wells that are so close that it can 'tunnel' from one to the other. Its state vector can be written

$$|\psi\rangle = a|A\rangle + b|B\rangle,\tag{1}$$

where $|A\rangle$ is the state of being in the first well and $|B\rangle$ is the state of being in the second well and all kets are correctly normalised. What is the probability of finding the particle in the first well given that: (a) a = i/2; (b) $b = e^{i\pi}$; (c) $b = \frac{1}{3} + i/\sqrt{2}$?

1.4 An electron can "tunnel" between potential wells that form a linear chain, so its state vector can be written as

$$|\psi\rangle = \sum_{n=-\infty}^{\infty} a_n |n\rangle,\tag{2}$$

where $|n\rangle$ is the state of being in the n^{th} well, where n increases from left to right. Let

$$a_n = \frac{1}{\sqrt{2}} \left(\frac{-i}{3}\right)^{\frac{|n|}{2}} e^{in\pi}.\tag{3}$$

- (a) What is the probability of finding the electron in the n^{th} well?
- (b) What is the probability of finding the electron in well 0 or anywhere to the right of it?

Operators

- **1.5** Let Q be the operator of an observable and let $|\psi\rangle$ be the state of our system.
- (a) What are the physical interpretations of $\langle \psi | Q | \psi \rangle$ and $|\langle q_n | \psi \rangle|^2$, where $|q_n\rangle$ is the n^{th} eigenket of the observable Q and q_n is the corresponding eigenvalue?
- (b) What is the operator $\sum_{n} |\tilde{q}_n\rangle\langle q_n|$, where the sum is over all eigenkets of Q? What is the operator $\sum_{n} q_n|q_n\rangle\langle q_n|$?
- 1.6 Which of the following operators are Hermitian, given that \hat{A} and \hat{B} are Hermitian:

 $\hat{A} + \hat{B}$; $c\hat{A}$; $\hat{A}\hat{B}$; $\hat{A}\hat{B} + \hat{B}\hat{A}$.

Show that in one dimension, for functions which tend to zero as $|x| \to \infty$, the operator $\partial/\partial x$ is not Hermitian, but $-i\hbar\partial/\partial x$ is. Is $\partial^2/\partial x^2$ Hermitian?

- **1.7** Given that \hat{A} and \hat{B} are Hermitian operators, show that $i[\hat{A}, \hat{B}]$ is a Hermitian operator.
- **1.8** Given that for any two operators $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$, show that

$$(\hat{A}\hat{B}\hat{C}\hat{D})^{\dagger} = \hat{D}^{\dagger}\hat{C}^{\dagger}\hat{B}^{\dagger}\hat{A}^{\dagger}.$$

Commutators

- **1.9** Show that if there is a complete set of mutual eigenkets of the Hermitian operators \hat{A} and \hat{B} , then $[\hat{A}, \hat{B}] = 0$. Explain the physical significance of this result.
- **1.10** Does it always follow that if a system is an eigenstate of \hat{A} and $[\hat{A}, \hat{B}] = 0$ then the system will be in a eigenstate of \hat{B} ? If not, give a counterexample.

1.11 Show that

- (b) $[\hat{A}\hat{B}\hat{C},\hat{D}] = \hat{A}\hat{B}[\hat{C},\hat{D}] + \hat{A}[\hat{B},\hat{D}]\hat{C} + [\hat{A},\hat{D}]\hat{B}\hat{C}$. Explain the similarity with the rule for differentiating a product. (c) $[\hat{x}^n,\hat{p}] = i\hbar n\hat{x}^{n-1}$
- (d) $[f(\hat{x}), \hat{p}] = i\hbar \frac{df}{dx}$ for any function f(x).
- **1.12** Let A and B be two Hermitian operators. Prove that if [A, B] = 0 there exists a complete set of simultaneous eigenstates of the operators A and B, i.e.

$$A|u_i\rangle = a_i|u_i\rangle , \quad B|u_i\rangle = b_i|u_i\rangle , \tag{4}$$

and $\{|u_i\rangle\}$ form a basis of the LVS on which A and B act.

- 1.13 Prove that two observables are compatible if and only if the commutator between the associated Hermitian operators vanishes.
- 1.14 What does it mean to say that two operators commute? What is the significance of two observables having mutually commuting operators?

Given that the commutator $[P,Q] \neq 0$ for some observables P and Q, does it follow that for all $|\psi\rangle \neq 0$ we have

1.15 Prove the following statements involving the delta-function and its derivative (and explain how these statements are to be understood):

(a)

$$\delta(cx) = \frac{1}{|c|}\delta(x) , \ 0 \neq c \in \mathbb{R}.$$
 (5)

(b)

$$\delta(x^2 - c^2) = \frac{1}{2|c|} \left(\delta(x - c) + \delta(x + c) \right). \tag{6}$$

(c)

$$\frac{d}{dx}\theta(x-c) = \delta(x-c) , \qquad \theta(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{else} \end{cases}$$
 (7)

The function $\theta(x)$ is known as the Heaviside theta-function.

(d)

$$\delta(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx}.$$
 (8)

(e)

$$\int dx \ f(x)\delta'(x-x_0) = -f'(x_0) \ . \tag{9}$$

(f)* (starred problem for students who have already taken the complex analysis short-option) How would you show that $\delta(x) = \lim_{\epsilon \to 0} \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2}$?