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The main purpose of this course is to introduce the Mathematics underlying Quantum Theory
(QT). The course consists of 4 main parts.

• Part I deals with Linear Algebra. This forms the basic structure underlying QT. Quantum
Mechanical states form a linear vector space. Quantum mechanical observables (i.e. measurable
quantities) are represented by linear operators acting on this linear vector space. The outcomes
of measurements is related to properties of these linear operators.

• Part II deals with Fourier Analysis and Generalized Functions. Fourier analysis is a useful
method for solving differential equations of the type one encounters e.g. in QT. Generalized
Functions are objects that are very useful for solving inhomogeneous differential equations.
They emerge in QT whenever one has to deal with linear operators that have a continuous
spectrum (such as the position operator).

• Part III deals with Linear Ordinary Differential Equations (ODE). This is relevant for
QT as the time-independent Schrödinger equation can be represented as an ODE. While you
have encountered specific examples of ODEs in the first year, the method for solving them you
learned then is not poweful enough to allow you to deal with the cases of interest for QT.

• Part IV deals with Linear Partial Differential Equations. PDEs are ubiquitous in Physics.
The time-dependent Schrödinger equation, which forms the basis of much of QT, is a partial
differential equation. Other examples are Maxwell’s equations, the wave equation, Poisson’s
equation and the heat equation. The course introduces a number of methods of how to solve
PDEs.

This is an AWFUL lot of material to cover in 20 lectures! There is no time for reviewing material
of previous lectures and it is therefore strongly recommended that you work through the lecture
notes after every lecture. I will start from scratch in the first lecture, but subsequently I’ll assume a
working knowledge of everything I have covered.
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Part I

Linear Algebra
In the first part of the course we will learn about linear vector spaces and operations on them.

A lot of this material will be rather abstract and many of you may consider it boring. However,
this is the framework that underlies some of the most fascinating theories such as

• Quantum Mechanics and

• Relativity.

Furthermore it is very useful for just about anything that involves any mathematics: Finance, eco-
nomics, engineering, computer science, etc.

1 Review of 2-Vectors and 2× 2 Matrices

Let us start by reviewing some facts about two-dimensional vectors and 2 × 2 matrices you have
covered, perhaps from a somewhat different perspective, in your first year “Vectors and Matrices”
course.

Let us consider “vectors in the plane”. We can think of these as arrows of a given length,
emanating from the origin, see Fig. 1. The collection of all vectors forms a set, which we call R2 for
reasons that will become clear later.

We can add vectors, and we can multiply vectors by real numbers as is shown in Figs 1 and 2.
Given two vectors "a and "b, we can define their scalar product, which is a real number, as

|"a| |"b| cos ϕ, (1)
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a

b

Figure 1: Vectors in the plane.

a

b

a + b

Figure 2: Adding two vectors in the plane.

where ϕ is the angle between the two vectors. We can think of the scalar product as a map that
associates a real number with any given pair of vectors.

Let us now choose a coordinate system, see Fig. 4. Here "e1 and "e2 are vectors of unit
length, which are orthogonal. Recall that vectors are orthogonal if their scalar product is zero and
concomitantly the angle between them is 90 degrees. In this coordinate system, we can represent
each vector in the form

"a =

(
a1

a2

)
. (2)

This is a shorthand notation expressing the fact that "a can be written as a linear combination of
"e1 and "e2

"a = a1 "e1 + a2 "e2 . (3)

It is very important to realize that the vectors exist independently from any specific coordinate
representation. Clearly the coordinate representation we have chosen is not unique and there are
many different coordinate representations of the same vector. For example, we could choose the

a

a!

0

Figure 3: Multiplication of the vector "a by the real number α amounts to elongating "a by a factor α.
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e

e

1

Figure 4: A coordinate system. "e1,2 are orthogonal vectors of unit length.

coordinate system shown in Fig. 5. Here "e′1 and "e′2 are orthogonal vectors of unit length and any

’

e2

e
1

’

Figure 5: A second coordinate system. "e′1,2 are orthogonal vectors of unit length.

vector can be written in the form

"a =

(
a′1
a′2

)
, (4)

which means that
"a = a′1 "e′1 + a′2 "e′2 . (5)

Using the coordinate representation we can express the the scalar product in the following way

a1b1 + a2b2 =
(

a1, a2

) (
b1

b2

)
= "aT · "b, (6)

where "aT =
(

a1, a2

)
is the transpose vector to "a. It is a row vector, whereas "a is a column vector.

The length of the vector a is defined in terms of the scalar product as

|"a| =
√

"aT · "a =
√

a2
1 + a2

2, (7)

Last, but not least we can multiply vectors by matrices, consider e.g.

M =

(
M11 M12

M21 M22

)
(8)
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and multiply M by the vector "a to give

M "a =

(
M11a1 + M12a2

M21a1 + M22a2

)
, (9)

which clearly is a vector. We can think of matrix multiplication as describing a map between the
set of all vectors and itself, i.e. given a vector as input we obtain another vector as output once we
have carried out the matrix multiplication. We can express this formally as

M : R2 −→ R2. (10)

Multiplication by a matrix is a linear operation because

M(α"a + β"b) = α(M"a) + β(M"b). (11)

We can also multiply two matrices and obtain another matrix.
As you know not all matrices are square. A rectangular n ×m matrix with real entries can be

considered as a map between m-dimensional and n-dimensional vectors

M : Rm −→ Rn. (12)

Here the notation means that we map a m-dimensional vector represented by m real numbers to a
n-dimensional vector represented by n real numbers Indeed, acting with

M =

(
M11 M12 M13

M21 M22 M23

)
(13)

on a 3-dimensional vector results in a two-dimensional vector

M




a1

a2

a3



 =

(
M11a1 + M12a2 + M13a3

M21a1 + M22a2 + M23a3

)
(14)

What we have just reviewed is a special example of MUCH more general concepts, the linear
vector space (LVS) and linear operators acting on a LVS. In particular, quantum mechanical
wave functions form a LVS and physical ”observables” such as energy (E) and momentum (p)
are represented as ”matrices” on this LVS.

2 Component Notations and Summation Convention

When dealing with general d-dimensional vectors it becomes extremely inconvenient to keep on
writing row and column vectors. One therefore introduces a very useful shorthand notation as
follows. We have seen that we can write two-vectors in a coordinate representation as

"a = a1"e1 + a2"e2 −→
(

a1

a2

)
, (15)

Rather than referring to the vector "a we refer to its component aj. When adding two vectors we
add its components, i.e.

"a + "b −→ aj + bj. (16)
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This is a shorthand notation for
"a + "b =

∑

j

(aj + bj)"ej (17)

A matrix M is given in terms of its matrix elements Mjk as

M =





M11 M12 . . . M1n

M21 M22 . . . M2n
...

...
...

Mn1 Mn2 . . . Mnn




(18)

Acting with the matrix A on a vector "a gives a vector "b = M"a. Writing this out we have





b1

b2
...
bn



 =





∑n
j=1 M1jaj∑n
j=1 M2jaj

...∑n
j=1 Mnjaj



 (19)

So in component notation we have

bm =
n∑

j=1

Mmjaj. (20)

Now, following the Einstein summation convention one often drops the summation sign and
follow the rule that any index that appears twice is automatically summed over, resulting in

bm = Mmjaj. (21)

You’ll have to admit that this is much easier to write than (19)! Multiplication of two matrices works
similarly. We have for two n× n matrices M and A that B = MA





B11 B12 . . . B1n

B21 B22 . . . B2n
...

...
...

Bn1 Bn2 . . . Bnn




=





M11 M12 . . . M1n

M21 M22 . . . M2n
...

...
...

Mn1 Mn2 . . . Mnn









A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
...

An1 An2 . . . Ann





=





∑n
j=1 M1jAj1

∑n
j=1 M1jAj2 . . .

∑n
j=1 M1jAjn∑n

j=1 M2jAj1

∑n
j=1 M2jAj2 . . .

∑n
j=1 M2jAjn

...
...

...∑n
j=1 MnjAj1

∑n
j=1 MnjAj2 . . .

∑n
j=1 MnjAjn




, (22)

i.e. the matrix elements of B are given by Blm =
∑n

j=1 MljAjm or using the summation convention

Blm = MljAjm.
(23)
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3 Definition of Linear Vector Spaces

Let’s start with a set V of objects, which we represent by the symbol |〉 (a Dirac “ket” vector). This
notation is called Dirac notation and is very widely used in Quantum Mechanics. We define two
operations on V

1. “addition” of vectors: |a〉+ |b〉 and

2. “multiplication” of vectors by a (real or complex) 1 number α: α |a〉

By definition ”addition” is

commutative : |a〉+ |b〉 = |b〉+ |a〉 (24)

associative : (|a〉+ |b〉) + |c〉 = |a〉+ (|b〉+ |c〉) (25)

These basically mean that it does not matter in which order we add vectors. Multiplication fulfils

1 |a〉 = |a〉 (26)

α(β |a〉) = (αβ) |a〉 (27)

(α + β) |a〉 = α |a〉+ β |a〉 (28)

α(|a〉+ |b〉) = α |a〉+ α |b〉 (29)

The last two are called distributive laws.
The set V is called a linear vector space if

1. V is closed under addition:
|a〉 , |b〉 ∈ V =⇒ |a〉+ |b〉 ∈ V. (30)

This means that the sum of two vectors belonging to V is a vector that also belongs to V .

2. V is closed under multiplication:

|a〉 ∈ V, α a number =⇒ α |a〉 ∈ V. (31)

This means that if we multiply a vector belonging to V by a number, we get another vector
that belongs to V .

3. There is a null element |0〉 ∈ V , such that for any vector in V

|a〉+ |0〉 = |a〉 . (32)

4. For any |a〉 ∈ V there is an element |a′〉 ∈ V such that

|a〉+ |a′〉 = |0〉 . (33)

If we consider multiplication by real numbers ”α ∈ R”, V is called a real vector space. If α is
complex ”α ∈ C”, V is called a complex vector space.

1One can consider more general vectors spaces, where multiplication is defined not for real or complex numbers,
but for general “fields”, e.g. the rational numbers. We will not consider these here.
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Examples of linear vector spaces:

A. R (the real numbers) is a real vector space. The “vectors” in this space are simply the real
numbers. Addition and multiplication (by real numbers) fulfil the requirements on a real vector
space. The null element is the number zero. α + (−α) = 0 as in the 4th condition above.

B. C (the complex numbers) is a complex vector space. The vectors in this space are simply the
complex numbers themselves.

C. ”Arrows in the plane:” Let us consider the set of arrows in the plane (which originate from a
common point, the origin). Let us check whether this space is in fact a linear vector space.

|a>

|b>

|a> + |b>

Figure 6: Arrows in the plane are a linear vector space.

1. Law of addition: we define the sum of two arrows |a〉+ |b〉 as the arrow obtained by the
geometrical addition shown in Fig.6. This law obviously fulfils

• |a〉+ |b〉 = |b〉+ |a〉
√

• (|a〉+ |b〉) + |c〉 = |a〉+ (|b〉+ |c〉)
√

2. Multiplication by real numbers: Changes the length of the arrow |a〉 by the factor α.
Clearly α |a〉 is also an arrow in the plane. Furthermore, we have

• 1 |a〉 = |a〉
√

• α(β |a〉) = (αβ) |a〉
√

• (α + β) |a〉 = α |a〉+ β |a〉
√

• α(|a〉+ |b〉 = α |a〉+ α |b〉
√

3. The null element is the arrow of zero length |0〉
• |a〉+ |0〉 = |a〉

√

• |0〉 ≡ 0 |a〉 as a matter of fact.

4. For every |a〉 we have |a〉+ (−1) |a〉 = |0〉
√

We see that the space of ”arrows in the plane” is a real vector space. Another familiar
representation of this vector space is as two component vectors (“coordinate representation”):

|a〉 =

(
x
y

)
= "a (34)
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Then addition and multiplication by a number simply work like
(

x1

y1

)
+

(
x2

y2

)
=

(
x1 + x2

y1 + y2

)
, α

(
x
y

)
=

(
αx
αy

)
. (35)

This vector space is called ”R2”. The notation indicates that all vectors can be represented by
a pair of real numbers.

D. An obvious generalization is to consider ”arrows in a 3D space” or equivalently vectors



x
y
z



 (36)

with analogous laws of addition and multiplication. This vector space is called R3.

E. It is now just a small step to consider arrows in an n-dimensional space, or equivalently vectors

"x =





x1

x2
...

xn




, (37)

with multiplication and addition defined as

α"x =




αx1

...
αxn



 and "x + "y =




x1 + y1

...
xn + yn



 . (38)

This real vector space is called Rn.

F. What about other complex vector spaces? Well, consider again arrows in the plane with
the usual geometrical addition. But now define multiplication by a complex number reiψ in
the way shown in Fig.7

|a>

!

r e    |a>

!i

Figure 7: Multiplication of the vector |a〉 by the complex number r eiψ is defined by elongating the
vector by a factor r and rotating it by an angle ψ.

Let us consider a vector |b〉 defined as

reiψ |a〉 = |b〉 . (39)

We define multiplication such that
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• the length of |b〉 is r times the length of |a〉
• |b〉 is rotated by an angle of ψ with respect to |a〉.

You can check that arrows in the plane with addition and multiplication defined in this way
form a complex vector space.

Exercise: Show that this LVS is actually the same as the complex numbers C.

G. Another complex vector space is obtained by considering vectors

(
z1

z2

)
, where z1,2 are now

complex numbers. Addition and multiplication by a complex number α are defined as
(

z1

z2

)
+

(
z′1
z′2

)
=

(
z1 + z′1
z2 + z′2

)
, α

(
z1

z2

)
=

(
αz1

αz2

)
. (40)

This linear vector space is called C2. Similarly we get Cn.

H. Last but not least consider the space L2(a, b) of square-integrable continuous complex valued
functions on some interval [a, b], i.e. functions for which the integral

b∫

a

dx |f(x)|2 exists, i.e. it is < ∞ . (41)

Note that we take f(x) to be a complex number here. L2(a, b) is a LVS, because

(a) addition: |f〉 + |g〉 is a square-integrable function defined by f(x) + g(x). In order to
prove this assertion a certain amoung of technology is required (“Lebesgue integral” and
“measure theory”), which we don’t have time to introduce (and which you won’t need
in the rest of the Oxford course). If you are curious about these topics you may consult
Dennery/Krzywicki Chapter III.

(b) multiplication: α |f〉 is the function αf(x)

(c) there is a null element (the constant function zero)

(d) |f〉+ (−1) |f〉 = |0〉, or equivalently f(x)− f(x) = 0 for all x.

Exercise: Show that the complex numbers can be viewed a real linear vector space.

4 Subspaces

Definition: Let U be a subset of the linear vector space V . U is called a subspace of V if it is
closed under addition and multiplication, i.e.

1. ∀ |a〉 , |b〉 ∈ U ⇒ |a〉+ |b〉 ∈ U . If you take any two vectors in U their sum is in U as well.

2. In a complex LVS we have ∀ |a〉 ∈ U, ∀α ∈ C ⇒ α |a〉 ∈ U . If we take any vector in U and
multiply it by any number, we get another vector in U .

Examples:
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1. Consider the coordinate representation of C2. A subspace of C2 is given by the set of vectors
(

α
0

)
, α ∈ C. (42)

Another subspace of C2 is given by the set of vectors
(

0
α

)
, α ∈ C. (43)

2. Consider the coordinate representation of C3. A subspace of C3 is given by the set of vectors



α
β
0



 , α, β ∈ C. (44)

5 Scalar Product and Dual Vectors

For arrows in the plane we know that the scalar product for two vectors "a and "b is simply

"aT · "b = "bT · "a = a1b1 + a2b2, (45)

where (as above)

"a =

(
a1

a2

)
,"aT =

(
a1, a2

)
. (46)

The scalar product can be viewed as a map that takes two vectors to a real number, i.e.

S : R2 × R2 → R ,

"a, "b → S("a, "b) = "aT · "b. (47)

The generalization to Rn is straightforward. Given two vectors

"a =




a1
...

an



 , "b =




b1
...
bn



 , (48)

we have "aT = (a1, a2, . . . , an) and

"aT · "b = "bT · "a =
n∑

j=1

ajbj. (49)

Note that

• the ”length” of "a is

|"a| =
√

"aT · "a =

√√√√
n∑

j=1

a2
j . (50)

• Two vectors "a and "b are called orthogonal if

"aT · "b = 0 . (51)
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How does this work in complex vector spaces? Let us look at Cn first:

"a =




a1
...

an



 (52)

but now aj are complex numbers. We want the scalar product of "a with "a to be the square of the
”length” of "a, i.e. a real and positive number. So what we are looking for is a map that takes two
vectors to a complex number, i.e.

S : C2 × C2 → C ,

"a, "b → S("a, "b), (53)

where we have the addition requirement that

S("a,"a) is real and positive. (54)

We can achieve this by taking

S("b,"a) ≡ "b† · "a =
(

b∗1, · · · , b∗n
)



a1
...

an



 =
n∑

j=1

b∗jaj. (55)

We call "b† the dual vector to "b. It is defined by taking the transpose of the vector "b and then
taking the complex conjugate of all elements.

Indeed, using this definition we have

S("a,"a) = "a† · "a =
n∑

j=1

a∗jaj =
n∑

j=1

|aj|2 ≥ 0. (56)

Note that the positivity of S("a,"a) has come at a price: the scalar product S("b,"a) is no longer
symmetric in the two vectors "b and "a, i.e.

S("b,"a) = "b† · "a -= S("a, "b) = "a† · "b. (57)

When forming dual vectors you also have to be careful as the dual vector to λ"b is in act λ∗"b† !
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Definition: The scalar product is a rule that assigns a complex number to any given pair of vectors
|a〉 and |b〉 belonging to a LVS. We denote this number by

〈a|b〉 , called a bra− ket in Dirac notation. (58)

Here 〈a| is the dual vector to |a〉. It is also called a “bra” vector, whereas |a〉 is called a “ket”-
vector.
The following rules apply:

1. 〈a|b〉 = (〈b|a〉)∗.

2. 〈a|a〉 is real and ≥0 (=0 only if |a〉 = |0〉).

‖|a〉‖ ≡
√
〈a|a〉 (59)

is called the norm of the vector |a〉.

3. Let |d〉 = α |a〉+ β |b〉. Then the scalar product of |d〉 with a vector 〈c| is defined as

〈c|d〉 = α 〈c|a〉+ β 〈c|b〉 . (60)

Taking the complex conjugate the first property then implies that

〈d|c〉 = α∗ 〈a|c〉+ β∗ 〈b|c〉 . (61)

Hence the dual vector to |d〉 is

〈d| = α∗ 〈a|+ β∗ 〈b| . (62)

Note that you have to take the complex conjugate of α and β here!

4. |a〉 and |b〉 are orthogonal if 〈a|b〉 = 〈b|a〉 = 0 .

Example: Scalar product for square integrable functions.

〈f |g〉 =

b∫

a

dx [f∗(x)g(x)] (63)

The definition of the scalar product implies the following properties

1. Pythagoras Theorem: If |v〉 and |w〉 are orthogonal then

‖ |v〉+ |w〉 ‖2 = ‖ |v〉 ‖2 + ‖ |w〉 ‖2 (64)

2. Parallelogram Law: For any |v〉 and |w〉 we have

‖ |v〉+ |w〉 ‖2 + ‖ |v〉 − |w〉 ‖2 = 2‖ |v〉 ‖2 + 2‖ |w〉 ‖2. (65)

Exercise: Prove the Pythagoras Theorem and the Parallelogram law.
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3. Schwarz Inequality: For any |v〉 and |w〉 we have

|〈v|w〉|2 ≤ 〈v|v〉 〈w|w〉. (66)

Proof: If either |v〉 or |w〉 is the null-vector both sides of (66) are zero and so the inequality
holds. Let us then assume that both vectors are non-zero. By the positivity of the norm we
have for any complex number c

0 ≤ ‖ |v〉+ c |w〉 ‖2 = (〈v|+ c∗ 〈w|) (|v〉+ c |w〉) = 〈v|v〉+ c∗〈w|v〉+ c〈v|w〉+ |c|2〈w|w〉 (67)

Choosing the complex number c to be

c = − 〈w|v〉
〈w|w〉 ⇒ c∗ = −

(
〈w|v〉
〈w|w〉

)∗

= − 〈v|w〉〈w|w〉 , (68)

this becomes

0 ≤ 〈v|v〉 − 2
〈v|w〉〈w|v〉
〈w|w〉 +

〈v|w〉〈w|v〉
〈w|w〉 = 〈v|v〉 − |〈v|w〉|2

〈w|w〉 . (69)

As 〈w|w〉 > 0 this implies the Schwarz inequality. QED.

4. Triangle Inequality: For any |v〉 and |w〉 we have

‖ |v〉+ |w〉 ‖ ≤ ‖ |v〉 ‖+ ‖ |w〉 ‖. (70)

The proof of this inequality is left as a homework exercise.

5.1 Dual Vectors as Linear Maps

Given any dual vector 〈a| and the scalar product we can construct a particular linear map S〈a| from
the vector space V to the complex numbers (or if we are dealing with a real vector space to the real
numbers) as follows:

S〈a| : V → C ,

|b〉 → 〈a|b〉. (71)

Exercise: Show that this map is indeed linear.

6 Linear Independence of Vectors and Bases

Definition: The vectors |v1〉, |v2〉,..., |vN〉 are said to be linearly independent if the relation

n∑

j=1

αj |vj〉 = 0, where (|vj〉 -= 0) (72)

necessarily implies that α1 = α2 = ... = αN = 0. The maximal number of linearly independent
vectors in a linear vector space is called the dimension of the linear vector space.

Examples:
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A. |v1〉 =

(
1
0

)
and |v2〉 =

(
0
1

)
are linearly independent.

B. |v1〉 =

(
1
0

)
, |v2〉

(
0
1

)
and |v3〉 =

(
1
1

)
are linearly dependent because

|v1〉+ |v2〉 − |v3〉 =

(
1
0

)
+

(
0
1

)
−

(
1
1

)
= 0. (73)

Definition: Any set of vectors |vj〉 that are linearly independent and have the property that any
vector |a〉 in the LVS can be expressed as a linear combination, i.e. as

|a〉 =
n∑

j=1

aj |vj〉 , (74)

is called a basis of the LVS. The numbers aj are called the components of |a〉 with respect to the
basis vectors |vj〉.

Examples:

A. R2 has dimension 2 and a basis is

B =

{(
1
0

)
,

(
0
1

)}
.

Any vector

(
a
b

)
can be written as a linear combination of the two basis vectors

(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)
.

Another basis for R2 is

B′ =
{(

1
0

)
,

(
1
1

)}

Any vector can be written as a linear combination of the two basis vectors
(

a
b

)
= (a− b)

(
1
0

)
+ b

(
1
1

)
. (75)

B. Rn has dimension n and a basis is









1
0
...
0




,





0
1
0
...




, . . . ,





0
...
0
1
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C. C2 has dimension 2, a basis is {(
1
0

)
,

(
0
1

)}

D. Arrows in the plane with multiplication by a complex number is a LVS of dimension 1. This is
because you can obtain any arrow from a given one by multiplication with a complex number
(i.e. elongation and rotation).

Exercise: Show that C2 can be viewed as a real linear vector space of dimension 4 (i.e. a LVS
where multiplication is defined only by real numbers). Give a basis of this LVS.

7 Dual Vector Space

We have seen above that dual vectors can be seen to induce linear maps from the LVS V to the
complex numbers for a complex LVS and to the real numbers for a real LVS. It is straightforward to
see that dual vectors form a LVS themselves, called the dual vector space V ∗. The way we have
introduced V ∗ its elements are all linear maps

S〈a| : V → C ,

|b〉 → 〈a|b〉. (76)

where |a〉 is an element of the LVS V . The sum of two such linear maps is defined to be

S〈a1|+〈a2| : V → C ,

|b〉 → (〈a1|+ 〈a2|) |b〉 = 〈a1|b〉+ 〈a2|b〉, (77)

where we have used that the scalar product is by definition linear. Similarly multiplication by a
number λ is defined as

Sλ〈a| : V → C ,

|b〉 → (λ 〈a|) |b〉 = λ∗〈a|b〉. (78)

Here we again have used the definition of the scalar product.

Exercise: Check that addition and multiplication by a number defined in this way fulfil the
requirements for a LVS.

Given a basis {|e1〉 , . . . , |en〉} of V we may construct a basis of V ∗ in the following way.

8 Different Bases and Orthogonality

There are many different bases for a given LVS. For example for R2

B1 = {|e1〉 , |e2〉} =

{(
1
0

)
,

(
0
1

)}
(79)
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is a basis and another choice is

B2 = {|e′1〉 , |e′2〉} =

{(
1
0

)
,

(
1
1

)}
. (80)

The first basis is our favourite, because it is orthonormal 2.

〈e1|e1〉 = ( 1 0 ) ·
(

1
0

)
= 1

〈e2|e2〉 = ( 0 1 ) ·
(

0
1

)
= 1

〈e1|e2〉 = 〈e2|e1〉 = 0






in shorthand
〈ei|ej〉 = δij

Remark: Recall that the Kronecker symbol δij is equal to one if i = j and zero otherwise.
An important issue is how to construct an orthogonal basis for a given LVS. Given a set of

N linearly independent vectors |v1〉 , . . . , |vN〉 one can always construct a set |e1〉 , . . . , |eN〉
of orthonormal vectors by the so-called Schmidt procedure (also known as the Gram-Schmidt
procedure in the English literature).

8.1 Schmidt procedure

• Step 1: Normalize one of the initial vectors, e.g.

|e1〉 ≡
1√

〈v1|v1〉
|v1〉 (81)

• Step 2: Now form a linear combination of |v2〉 and |e1〉 that is orthogonal to |e1〉:

|v2
′〉 = |v2〉 − 〈e1|v2〉 |e1〉 . (82)

This vector is orthogonal to |e1〉 because

〈e1|v2
′〉 = 〈e1| {|v2〉 − 〈e1|v2〉 |e1〉} = 〈e1|v2〉 − 〈e1|v2〉 〈e1|e1〉︸ ︷︷ ︸

=1

= 0. (83)

Now normalize the vector |v′2〉 so that we end up with a vector of unit length

|e2〉 ≡
|v2

′〉√
〈v2

′|v2
′〉

. (84)

After Step 2 we have two normalized vectors |e1〉, |e2〉, which are orthogonal.

• Step 3: Now form a linear combination of |v3〉 , |e1〉 , |e2〉 that is orthogonal to |e1〉 and |e2〉:

|v3
′〉 = |v3〉 − 〈e1|v3〉 |e1〉 − 〈e2|v3〉 |e2〉 . (85)

2Note however that there are infinitely many orthonormal bases of R2
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We can check explicitly that this vector is indeed orthogonal to |e1〉 and |e2〉 by calculating the
scalar products with these vectors

〈e1|v3
′〉 = 〈e1|v3〉 − 〈e1|v3〉 = 0 because〈ei|ej〉 = δij (86)

〈e2|v3
′〉 = 〈e2|v3〉 − 〈e2|v3〉 = 0 ” (87)

Finally we normalize the vector

|e3〉 =
|v′3〉√
〈v′3|v′3〉

. (88)

Now we have three normalized vectors |e1〉, |e2〉 and |e3〉, which are orthogonal.

Continue this procedure.
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Exercise: Work through the following example.

Example:

|v1〉 =




2
0
0



 , |v2〉 =




1
1
0



 , |v3〉 =




1
1
1



 (89)

Step 1: we take the first vector and normalize it

|e1〉 =




1
0
0



 .

(90)

Step 2: now we construct a vector orthogonal to |e1〉 from |v2〉

|v2
′〉 =




1
1
0



−



(1, 0, 0) ·




1
1
0












1
0
0



 =




0
1
0



 . (91)

This vector is already normalized, so that

|e2〉 =




0
1
0



 .

(92)

Step 3: now we construct a vector orthogonal to |e1〉 and |e2〉 from |v3〉

|v′3〉 =




1
1
1



−



(1, 0, 0) ·




1
1
1












1
0
0



−



(0, 1, 0) ·




1
1
1












0
1
0



 =




0
0
1



 .

(93)

This vector is already normalized and hence

|e3〉 =




0
0
1



 .

(94)

This completes the procedure.
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9 Linear Operators and Matrices

You are all familiar with matrices acting on vectors. A matrix is something that acts on vectors and
gives other vectors as results, e.g.

(
2 1
1 0

)(
1
0

)
=

(
2
1

)
. (95)

In our new language this is an example of a linear operator.

Definition: A linear operator A on the complex linear vector space V is a map

A : V −→ V

|a〉 −→ A |a〉 , (96)

that fulfils that for any |a〉 , |b〉 ∈ V and any α, β ∈ C we have

A (α |a〉+ β |b〉) = α(A |a〉) + β(A |b〉). (97)

Linear operators can be added and multiplied (just like matrices)

• C = A + B acts on any vector like

C |a〉 = A |a〉+ B |a〉 (98)

• D = A ·B is defined through its action on any vector as

D |a〉 = A (B |a〉) (99)

C and D are linear operators as well.
Example: Complex 2× 2 matrices are linear operators on C2. The 2× 2 matrices C and D are

then just the sum and the matrix product of A and B respectively.

9.1 Commutator

In general it matters in which order we multiply matrices, i.e.

AB−BA -= 0 . (100)

For example (
1 0
0 −1

)(
0 1
1 0

)
−

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 2
−2 0

)
. (101)

AB−BA is called the commutator of the linear operators A and B and is denoted by

[A,B] ≡ AB−BA.
(102)

Exercise: Evaluate the commutators between the three Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (103)
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9.2 Functions of Operators

Having defined the product of operators, we can of course also define arbitrary powers of an operator

Am = A ·A ·A · . . . ·A︸ ︷︷ ︸
m times

. (104)

We can then define functions of operators, for example

eA ≡ 1 + A +
1

2
A2 +

1

3!
A3 + · · · =

∞∑

n=0

1

n!
An . (105)

Example: Consider the Pauli matrix σx

σx =

(
0 1
1 0

)
. (106)

It is straightforward to work out products of Pauli matrices

σxσx =

(
1 0
0 1

)
≡ I = (σx)4 = (σx)6 = · · · = (σx)2n ,

σx = (σx)3 = (σx)5 = · · · = (σx)2n+1 . (107)

This allows us to calculate the complex exponential of σx

exp (iασx) =
∞∑

n=0

(iα)n

n!
(σx)n =

∞∑

n=0

(−1)n α2n

(2n)!
(σx)2n + i(−1)n α2n+1

(2n + 1)!
(σx)2n+1 (108)

=

( ∞∑

n=0

(−1)n α2n

(2n)!

)
I + i

( ∞∑

n=0

(−1)n α2n+1

(2n + 1)!

)
σx (109)

= cos(α) I + i sin(α) σx . (110)

Exercise: Work out the complex exponentials

exp(iασy) , exp(iασz) , (111)

where σy and σz are the other two Pauli matrices defined above.

Exercise: Express the product

exp(iασz) σx exp(−iασz) (112)

in terms of multiple commutators of Pauli matrices and then evaluate it.

10 Matrix Representation of Linear Operators

Let B = {|e1〉 , . . . , |eN〉} be an orthonormal basis 3 of the LVS V . Then we have

〈ei|ej〉 = δij , (113)

3We can always orthogonalize any basis by the Schmidt procedure.
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|a〉 =
N∑

j=i

aj |ej〉 for any |a〉 inV . (114)

Because 〈ek|a〉 =
∑

aj〈ek|ej〉 = ak we can represent |a〉 by its components in the basis B:

|a〉 1→




a1
...

aN



 =




〈e1|a〉

...
〈eN|a〉



 (115)

Now consider a linear operator A. It acts on a vector |a〉 and produces another vector |a′〉

|a′〉 = A |a〉 . (116)

We can express |a′〉 in our arthonormal basis. The components of |a′〉 are obtained by taking scalar
products of equation (116) with the vectors 〈ej|

a′j = 〈ej|a′〉 = 〈ej|A |a〉 =
N∑

l=1

〈ej|A |el〉 al . (117)

The second identity in (117) is obtained by expressing the vector |a〉 as a linear combination of the
basis vectors |el〉

|a〉 =
∑

l

al |el〉 . (118)

If we define a matrix with ”matrix elements in the basis B”

Ajl = 〈ej|A |el〉 (119)

then (116) can be written in form of a matrix equation




a′1
...

a′N



 =




A11 . . . A1N
...

. . .
AN1 . . . ANN








a1
...

aN





(120)

What we have just shown is that by choosing a particular basis we can ”represent” linear operators
by matrices! The expression for the matrix representing a given linear operator in a particular basis
of course depends on the basis.

Given the relationship between linear operators and matrices we obtain the following rules for
adding & multiplying linear operators

C = A + B⇔ Cij = Aij + Bij (121)

C = A ·B⇔ Cij =
∑

l

AilBlj (122)

In (122) we recognize the usual rule of matrix multiplication.
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Example: Let us return to the LVS of arrows in the plane. The vectors are arrows, which we
however may represent in the orthonormal basis B = {|e1〉 , |e〉2} as follows. By definition we have

|e1〉 →
(

1
0

)
, |e2〉 →

(
0
1

)
, (123)

as e.g. |e1〉 = 1 |e1〉+ 0 |e2〉. A general vector |a〉 is expressed as

|a〉 = a1 |e1〉+ a2 |e2〉 =⇒ |a〉 →
(

a1

a2

)
. (124)

A linear operator A maps arrows to other arrows in the plane and hence “exists” independently of
any representation in terms of a particular basis. In order to represent A in our basis, we merely need
to determine how it acts on the basis vectors. Expressing the vectors A |ej〉 as linear combinations
of the basis vectors defines a matrix with elements Aij, which are simply the coefficients of this
expansion

A |ej〉 =
∑

i

Aij |ei〉 . (125)

Taking scalar products of these equations with 〈ei| and using the orthonormality of the basis, we
arrive at the general expression (119) for the matrix elements.

It is clear that the procedure we have described depends on our choice of basis. To make this
more explicit, let us take the orthonormal basis B′ = {|e′1〉 , |e′2〉}, where

|e′1〉 = |e2〉 , |e′2〉 = − |e1〉 . (126)

In this basis a given arrow |a〉 is represented by a different two-component vector

|a〉 = a′1 |e′1〉+ a′2 |e′2〉 =⇒ |a〉 =

(
a′1
a′2

)
=

(
a2

−a1

)
. (127)

Similarly we would represent the linear operator A by a different 2 × 2 matrix, defined by how A
acts on the new basis vectors

A
∣∣e′j

〉
=

∑

i

A′
ij |e′i〉 . (128)

10.1 Dual vector to A |a〉 and Resolution of the Identity

Later on we will need to know the dual vector to a vector

|a′〉 = A |a〉 . (129)

Let us show that the answer is
〈a′| = 〈a|A† . (130)

In the previous section we have shown that in a given orthonormal basis the vector A |a〉 has com-
ponents

n∑

j=1

Aljaj. (131)
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This means that

|a′〉 =
n∑

l=1

[
n∑

j=1

Aljaj

]
|el〉 (132)

Recalling the definition of dual vectors we now take the dual of the right hand side of (132)

〈a′| =
∑

l

[∑

j

Alj aj

]∗
〈el| =

∑

l

[∑

j

A∗
lj a∗j

]
〈el| =

∑

l

[∑

j

(
A†)

jl
a∗j

]
〈el| . (133)

The sum in square brackets can be rewritten using that be definition 〈a| =
∑n

j=1 a∗j 〈ej| and therefore

〈a|A† |el〉 =
n∑

j=1

a∗j 〈ej|A† |el〉 =
∑

j

(
A†)

jl
a∗j . (134)

so

〈a′| =
∑

l

〈a|A† |el〉 〈el| = 〈a|A† . (135)

The last identity is a consequence of the so-called resolution of the identity, which reads

n∑

l=1

|el〉 〈el| = I , (136)

where {|e1〉 , . . . , |en〉} is an orthonormal basis. In order to prove this remarkable formula, we need
to show that for any vector |a〉 we have

(
n∑

l=1

|el〉 〈el|
)
|a〉 = |a〉 . (137)

By definition of the components of |a〉 we have

n∑

l=1

|el〉 〈el|a〉 =
n∑

l=1

al |el〉 = |a〉 . (138)

11 Operations on Square Matrices

Let us now define a number of useful operations on square matrices with in general complex matrix
elements.

11.1 Trace

trA ≡
∑N

j=1 Ajj
. (139)

The trace is the sum of the diagonal matrix elements. It is a (complex) number.
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The trace is ”cyclic”:

tr(AB) = tr(BA) (140)

tr(ABC) = tr(CAB) etc. (141)

Proof:

trAB =
N∑

j=1

(AB)jj =
∑

j

∑

k

AjkBkj (142)

≡
∑

k

∑

j

BkjAjk =
∑

k

(BA)kk = trBA QED. (143)

11.2 Transpose

AT is defined as AT
ij = Aji [swaps rows & columns]

(
A11 A12

A21 A22

)T

=

(
A11 A21

A12 A22

)
(144)

Note that the transpose of a product of two matrices is

(AB)T = BT AT . (145)

To see this let’s work out the matrix elements of (AB)T :

(AB)jk =
N∑

l=1

AjlBlk. (146)

By definition the transpose fulfils

(AB)T
kj = (AB)jk =

N∑

l=1

AjlBlk. (147)

Now using that Bkl = BT
kl and Ajl = AT

lj we arrive at

(AB)T
kj =

N∑

l=1

BT
klA

T
lj = (BT AT )kj. (148)

11.3 Hermitian Conjugate

A†; (A†)ij = A∗
ji [transpose & complex conjugate]

(
A11 A12

A21 A22

)†

=

(
A∗

11 A∗
21

A∗
12 A∗

22

)
. (149)

Note that the Hermitian conjugate of a product of two matrices is

(AB)† = B†A†. (150)

Exercise: Prove this.
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11.4 Determinant

Definition: Let P = (P (1), . . . , P (N)) be a permutation of (1, 2, . . . , N). There are N ! different
permutations. The sign of P is (−1)α, where α is the number of pair exchanges needed to arrive
at (P (1), . . . , P (N)) starting with (1, . . . , N).

Example:

P1 = (2, 3, 1) sgn(P1) = (−1)2 = 1 (151)

P2 = (3, 2, 1) sgn(P2) = (−1)1 = −1 (152)

Definition: The determinant of the N ×N matrix A is

detA =
∑

P

sgn(P )A1P (1), . . . ANP (N) (153)

Here the sum is over all permutations P = (P (1), . . . , P (N)) of (1, . . . , N).

Let us verify that in the case N = 2 this agrees with the expression for the determinant we
already know. There are two different permutations

P = (1, 2) sgn P = 1 (154)

or P ′ = (2, 1) sgn P ′ = −1 (155)

Evaluating the general expression above for the case N = 2 then gives

det A = sgn P A1P (1)A2P (2) + sgn P ′ A1P ′(1)A2P ′(2) = A11A22 − A21A12. (156)

This is as expected.

Exercise: Derive an explicit expression for the determinant of a 3× 3 matrix from the general
formula (153).

Let us also prove that adding one row to another does not change the determinant. Consider

A =





A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
...

...
An1 An2 . . . Ann



 (157)

and

B =





A11 + αA21 A12 + αA22 . . . A1n + αA2n

A21 A22 . . . A2n
...

...
...

...
An1 An2 . . . Ann



 . (158)

Then

det(B) =
∑

P

sgn P
[
A1P (1) + αA2P (1)

]
A2P (2) . . . ANP (N)

=
∑

P

sgn P A1P (1)A2P (2) . . . ANP (N) +
∑

P

sgn P αA2P (1)A2P (2) . . . ANP (N). (159)
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The first sum is just det(A). The second sum is zero as terms cancel pairwise. Indeed, consider
the permutation P ′ = (P (2), P (1), . . . P (n)). We have sgn(P ′) = − sgn(P ) and its contribution to
the sum over permutations is − sgn P αA2P (2)A2P (1) . . . ANP (N), which precisely cancels against the
contribution from P . This proves that det(A) = det(B).

The determinant of the product of 2 matrices is

detA ·B = detA detB (160)

The proof of this fact is left as a homework problem. We also have

detA ≡ detAT
(161)

Proof: The proof of this fact is interesting as it introduces us to certain standard manipulations of
sums over permutations. By the general definition (153) we have

detAT =
∑

P

sgn(P )AT
1P (1), . . . A

T
NP (N)

=
∑

P

sgn(P )AP (1)1, . . . AP (N)N , (162)

where we have used the definition of the transpose. Now let P−1 be the inverse permutation to P ,
i.e. if P (j) = k then P−1(k) = j. By construction we have sgnP−1 = sgnP . Using the definition of
P−1 we have

AP (j)j = AkP−1(k), (163)

and inserting this above we arrive at

detAT =
∑

P

sgn(P−1)A1P−1(1), . . . ANP−1(N). (164)

As the sum runs over all permutations P it equivalently runs over all permutations P−1 and calling
P−1 = Q we obtain

detAT =
∑

Q

sgn(Q)A1Q(1), . . . ANQ(N) = detA. (165)

11.5 Inverse of a Matrix

The inverse of a matrix A is denoted by A−1 and fulfils

A ·A−1 = I =




1 0

. . .
0 1



 = A−1 ·A (166)

For A−1 to exist we need detA -= 0.
How to construct the inverse?

(A−1)ij =
CT

ij

detA
(167)
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Here C is the matrix of cofactors. It is related to the matrix M of minors by Cij = (−1)i+jMij.
The matrix of minors is defined by

Mij = det





A11 · · · A1j× · · · A1N

A21 · · · A2j× · · · A2N
...
Ai1× · · · Aij× · · · AiN×
...

AN1 · · · ANj× · · · ANN





(168)

(Cross out ith row & jth column).
Inverse of a Product of Matrices:

(AB)−1 = B−1A−1 (169)

12 Change of Basis

For simplicity, consider two orthonormal bases

B = {|e1〉 , . . . , |eN〉} , B′ = {|e′1〉 , . . . , |e′N〉} (170)

of the same LVS V . By the definition of a basis, we can express any vector in V as a linear combination
of the basis vectors. In particular, we may express the basis vectors |ej〉 as linear combinations of
the basis vectors {|e′k〉 , k = 1, . . . N}

|ej〉 =
∑

k Ukj |e′k〉 . (171)

The coefficients (which are complex numbers) of these expansions define a N ×N matrix

U =




U11 · · · U1N
...

UN1 · · · UNN



 , (172)

where the matrix elements are equal to

Ukj ≡ 〈e′k|ej〉 . (173)

The latter expression is obtained by taking the the scalar product of (171) with 〈e′k|.
Taking the scalar product of (171) with 〈el| we obtain the following set of N2 equations

δjl =
∑

k

Ukj〈el|e′k〉 =
∑

k

Ukj (〈e′k|el〉)∗ =
∑

k

UkjU
∗
kl =

∑

k

(
U †)

lk
Ukj. (174)

In matrix form these equations read

U†U = UU† = I =




1

. . .
1



 .
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We see that the matrix U has the property, that its Hermitian conjugate is equal to its inverse!
Matrices with this property are called unitary matrices. The determinant of a unitary matrix is a
complex number of unit magnitude as can be shown as follows

det(U†U) = detU† detU = |detU|2 = 1 ⇒ detU = eiϕ
. (175)

Here we have used that the determinant of the product of two matrices is equal to the product of
determinants and that the determinant of the Hermitian conjugate of a matrix is equal to the complex
conjugate of the determinant. The latter can be seen quite easily by using the general definition of
the determinant (153).

Given our two bases B and B′ we may express a general vector |a〉 as a linear combination of the
basis vectors in B or as a linear combination of the basis vectors in B′

|a〉 =
∑

l

al |el〉 =
∑

k

a′k |e′k〉 . (176)

The components al and a′k of the vector |a〉 in the two bases are related by the unitary matrix. In
order to see this, let us use (171) to rewrite the expression after the first equality sign in equation
(176) ∑

l

al |el〉 =
∑

l,k

alUkl |e′k〉 . (177)

If we now take scalar products of (177) and (176) with the basis vectors 〈e′k| and use that the basis
vectors in B′ are orthonormal, we find the following set of N equations

a′k =
∑N

l=1 Uklal
. (178)

These equations may be written in matrix form as




a′1
...

a′N



 = U




a1
...

aN



 . (179)

We say that under the change of basis from B to B′, vectors transform according to the transformation
law (179).

Now we can turn things around and consider the change of basis as a linear transformation on
vectors:

"a′ = U"a "a =




a1
...

aN



 . (180)

This transformation has the important property that it leaves the scalar product invariant:

"b′† · "a′ ≡ "b† · "a . (181)

You can verify this by direct calculation, but it is clear from the fact that both are equal to 〈b|a〉,
just expressed in different bases.
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Above we have assumed implicitly that we are dealing with a complex LVS. If we have a real
LVS instead, then the matrix elements

〈e′k|ej〉 ≡ Rkj (182)

are real and hence

RTR = I . (183)

Such matrices are called orthogonal matrices. The determinant of orthogonal matrices is equal
to ±1. If det(R) = 1, then R describes a rotation. If det(R) = −1, then R describes a rotation
followed by a reflection.

12.1 Transformation of Matrices

Recall that the matrix elements of the linear operator A in the basis B are

Aij = 〈ei|A |ej〉 . (184)

In order to work out what the matrix elements of A in the basis B′ are, we express the basis vectors
in B in terms of those in B′

|ej〉 =
∑

k

Ukj |e′k〉 , (185)

〈ei| =
∑

l

(Uli |e′l〉)
† =

∑

l

〈e′l|U∗
li (186)

Using (185) and (186) in (184) we obtain

Aij =
∑

l,k

〈e′l|A |e′k〉︸ ︷︷ ︸
A′

lk

U∗
liUkj =

∑

l,k

U †
ilA

′
lkUkj (187)

In matrix form these equations read

A = U†A′U (188)

A′ = UAU†
(189)

This tells us how the operator A looks like in the basis B′.

12.2 Change of Basis: Example in R2

Consider the two orthonormal bases of R2 shown in Fig8. Let us represent the first basis, which we
call B, as

|e1〉 =

(
1
0

)
, |e2〉 =

(
0
1

)
. (190)

The second basis, denoted by B′, is obtained by a rotation by an angle θ and hence may be represented
as

|e′1〉 =

(
cos θ
sin θ

)
, |e′2〉 =

(
− sin θ
cos θ

)
. (191)
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|e’

|e
1

2|e

|e’1

2

Figure 8: Two orthornormal bases of R2 related by a rotation.

The orthogonal matrix relating the basis can be calculated from our general formula (182)

Rkj = 〈e′k|ej〉 ⇒ R =

(
cos θ sin θ
− sin θ cos θ

)
. (192)

This is obviously a rotation matrix! Its transpose is equal to

RT =

(
cos θ − sin θ
sin θ cos θ

)
, (193)

and you can easily verify that RRT = I. Furthermore det(R) = 1. A general vector transform as

(
a′1
a′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
a1

a2

)
. (194)

This agrees with what we already know. Let us now see what happens with matrices. Let’s consider
the linear operator A, which acts on vectors by reflecting them along the horizontal axis on the
plane, see Fig. 9 In the basis B the linear operator A is represented as the matrix

A =

(
1 0
0 −1

)
. (195)

In the basis B′ is it clearly more difficult to represent A. From our general discussion we know that

A′ = R

(
1 0
0 −1

)
RT . (196)

It is now a simple matter to interpret this formula. The action of the linear operator is always the
same, irrespective of the basis we represent it in. If we are given a vector represented in the basis B′

and want to determine how A acts on it, we first rotate it by an angle −θ, which maps the basis B′

onto the basis B. This is achieved by multiplying with the matrix RT . In the basis B we already
know how A acts, namely via multiplication by the matrix A. Finally we have to rotate the resulting
vector back to the basis B′, which is achieved by matrix multiplication with the rotation matrix R.
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A|a

|a

Figure 9: Action of the linear operator A on vectors in the plane.

The general case works in the same way. The only additional complication is that in a complex
vector space, a “rotation” looks a bit different and is represented by a unitary matrix.

The above discussion for R2 is readily generalised to R3. In particular, a rotation around the
z-axis by an angle θ is represented by the 3× 3 matrix

R =




cos θ sin θ
− sin θ cos θ

1



 . (197)

12.3 Generalization to Arbitrary Basis Transformations

If B = {|v1〉 , . . . , |vN〉}, B′ = {|v′1〉 , . . . , |v′N〉} are bases of the LVS V but are not orthonormal,
then

|a〉 =
N∑

j=1

aj |vj〉 =
N∑

j=1

a′j
∣∣v′j

〉
(198)

and 


a′1
...

a′N



 =




S11 . . . S1N
...

SN1 . . . SNN








a1
...

aN



 (199)

where S is defined by |vj〉 =
∑N

i=1 Sij |v′i〉. It is easy to show that detS -= 0. This is a consequence
of B and B′ both being bases, i.e. all vectors in B (and similarly in B′) being linearly independent.
Matrices transform according to

A′ = SAS−1
(200)

At this point we will ”digress” a bit from the natural flow of topics and talk about
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12.4 Co-ordinate Transformations

Consider the real LVS made from “4-vectors”

|x〉 =





ct
x
y
z



 . (201)

4-vectors can be added and multiplied by a real number and form a linear vector space. We now
define the scalar product between two 4-vectors as

〈x̃|x〉 = c2tt̃− xx̃− yỹ − zz̃

= ( ct̃, x̃, ỹ, z̃ )





1
−1

−1
−1





︸ ︷︷ ︸
metric





ct
x
y
z



 . (202)

Note that this is not positive definite, i.e. we don’t always have 〈x|x〉 ≥ 0. The 4× 4 matrix that
appear in the definition of the scalar product is called a metric.

Going from one reference frame to another corresponds to a basis transformation in our linear
vector space. In the particular case where one frames moves with respect to the other along the
x-direction with a velocity v, we have





ct′

x′

y′

z′



 =





γ −βγ
−βγ γ

1
1









ct
x
y
z



 . (203)

Here β = v
c and γ = 1√

1−β2
. You have already encountered these four equations last year in the

Special Relativity course. They represent a Lorentz transformation. A very important feature
Lorentz transformations is that they leave the scalar product invariant

〈y′|x′〉 ≡ 〈y|x〉 . (204)

This shows that Lorentz transformation are similar to rotations!

13 Eigenvalues and Eigenvectors

Let A be a linear operator acting on a linear vector space V . The vector |v〉 is called an eigenvector
of A if

A |v〉 = λ |v〉 (205)

for some complex number λ. λ is called the eigenvalue corresponding to the eigenvector |v〉. How
to determine the eigenvalues for a given operator A? Let us rewrite (205) as

[A− λI] |v〉 = 0 . (206)
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Equation (206) can have a non-trivial solution only if

det(A− λI) = 0. (207)

If A is an N × N matrix, then (207) is a N th order polynomial equation in λ. The polynomial (in
λ) det(A− λ) is called characteristic polynomial of the matrix A.

Example:

A = σx =

(
0 1
1 0

)
. (208)

The eigenvalues are determined from the equation

det(A− λI) = det

(
−λ 1
1 −λ

)
= λ2 − 1 . (209)

Hence we find that λ1,2 = ±1. In order to find the corresponding eigenvectors we insert our results
for the eigenvalues back into (205) and then solve the resulting linear system of equations.

• Eigenvector for λ1 = 1.

For λ1 we need to solve the matrix equation
(

0 1
1 0

)(
u1

u2

)
=

(
u1

u2

)
. (210)

This implies that u1 = u2 and the corresponding normalized eigenvector is

|v1〉 =
1√
2

(
1
1

)
. (211)

We have
A |v1〉 = |v1〉 , 〈v1|v1〉 = 1. (212)

• Eigenvector for λ2 = −1.

For λ− we find (
0 1
1 0

)(
w1

w2

)
= −

(
w1

w2

)
. (213)

This implies that w1 = −w2 and the corresponding normalized eigenvector is

|v2〉 =
1√
2

(
1
−1

)
. (214)

It fulfils
A |v2〉 = − |v2〉 , 〈v2|v2〉 = 1. (215)

Interestingly we find that
〈v1|v2〉 = 0 . (216)
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This means that the two eigenvectors of σx form an orthonormal basis 4 of the linear vector space
C2. Let us calculate A in this basis:

A′
ij = 〈vi|A |vj〉 ⇒ A′ =

(
1 0
0 −1

)
. (217)

Observation: in the basis of its eigenvectors A is a diagonal matrix.

Using our results on basis transformations we can work out the unitary transformation that maps
the usual Cartesian basis onto the eigenbasis of A. We find

A′ = RART , R =
1√
2

(
1 1
−1 1

)
, RRT = 1 . (218)

We say that A can be diagonalized (by an orthogonal transformation. Interestingly, the columns of
the matrix R are equal to the eigenvectors of A, i.e.

R = ( |v2〉 |v1〉 ) . (219)

13.1 Normal, Hermitian and Symmetric Matrices

Our example raises the immediate question, whether any matrix can be diagonalized. The answer
is no. However, so-called normal matrices can be diagonalized. These matrices have the defining
property that

AA† = A†A . (220)

We will focus on two particular types of normal matrices as they are especially important.

• Hermitian Matrices

These are defined by the property
A = A† , (221)

i.e. a Hermitian matrix is identical to its Hermitian conjugate matrix.

• Real Symmetric Matrices

These are defined by the property
A = AT , (222)

i.e. a symmetric matrix is identical to its transposed matrix. Clearly real symmetric matrices
are a special case of Hermitian matrices: a Hermitian matrix with only real entries is symmetric.
Because of this fact we will concentrate on Hermitian matrices in what follows.

14 Hermitian Matrices

Hermitian matrices are defined by the property

A = A† , ⇔
Aij = A∗

ji
. (223)

4They are orthogonal and hence linearly independent and as the dimension of the underlying vector space is two,
they also form a basis.
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For example, the 2 × 2 matrix

(
a b
c d

)
is Hermitian, if a, d are real and b = c∗. The following

theorem is of great importance in Quantum Mechanics:

Theorem: (i) All eigenvalues of a Hermitian matrix are real.
(ii) Eigenvectors corresponding to different eigenvalues are orthogonal.

Proof using Dirac notation: (i) The eigenvalue equation for the Hermitian matrix A reads

A |a〉 = λ |a〉 . (224)

Taking the scalar product of this equation with 〈a|, we obtain

〈a|A |a〉 = λ〈a|a〉. (225)

Now we take the complex conjugate of equation (225)

〈a|A† |a〉 = λ∗〈a|a〉. (226)

However, A = A† and hence :
〈a|A |a〉 = λ∗〈a|a〉. (227)

Subtracting (227) from (225) we obtain

(λ− λ∗)〈a|a〉 = 0. (228)

As 〈a|a〉 -= 0 by assumption we must have that λ = λ∗ and hence the eigenvalues must all be real.

Proof using matrix notation: If you are uncomfortable with the Dirac notation, let’s go
through exactly the same steps in matrix notations. We start with the eigenvalue equation, which
reads

A"a = λ"a . (229)

The jth component of this equation is

∑

k

Ajk ak = λaj . (230)

Taking the scalar product with "a† we have

∑

j

∑

k

a∗j Ajk ak = λ
∑

j

|aj|2 . (231)

The complex conjugate of (231) is

∑

j

∑

k

aj A∗
jk a∗k = λ∗

∑

j

|aj|2 . (232)

The RHS of this equation can be rewritten by simply changing the summation indices

∑

j

∑

k

aj A∗
jk a∗k =

∑

k

∑

j

ak A∗
kj a∗j =

∑

k

∑

j

a∗j A∗
kj ak . (233)
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Subtracting (232) from (231) and using (233) we obtain

∑

j,k

a∗j
[
Ajk − A∗

kj

]
ak = (λ− λ∗)

∑

j

|aj|2 . (234)

However, the LHS of the equation vanishes, because A = A† and hence

Ajk = A∗
kj . (235)

This then implies that λ = λ∗ and hence the eigenvalue is real.

(ii) Let us now consider two eigenvectors for different eigenvalues λ -= λ′

A |a〉 = λ |a〉 , (236)

A |a′〉 = λ′ |a′〉 . (237)

Taking the scalar product of (236) with 〈a′| and of (237) with 〈a| we find

〈a′|A |a〉 = λ〈a′|a〉 , (238)

〈a|A |a′〉 = λ′〈a|a′〉 . (239)

The complex conjugate of equation (239) is

〈a′|A† |a〉 = λ′〈a′|a〉 , (240)

where we have used that λ′ is real according to part (i) of the theorem, which we have already proved.
Now we use that A is Hermitian and hence A† = A, so that

〈a′|A |a〉 = λ′〈a′|a〉 . (241)

Subtracting (241) from (238) we thus find

(λ− λ′)〈a′|a〉 = 0. (242)

Given that λ -= λ′ this proves that |a〉 and |a′〉 are indeed orthogonal

〈a′|a〉 = 0. (243)

This completes the proof of the theorem.

If we have several eigenvalues that are equal, we can always choose the corresponding eigenvectors
to be orthogonal as we can always achieve this by means of the Schmidt procedure.

Our theorem tells us two remarkable facts about Hermitian matrices: all their eigenvalues are
real, which is crucial importance for Quantum Mechanics. Many other matrices are diagonalizable as
well (normal matrices), but their eigenvalues are generally complex. Secondly, we have proved that
the eigenvectors of a Hermitian matrix can be chosen such that they form an orthonormal basis of
the vector space.
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14.1 Diagonalization of Hermitian Matrices

Let us now discuss how to diagonalize a Hermitian N × N matrix. We begin with the eigenvalue
equations

A |e1〉 = λ1 |e1〉 ,

A |e2〉 = λ2 |e2〉 ,
...

A |eN〉 = λN |eN〉 . (244)

As we have just proved, we can always arrange things in such a way that the eigenvectors of A form
an orthonormal set

〈ei|ej〉 = δij . (245)

Let us now form the matrix

U † =





...
...

...
|e1〉 |e2〉 . . . |eN〉

...
...

...



 , (246)

i.e. the columns of U † are the eigenvectors of A. Then

UAU † =





λ1

λ2

λ3
. . .

λN




. (247)

Proof: Let us first calculate AU †. Using that the vectors "ej are eigenvectors of A we obtain

AU † =





...
...

...
λ1 |e1〉 λ2 |e2〉 . . . λN |eN〉

...
...

...



 , (248)

i.e. the columns of AU † are the eigenvectors of A times their corresponding eigenvalues. Then

UAU † =





. . . 〈e1| . . .

. . . 〈e2| . . .
...

. . . 〈eN| . . .









...
...

...
λ1 |e1〉 λ2 |e2〉 . . . λN |eN〉

...
...

...





=




λ1〈e1|e1〉 λ2〈e1|e2〉 . . . λN〈e1|eN〉

...
λ1〈eN|e1〉 λ2〈eN|e2〉 . . . λN〈eN|eN〉



 . (249)

Using orthogonality 〈ej|ek〉 = δjk we arrive at (247). Q.E.D.
We can understand the above formulas in terms of a basis transformation as follows. Let us say

that we are given a representation of the linear operator A in the “usual” Cartesian basis

B =






|c1〉 =





1
0
0
...
0




, |c2〉 =





0
1
0
...
0




, . . . , |cN〉 =





0
0
0
...
1










(250)
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We denote the matrix elements with respect to B by

Aij . (251)

On the other hand, with respect to its eigenbasis E = {|e1〉 , . . . , |eN〉} the matrix elements are

A′
ij = λi δij . (252)

As we have seen previously, there is a unitary transformation described by a matrix U that maps B
onto E. The matrix elements of U are defined by

Ukj ≡ 〈ek|cj〉 (253)

Using the explicit form of the vectors |cj〉 the matrix U can be written as

U =





. . . 〈e1| . . .

. . . 〈e2| . . .
...

. . . 〈eN| . . .



 . (254)

According to our general formula, the matrix A transforms under the basis transformation as

A′ = UAU † . (255)

This is identical to (247). Hence diagonalizing a matrix is equivalent to carrying out a basis trans-
formation to the basis of eigenvectors of A!
Exercise: Show that if H is Hermitian, then

eiαH , α ∈ R (256)

is unitary.

14.2 Trace and Determinant of Hermitian Matrices

Let A be a Hermitian matrix A = A† and let U be the unitary matrix that diagonalizes it

UAU † =





λ1

λ2

λ3
. . .

λN




. (257)

The trace of a Hermitian matrix is equal to the sum of its eigenvalues

tr(A) =
N∑

j=1

λj (258)

Proof: Clearly we have

tr(UAU †) =
N∑

j=1

λj . (259)
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On the other hand, using the cyclicity of the trace and the fact that U is unitary and hence UU † = I
we have

tr(UAU †) = tr(U †UA) = tr(A) . (260)

Q.E.D.
The determinant of a Hermitian matrix is equal to the product of its eigenvalues

det(A) =
N∏

j=1

λj . (261)

Proof: Using that the determinant of a product of matrices is equal to the product of determinants
we find that

det(UAU †) = det(U) det(A) det(U †) = det(A) det(U †U) = det(A). (262)

Q.E.D.

15 Jordan Normal Form

As we have discussed, not all matrices are diagonalizable. The best one can do for a general, non-
normal matrix is to bring it to Jordan normal form. This is a “block-diagonal” structure

A =





A1

A2
. . .

Ak



 , (263)

where Aj are Jordan blocks

Aj =





λj 1
λj 1

. . . . . .
λj 1

λj




. (264)

It is easy to see that the diagonal entries λj are eigenvalues of A.

16 Simultaneous Diagonalization of Hermitian Matrices

In Quantum Mechanics one usually wants to diagonalize several Hermitian operators simultane-
ously, which corresponds to e.g. measuring energy and momentum at the same time. This cannot
always be achieved. By simultaneous diagonalization we mean to find a basis transformation to a
basis in which both operators are diagonal.

The necessary and sufficient condition for two Hermitian operators A = A† and B = B† to be
simultaneously diagonlizable is that they commute

[A,B] = AB −BA = 0. (265)
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Proof: (i) A, B simultaneously diagonalizable ⇒ [A,B] = 0. This is easy: by assumption there
exists an orthonormal basis in which both A and B are diagonal, i.e.

A =




α1

. . .
αN



 , B =




β1

. . .
βN



 . (266)

In this basis we obviously have AB = BA and hence A and B commute. Note that the property
of two operators commuting is independent of the choice of basis. Let [A,B] = 0 and consider the
commutator in a different orthonormal basis

(
UAU †) (

UBU †)−
(
UBU †) (

UAU †) = U [A,B]U † = 0. (267)

(ii) [A,B] = 0 ⇒ A, B simultaneously diagonalizable.
As A is Hermitian it is diagonalizable, i.e. in a basis of eigenstates of A we have the following

matrix representation

A =




α1

. . .
αN



 . (268)

In this basis, B has the form

B =




B11 . . . B1N
...

...
...

BN1 . . . BNN



 . (269)

We now may calculate the commutator [A,B] and then use that by assumption it is zero:

AB −BA =





0 (α1 − α2)B12 (α1 − α3)B13 . . .
(α2 − α1)B21 0 (α2 − α3)B23 . . .
(α3 − α1)B31 (α3 − α2)B32 0 . . .

...
...

...
...



 . (270)

Now if all eigenvalues of A are different, αi -= αj, then it follows that Bjk = 0 for j -= k and hence
B is diagonal, proving (ii). However, if one or several eigenvalues of A are the same, some of the
off-diagonal elements of B can be nonzero. Let us discuss the case where only two eigenvalues are
the same, i.e.

α1 = α2 . (271)

Then B has the form

B =





B11 B12 0 0 . . .
B∗

12 B22 0 0 . . .
0 0 B33 0 . . .
0 0 0 B44 . . .
...

...
...

. . .




= B† , (272)

i.e. B is diagonal except for a 2 × 2 block corresponding to the eigenvalues α1 = α2. Let us now
consider a basis transformation from the orthonormal eigenbasis of A {|e1〉 , . . . , |eN〉} to a new
orthonormal basis

{|e′1〉 , |e′2〉 , |e3〉 , . . . , |eN〉}. (273)
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The unitary matrix representing this basis transforamtion is of the form

U =





U11 U12 0 0 . . .
U21 U22 0 0 . . .
0 0 1 0 . . .

. . .



 =

(
Ũ 0
0 I

)
, (274)

where Ũ is a 2× 2 matrix and I is the N − 2 dimensional unit matrix. Clearly, U acts non-trivially
only on the 2 × 2 blocks in the upper left-hand corners or B and A. Let us denote these blocks by
B̃ and Ã respectively. We have

B̃ =

(
B11 B12

B∗
12 B22

)
, Ã = α1

(
1 0
0 1

)
. (275)

The basis transformation leaves Ã unchanged, because it is proportional to the unit matrix

ŨÃŨ † = Ã. (276)

On the other hand, B̃ transforms as
ŨB̃Ũ † . (277)

However, B̃ is by construction a Hermitian matrix and hence can be diagonalized by a unitary
transformation. Hence, by making an appropriate choice for Ũ we can achieve that

ŨB̃Ũ † =

(
β1 0
0 β2

)
. (278)

In this basis Ã and B̃ are now both diagonal and then so are A and B!
It is obvious that the case where several eigenvalues of A are equal can be treated in a completely

analogous way.
This completes the proof. Q.E.D.

17 Tensor Product of Vector Spaces

In Quantum Mechanics we often encounter situations in which the physical system we are interested
in consists of several independent parts. An example would be a system of two non-interacting
spin-1/2 particles. You will encounter this soon in the Quantum Mechanics course. The space of
quantum mechanical states describing such systems takes the form of a tensor product of the linear
vector spaces describing the quantum mechanical states of the constituents.

A second example of a tensor product structure in Quantum Mechanics is the incorporation of
intrinsic (spin) angular momentum.

From a mathematical point of view you can think of the tensor product as a simple way of
constructing a new vector space from two (or more) given ones. Let V and W two linear vector
spaces with bases

B = {|v1〉 , |v2〉 , . . . , |vN〉}, B′ = {|w1〉 , |w2〉 , . . . , |wM〉}. (279)

The tensor product V ⊗W is a linear vector space of dimension

dim(V ⊗W ) = NM , (280)
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with a basis given by
{|vj〉 ⊗ |wk〉 , j = 1, . . . , N ; k = 1, . . . , M}. (281)

If A and C are linear operators on V and W respectively, then A⊗C is a linear operator on V ⊗W ,
acting like

(A⊗C) (|v〉 ⊗ |w〉) ≡ (A |v〉)⊗ (C |w〉) . (282)

This is the mathematical structure underlying for example the treatment of “spin” in
the Schrödinger equation.

Example: Let us take as our vector spaces two copies of C2 with bases

B =

{(
1
0

)
,

(
0
1

)}
, B′ =

{(
1
0

)
,

(
0
1

)}
. (283)

In QM this corresponds to considering two independent spins 1
2 . A basis of C2⊗C2 is then given by

the four vectors
{(

1
0

)
⊗

(
1
0

)
,

(
1
0

)
⊗

(
0
1

)
,

(
0
1

)
⊗

(
1
0

)
,

(
0
1

)
⊗

(
0
1

)}
. (284)

Let us now consider two linear operators 5

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, (285)

which we take to act on the first an second copy of C2 respectively. Then we have

[σx ⊗ σz]

[(
a
b

)
⊗

(
c
d

)]
≡

[
σx

(
a
b

)]
⊗

[
σz

(
c
d

)]
=

(
b
a

)
⊗

(
c
−d

)
. (286)

Part II

Fourier Analysis and Generalized
Functions

18 Fourier Series

Fourier series and Fourier transforms are useful techniques for solving differential equations as well
as integral equations. They are used for example in Quantum Mechanics and Electromagnetism.

Let us recall that one of our examples of linear vector spaces was a function space. One such
function space familiar to you is the space of functions that can be expanded in a Taylor series around
the point x = 0, which converges (to the value of the function) on an interval [−a, a]. A simple basis
for this space is

{1, x, x2, x3, . . .} . (287)

5In QM these correspond to the operators of spin angular momentum, e.g. Sx = !
2σx.
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We write

f(x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 + . . . (288)

In terms of our function space this is written in Dirac notation as

|f〉 = f(0)|1〉+ f ′(0)|x〉+
f ′′(0)

2
|x2〉+ . . . . (289)

A very nice property about the Taylor expansion is that keeping the first few terms can give an
excellent approximation to f(x). This is of course of great practical importance as in many problems
one needs to know a function only in close vicinity of a given point.

Many function do not have good Taylor expansions, but can be expanded in terms of other basis
functions. An example are Fourier series and Fourier transforms. These are expansions in terms of
plane waves or standing waves.

18.1 Periodic Functions with Period 2π

A function is periodic with period α if for every x

f(x + α) = f(x). (290)

An example of a 2π-periodic function is shown in Fig. 10. Clearly it is sufficient to know f(x) in the

! x

f(x)

"!

Figure 10: A periodic function with period 2π defined on the entire real axis.

interval [−π,π] in order to determine its value for any x by repeated application of (290).
Note that there is nothing special about choosing this interval to be [−π, π]. As is shown in

Fig.11, we could equally well choose the interval [0, 2π] or in fact any interval of length 2π.
Our convention is to choose the interval to be [−π, π]. From now on we consider functions on

this interval only, having in mind that for all other values of x the functions is defined by (290) with
α = 2π.

Hence the periodic function in our example takes the form shown in Fig. 12.
Conversely, if we are given a function defined on the interval [−π,π] we can always construct a

2π-periodic function on the entire real axis from it by using (290).
Let us for the time being require our periodic functions to be continuous, which implies that

f(π) = f(−π). (291)
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0 x

f(x)

2!

Figure 11:

! x

f(x)

"!

Figure 12: A periodic function on the interval [−π, π].

Continuous periodic functions with period 2π form a linear vector space. Indeed, if f(x) and g(x)
are 2π-periodic functions, then so is h(x) = αf(x) + βg(x) (α, β are numbers):

h(x + 2π) = αf(x + 2π) + βg(x + 2π) = αf(x) + βg(x) = h(x). (292)

The null element is the periodic constant function z(x) = 0.
Consider now the following set of functions on the interval [−π, π]:

cn(x) =
1√
π

cos(nx) , n = 1, 2, . . .

sn(x) =
1√
π

sin(nx) , n = 1, 2, . . .

c0(x) =
1√
2π

. (293)

Theorem: These functions form an orthonormal set with respect to the scalar product

〈f |g〉 =

∫ π

−π

dxf ∗(x)g(x), (294)

i.e. we have

〈cn|cm〉 =

∫ π

−π

dx cn(x) cm(x) = δnm,
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〈sn|sm〉 =

∫ π

−π

dx sn(x) sm(x) = δnm,

〈cn|sm〉 =

∫ π

−π

dx cn(x) sm(x) = 0. (295)

Proof:

〈sn|sm〉 =

∫ π

−π

dx

π
sin(nx) sin(mx) =

∫ π

−π

dx

2π
[cos((n−m)x)− cos((n + m)x)].

(296)

For n -= m the integral of each individual term in the integrand is simply zero. For n = m the
integral over the second term is zero, but the first term is equal to 1 and hence the integral equals 1.
All other orthonormality relations are proved analogously. QED.

Recalling that orthogonality implies linear independence an obvious question is then whether or
not the set (293) of functions in fact forms a basis of the linear vector space of continuous periodic
functions. It can be shown (see e.g. Dennery/Krzywicki) that they do. Hence we can expand any
continuous periodic function f(x) in a Fourier series

f(x) =
a0

2
+

∞∑

n=1

[an cos(nx) + bn sin(nx)] ,

an =
1

π

∫ π

−π

dx f(x) cos(nx) ,

bn =
1

π

∫ π

−π

dx f(x) sin(nx) . (297)

In Dirac notation this expansion reads

|f〉 =
∞∑

n=0

〈cn|f〉 |cn〉+
∞∑

n=0

〈sn|f〉 |sn〉 . (298)

a0 =

√
2

π
〈c0|f〉 ,

an =
1√
π
〈cn|f〉 , n = 1, 2, . . . ,

bn =
1√
π
〈sn|f〉 . (299)

It turns out that it is not really necessary for a periodic function to be continuous for it to be
representable by a Fourier series. In particular, the function is allowed to have jumps. More precisely
the so-called Dirichlet conditions must be fulfilled:

• f(x) is periodic;

• f(x) is continuous except possibly at a finite number of finite discontinuities;

• f(x) must only have a finite number of maxima and minima within one period;
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• the integral over one period of |f(x)| must converge.

If the Dirichlet conditions are fulfilled, the Fourier series converges to

• f(x) for all x at which f(x) is continuous;

• 1
2 limε→0 [f(π) + f(−π)] at x = ±π.

• 1
2 limε→0 [f(x + ε) + f(x− ε)] at all points x where f has discontinuities.

Example:

f(x) =
{ 1 0 ≤ x < π
−1 −π ≤ x < 0

(300)

This function has discontinuities at x = 0 and x = ±π, see Fig.13. Let us work out the Fourier

f(x)

0 ! 2!"!"2!

1

"1

x

Figure 13: A periodic function on the interval [−π, π].

coefficients an and bn. The function f(x) is odd (f(−x) = −f(x)) and therefore

an = 0. (301)

The bn’s are given by

bn =
1

π

∫ 0

−π

dx(−1) sin(nx) +
1

π

∫ π

0

dx(+1) sin(nx)

=
{ 4

nπ n odd ,
0 n even.

(302)

Hence

f(x)′′ =′′
∞∑

n=1

4

(2n− 1)π
sin((2n− 1)x) . (303)

We have put quotation marks in order to indicate that equality holds only for points x where f(x)
is continuous. Note that at the discontinuties we have e.g.

f(0) = 1 , lim
ε→0

f(ε) + f(−ε)

2
= 0 . (304)
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Evaluating both the function f(x) and its Fourier series at x = π
2 (where the function is continuous),

we obtain a very nice identity

f(
π

2
) = 1 =

∞∑

n=1

(−1)n−1 4

(2n− 1)π
. (305)

Let us now see how well the Fourier series approximates the function if we keep only a finite number
of modes. Let us define

fk(x) =
k∑

n=1

4

(2n− 1)π
sin((2n− 1)x). (306)

We plot fk(x) for several values of k in Fig.14. Clearly increasing k improves the approximation.

f1(x)
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Figure 14: Approximations keeping a finite number of modes.

Note the overshoot of the Fourier series in the vicinity of the discontinuities of f(x). This overshoot
moves arbitrarily close to discontinuity if we increase k, but never disappears.

18.2 Periodic Functions with Period L

Suppose that f(x) is a periodic function with period L, i.e.

f(x + L) = f(x). (307)

Such functions can be expanded in a Fourier series in terms of the following orthonormal set of basis
functions

c′n(x) =

√
2

L
cos

(2πn

L
x
)

,

s′n(x) =

√
2

L
sin

(2πn

L
x
)

. (308)
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We have
∫ L/2

−L/2

dx c′n(x) c′m(x) = δnm ,

∫ L/2

−L/2

dx s′n(x) s′m(x) = δnm ,

∫ L/2

−L/2

dx c′n(x) s′m(x) = 0 . (309)

The Fourier series is given by

f(x) =
a0

2
+

∞∑

n=1

[
an cos

(2πn

L
x
)

+ bn sin
(2πn

L
x
)]

,

an =
2

L

∫ L/2

−L/2

dx f(x) cos
(2πn

L
x
)

,

bn =
2

L

∫ L/2

−L/2

dx f(x) sin
(2πn

L
x
)

. (310)

Proof: The change variables to x = Lz/2π gives us a function that is 2π-periodic in z. Hence it can
be expanded in a Fourier series in z

f
(Lz

2π

)
=

a0

2
+

∞∑

n=1

[an cos(nz) + bn sin(nz)] ,

an =
1

π

∫ π

−π

dz f
(Lz

2π

)
cos(nz) ,

bn =
1

π

∫ π

−π

dz f
(Lz

2π

)
sin(nz) . (311)

Changing variables back from z to x now gives the equations stated above. QED.
In Dirac notation we have

|f〉 =
∞∑

n=0

〈cn|f〉 |cn〉+
∞∑

n=0

〈sn|f〉 |sn〉 . (312)

a0 =
2√
L
〈c0|f〉 ,

an =

√
2

L
〈cn|f〉 , n = 1, 2, . . . ,

bn =

√
2

L
〈sn|f〉 . (313)

18.3 Parseval’s Theorem

Parseval’s theorem is a “sum rule” for the Fourier coefficients

1

L

∫ L/2

−L/2

dx |f(x)|2 =
(a0

2

)2

+
1

2

∞∑

n=1

(a2
n + b2

n) . (314)

Equation (314) is a simple consequence of the orthonormality relations (309).
Exercise: Prove Parseval’s theorem.
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18.4 Fourier Series using Complex Exponentials

Clearly we may use complex exponentials instead of sines and cosines in order to expand a periodic
function in a Fourier series. The appropriate orthonormal set on the interval [−L/2, L/2] is

en(x) =
1√
L

exp
(2πinx

L

)
= en(x + L) , n = 0,±1,±2, . . .

〈en|em〉 =
1

L

∫ L/2

−L/2

dx exp
(
−2πinx

L

)
exp

(2πimx

L

)
= δnm. (315)

The Fourier series for the function f(x) = f(x + L) is

f(x) =
∞∑

n=−∞
cn exp

(2πimx

L

)
,

cn =
1

L

∫ L/2

−L/2

dx exp
(
−2πinx

L

)
f(x) ≡ 1√

L
〈en|f〉. (316)

In Dirac notation

|f〉 =
∞∑

−∞
〈en|f〉 |en〉 . (317)

18.5 Fourier Sine and Cosine Series

Non-periodic functions defined on an interval [a, b] can be represented as Fourier series by continuing
them outside [a, b] in order to make them periodic. An example of what we mean by this is shown in
Figs 15 and 16. In Fig. 16 two different periodic continuations of the function f(x) defined on the
interval [0, a] are shown.

0 a 2a

Figure 15: A function f(x) defined on the interval [0, a].

2a0 a

4a0 a 2a

Figure 16: Two different periodic continuations of f(x) with periods 2a and 4a respectively.

Both continuations coincide with f(x) on the interval [0, a] and both continuations can be ex-
pressed in terms of Fourier series. These Fourier series will be different, but both of them will coincide
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with f(x) on the interval [0, a]! In the simplest case one has a function g(x) defined on [0, L] with
g(0) = g(L). Then there are two generic ways of continuing this function to the interval [−L,L]: a
symmetric continuation g1(x) = g1(−x) = g(x) and and antisymmetric one g2(x) = −g2(−x) = g(x).
The Fourier series for g1(x) will only contain cosines and is called the Fourier cosine series. The
Fourier series for g2(x) will only contain sines and is called the Fourier sine series.

19 Fourier Transform

We can make the period L of the periodic functions we expand in Fourier series very large. An
obvious questions is then whether we can take the limit L →∞, i.e. consider functions on (−∞,∞),
which then of course don’t have to be periodic any longer. In order to carry out this limit, let us
write the Fourier series as

f(x) =
1√
2π

∞∑

n=−∞
F (kn) eiknx (kn+1 − kn) , (318)

F (kn) =
1√
2π

∫ L/2

−L/2

dx e−iknx f(x) ≡ L√
2π

cn , (319)

where

kn =
2πn

L
. (320)

We can now formally take the limit L →∞, in which (318) turns into an integral

f(x) =
1√
2π

∫ ∞

−∞
dk F (k) eikx ,

F (k) =
1√
2π

∫ ∞

−∞
dx e−ikx f(x) . (321)

In order for the limit L → ∞ to exist, the function f(x) must fulfil certain conditions (“Plancherel
Theorem”). For square-integrable functions (as defined in (41)) the Fourier transform exists.

• F (k) is called the Fourier transform of f(x);

• f(x) is called the inverse Fourier transform of F (k),

The Fourier transform relates two functions f(x) and F (k). In the literature many different
conventions for the Fourier transform are employed. For example you may find

f(x) =
α

2π

∫ ∞

−∞
dk F̄ (k) e±ik ,

F̄ (k) =
1

α

∫ ∞

−∞
dx e∓ikx f(x) , (322)

where α is taken to be 1,
√

2π or 2π. The Fourier transform F̄ (k) defined in this way is related to
the one in our convention by

F̄ (k) =

√
2π

α
F (±k) . (323)

Examples:
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• f(x) =

{
Ae−λx x ≥ 0
0 x < 0

and λ > 0.

The Fourier transform is

F (k) =
A√
2π

∫ ∞

0

dx e−ikx−λx =
A√
2π

e−ikx−λx

−ik − λ

∣∣∣∣
∞

0

=
A√

2π(λ + ik)
. (324)

• f(x) = exp(−x2/2a2)

The Fourier transform is

F (k) =
1√
2π

∫ ∞

−∞
dx exp

(
− x2

2a2
− ikx

)

=
1√
2π

∞∑

n=0

(−ik)n

n!

∫ ∞

−∞
dx xn exp

(
− x2

2a2

)

=
1√
2π

∞∑

n=0

(−ik)2n

2n!

∫ ∞

−∞
dx x2n exp

(
− x2

2a2

)

=
∞∑

n=0

(−ik)2n

2n!
a2n+1(2n− 1)!! = a exp

(
−k2a2

2

)
. (325)

Here we have used that

In(a) =

∫ ∞

−∞
dx x2n exp

(
− x2

2a2

)
= −a2

∫ ∞

−∞
dx x2n−1 d

dx
exp

(
− x2

2a2

)

= a2(2n− 1)

∫ ∞

−∞
dx x2n−2 exp

(
− x2

2a2

)
= (2n− 1)a2In−1(a). (326)

Needless to say that a much simpler way of doing this integral is to use complex analysis
methods (so take that Short Option!)

F (k) =
1√
2π

∫ ∞

−∞
dx exp

(
− x2

2a2
− ikx

)

=
1√
2π

∫ ∞

−∞
dx exp

(
−(x + ika2)2

2a2
− k2a2

2

)

= exp

(
−k2a2

2

)
1√
2π

∫ ∞+ika2

−∞+ika2

dx exp

(
− z2

2a2

)

= exp

(
−k2a2

2

)
1√
2π

∫ ∞

−∞
dx exp

(
− z2

2a2

)
= a exp

(
−k2a2

2

)
. (327)

Here we have shifted the path of integration back to the real axis and used the fact that we
encounter no singularities of the integrand when doing this.

We have obtained an interesting result: the Fourier transform of a Gaussian is a Gaussian. How-
ever f(x) had a standard deviation a/

√
2, whereas F (k) has a standard deviation of 1/(a

√
2).

Aside: This fact is related to the Heisenberg uncertainty relation in Quantum Mechanics.
The ground state wave function of the simple harmonic oscillator is a Gaussian both in the



Fourier Analysis 55

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

0.5

Figure 17: f(x) and its Fourier transform F (k)

position and the momentum representation and the two are related by Fourier transformation.
We can calculate the mean square deviation of the position operator ∆x =

√
〈x2〉 − 〈x〉2 =

a/
√

2 in the position representation and the mean square deviation of the momentum operator
∆p =

√
〈p2〉 − 〈p〉2 = !/a

√
2 in the momentum representation. Because the width of the two

Gaussians are inversely proportional we find that ∆x ∆p = !/2: the ground state of the simple
harmonic oscillator is a “state of minimum uncertainty”.

• f(x) = 1
1+x2

The Fourier transform is F (k) =
√

π
2 e−|k|.

Exercise: Prove this by using the residue theorem.

19.1 Properties of the Fourier Transform

Let f(x) by a Fourier transformable function and F (k) its Fourier transform. Then

1. The Fourier Transform of f(ax) is 1
aF (k/a).

Proof: Substitute y = ax

1√
2π

∫ ∞

−∞
dx f(ax) e−ikx =

1√
2πa

∫ ∞

−∞
dy f(y) e−iky/a . (328)

2. The Fourier Transform of f(a + x) is eikaF (k).

Proof: Substitute y = x + a.

3. The Fourier Transform of eiqxf(x) is F (k − q).

Proof: By inspection.

4. The Fourier Transform of d
dxf(x) is ikF (k).

Proof: integrate by parts

1√
2π

∫ ∞

−∞
dx f ′(x) e−ikx =

f(x)e−ikx

√
2π

∣∣∣
∞

−∞
+

ik√
2π

∫ ∞

−∞
dy f(x) e−ikx . (329)

The first term on the RHS must vanish in order for the Fourier transform to exist.
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5. The Fourier Transform of xf(x) is i d
dkF (k).

Proof: differentiate under the integral (apparently one of Feynman’s favourite tricks)

1√
2π

∫ ∞

−∞
dx xf(x) e−ikx = i

d

dk

1√
2π

∫ ∞

−∞
dx f(x) e−ikx. (330)

19.2 Fourier Transform in Higher Dimensions

The Fourier transform is readily generalized to more than one dimension. In three dimensions it is
defined as

F (kx, ky, kz) =
1

(2π)3/2

∫ ∞

−∞
dx dy dz e−ikxx−ikyy−kzf(x, y, z). (331)

Using a vector notation r = (x, y, z), k = (kx, ky, kzz) this can be written as

F (k) =
1

(2π)3/2

∫ ∞

−∞
d3re−ik·rf(r). (332)

19.3 Convolutions

The function

f(x) =

∫ ∞

−∞
dy h(x− y) g(y) (333)

is called the convolution of f with h. It is denoted by f = g ∗ h. Convolution is a commutative
operation, i.e.

f ∗ g = g ∗ f. (334)

This follows from substituting y′ = x − y in (333). A convolution has the important property that
its Fourier transform is equal to

√
2π times the product of the Fourier transforms

F (k) =
1√
2π

∫ ∞

−∞
dx

∫ ∞

−∞
dyg(y) h(x− y)

=
1√
2π

∫ ∞

−∞
dy g(y) e−iky

∫ ∞

−∞
dx h(x− y) e−ik(x−y) =

∫ ∞

−∞
dy g(y) e−ikyH(k)

=
√

2πG(k)H(k). (335)

19.4 Solving Integral Equations by Fourier Transform

An integral equation is an equation of the form

f(x) = f0(x) +

∫ ∞

−∞
dy G(x− y) f(y) , (336)

where the “driving term” f0(x) and the “kernel” G(x) are two known functions and we would like
to find functions f(x) that fulfil the integral equation. Integral equations are encountered quite
frequently in Physics: examples are the Lippmann-Schwinger equation in QM scattering theory, the
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Dyson equations in diagrammatic perturbation theory etc. Equations of the type (336) are solvable
by Fourier transform. Indeed, the integral equation involves a convolution

f(x) = f0(x) + (G ∗ f)(x). (337)

Hence
F (k) = F0(k) +

√
2πG(k)F (k) , (338)

which gives us the Fourier transform F (k) as

F (k) =
F0(k)

1−
√

2πG(k)
. (339)

The inverse Fourier transform gives us the desired solution of the integral equation.

20 The Dirac Delta Function

The delta function is an example of a “generalized function”. Unfortunately we do not have the time
to study this important subject is any detail, so have a look at the books by Dennery and Krzywicki
and by Lighthill.

Let us a start by considering the following set of very well-behaved functions

dn(x) =

√
n

π
e−nx2

, n = 1, 2, . . . (340)

These functions have the properties that

•
∫∞
−∞ dx dn(x) = 1.

• dk

dxk dn(x) exists for any k and goes to zero faster than any power of 1
|x| when x → ±∞.

We define the delta function formally as the limit

δ(x) = lim
n→∞

dn(x). (341)

As is shown in Fig.18, when n increases dn(x) becomes more and more peaked around x = 0. In
the limit n → ∞ we end up with a “function” that is zero everywhere except at x = 0, where it is
infinite in such a way that ∫ ∞

−∞
dx δ(x) = 1. (342)

This clearly does not make sense for a function in the usual sense. All properties of the Dirac δ-
function are to be understood in terms of the limit n → ∞. For example, for any “well-behaved” 6

function f(x) we have
∫ ∞

−∞
dx f(x) δ(x− x0) = f(x0).

(343)

6By this we mean functions that are infinitely many times differentiable if its modulus and that of its derivatives
does not increase faster than some power of x for |x|→∞. Polynomials are well behaved in this sense.
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Figure 18: dn(x) for n = 1, 10, 100.

Proof: Let us Taylor-expand f(x) around x = x0

∫ ∞

−∞
dx f(x) δ(x− x0) ≡ lim

n→∞

∫ ∞

−∞
dx f(x) dn(x− x0)

= lim
n→∞

∫ ∞

−∞
dx [f(x0) + f ′(x0)(x− x0) + . . .] dn(x− x0)

= lim
n→∞

{
f(x0)

∫ ∞

−∞
dx dn(x− x0)

+
f ′′(x0)

2

∫ ∞

−∞
dx (x− x0)

2 dn(x− x0) + . . .

}

= lim
n→∞

{
f(x0) +

f ′′(x0)

2

1

2n
+ . . .

}
= f(x0). (344)

Note that we have interchanged the limit limn→∞ with the integral over x in the first step. This
defines what we mean by the integral over the delta function (or in fact any other generalized
function).

You often will find the equation

f(x) δ(x− x0) = f(x0) δ(x− x0) (345)

in the literature. This equations is to be understood under an integral and you may view it as a
shorthand for (343).

Note that as δ(x− x0) is zero everywhere except at x = x0 we have (ε, ε′ > 0)

∫ ∞

∞
dx f(x) δ(x− x0) =

∫ x0+ε′

x0−ε

dx f(x) δ(x− x0). (346)

Another important identity invoving the delta function is

∫ ∞

−∞
dx f(x) δ(y(x)) =

∑

j

f(xj)

|y′(xj)|
.

(347)
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Here the sum is over the roots xj of the equation y(x) = 0 and y′(x) is the derivative of y with
respect to x. We assume that y′(xj) -= 0 for all xj. Let us see how (347) comes about. As δ(y(x))
is zero everywhere except at the points xj where y(xj) = 0, we may use (346) to write

∫ ∞

−∞
dx f(x) δ(y(x)) =

∑

j

∫ xj+ε

xj−ε

dx f(x) δ(y(x)). (348)

For each of these integrals we now change variables. We first note that sufficiently close to xj we
may always invert the function y(x) because y′(xj) -= 0. We therefore can change variables from x
to y(x). Using that dy = y′(x)dx we obtain for the jth term of the sum

∫ y(xj+ε)

y(xj−ε)

dx

y′(x)
f(x(y)) δ(y) =

f(xj)

|y′(xj)|
, (349)

where we have used (343), (346) to evaluate the integral. The absolute value on the RHS appears

because if y′(xj) < 0 then y(xj + ε) < y(xj − ε) and we pick up an extra minus sign from
∫ b

a dx =
−

∫ a

b dx.
Under an integral we therefore may write

δ(y(x)) =
∑

j

δ(x− xj)

|y′(xj)|
,

(350)

where the sum is over all roots xj of y(x) = 0. A special case of this equation is

δ(ax) =
1

|a|δ(x).

(351)

Finally, setting a = −1 we find that the delta function is formally even

δ(−x) = δ(x).
(352)

The properties of the delta function are independent of which sequence of functions one uses
to define it. Some other sequences are used to define the delta function are

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
, (353)

δ(x) = lim
n→∞

sin(nx)

πx
. (354)

20.1 Derivative of the Delta Function

The derivative of the delta function is defined as the limit

δ′(x) = lim
n→∞

d′n(x). (355)
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The defining property of the derivative of the delta function is that for any “well-behaved”
function f(x) ∫ ∞

−∞
dx f(x) δ′(x− x0) = −f ′(x0). (356)

Let us again see how this comes about:
∫ ∞

−∞
dx f(x) δ′(x− x0) ≡ lim

n→∞

∫ ∞

−∞
dx f(x) d′n(x− x0)

= lim
n→∞

{
f(x)dn(x− x0)

∣∣∣∣
∞

−∞
−

∫ ∞

−∞
dx f ′(x) dn(x− x0)

}

= −
∫ ∞

−∞
dx f ′(x) δ(x− x0) = −f ′(x0). (357)

The first line merely states the definition of the derivative of the delta function. In going from the
first line to the second we have integrated by parts. We then have used that for any well-behaved
function limx→±∞ d′n(x)f(x) = 0.

Note that while the delta function is formally even, its derivative is odd

δ′(−x) = −δ′(x). (358)

Exercise: Show that this is true.

20.2 Multidimensional Delta Function

The delta function is readily generalized to more than one dimension. The three dimensional delta
function is defined as

δ(3)(r) ≡ δ(x) δ(y) δ(z). (359)

It has the porperty that
∫

d3r f(r) δ(3)(r− r0) =

∫
dx dy dz f(x, y, z) δ(x− x0) δ(y − y0) δ(z − z0)

= f(x0, y0, z0) = f(r0). (360)

20.3 Fourier Transform of the Delta Function

For any dn(x) we can calculate its Fourier transform Dn(k):

Dn(k) =
1√
2π

∫ ∞

−∞
dx e−ikx

√
n

π
e−nx2

=
1√
2π

e−k2/4n. (361)

The inverse Fourier transform is

dn(x) =
1√
2π

∫ ∞

−∞
dk eikx Dn(k). (362)
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Let us now take the limit n →∞ of (362) using that limn→∞ dn(x) = δ(x) =

δ(x) = lim
n→∞

1√
2π

∫ ∞

−∞
dk eikx Dn(k)

=
1√
2π

∫ ∞

−∞
dk eikx lim

n→∞
Dn(k)

=
1

2π

∫ ∞

−∞
dk eikx . (363)

We conclude that

δ(x) =
1

2π

∫ ∞

−∞
dk eikx =

1

2π

∫ ∞

−∞
dk e−ikx .

(364)

This is very strange! We know that the integral in (364) does not exist, so what does this mean?
7 We said before that the delta function makes sense only under an integral. So let us look at the
equation ∫ ∞

−∞
dx f(x) δ(x− x0) = f(x0). (365)

Using equation (364) to represent the delta function on the RHS we obtain
∫ ∞

−∞
dx f(x) δ(x− x0) =

∫ ∞

−∞
dx f(x)

1

2π

∫ ∞

−∞
dk e−ik(x−x0)

=
1√
2π

∫ ∞

−∞
dk eikx0

1√
2π

∫ ∞

−∞
dx e−ikx f(x)

=
1√
2π

∫ ∞

−∞
dk eikx0 F (k) = f(x0). (366)

In the second line we have interchanged the order of the x and k integration. In the third line we
have used the definition of the Fourier transform F (k) and finally the definition of the inverse Fourier
transform (321). We see that under an integral our equation for the Fourier transform of the delta
function makes perfect sense!

20.4 Normalization Condition in the Case of Continuous Spectra

Recall that for Fourier series we had a basis functions

en(x) =
1√
2π

einx , (367)

with

〈en|em〉 =
1

2π

∫ π

−π

dx eix(m−n) = δnm. (368)

These basis functions are labelled by a discrete parameter, the integer n.
Four Fourier transforms we have a basis set labelled by a continuous parameter, the real number

k

ek(x) =
1√
2π

eikx . (369)

7Note that for any finite n the integrals we encounter are perfectly well defined.
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Now the normalization condition reads

〈ek|ep〉 =
1

2π

∫ ∞

−∞
dx ei(k−p)x = δ(k − p). (370)

We say that our basis functions are normalized to a delta function. This is always the case when we
are dealing with a continuous spectrum, e.g. in QM in the infinite volume.

Part III

Ordinary Differential Equations

21 Difference Equations

Consider the differential equation
d2u

dx2
= f(x) , (371)

where a ≤ x ≤ b. Let us divide the interval [a, b] into N pieces where we imagine N to be quite large

xj = a + j h , j = 0, 1, . . . , N . (372)

The size of each sgment is

h =
b− a

N
. (373)

Let us further denote
u(xj) = uj . (374)

For large N we may then approximate

du

dx

∣∣∣∣
x=xj

≈ u(xj+1)− u(xj)

xj+1 − xj
=

uj+1 − uj

h
. (375)

Similarly we obtain
d2u

dx2

∣∣∣∣
x=xj

≈
du
dx(xj+1)− du

dx(xj)

xj+1 − xj
=

uj+2 − 2uj+1 + uj

h2
. (376)

For large N we can approximate the differential equation (371) by a set of algebraic equations

uk+2 − 2uk+1 + uk = h2f(xk) , k = 0, 1, . . . , N − 2. (377)

This can be written in matrix form




−2 1 0 0 . . .
1 −2 1 0 . . .
0 1 −2 1 . . .

. . .
0 . . . 1 −2









u1

u2
...

uN−2

uN−1




= h2





f(0)
f(h)

...
f(b− 3h)
f(b− 2h)




−





u0

0
...
0
−un




(378)

Imposing boundary conditions such as u(a) = u(b) = 0 fixes u0 = uN = 0 and then we are left with
a matrix problem! The function u(x) is represented as a vector and the differential operator as a
matrix! We conclude that we can think of differential operators as infinite dimensional matrices.
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22 Second Order ODEs

Let us begin with a quick review of second order ordinary differential equations. The most general
form is

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = F (x) . (379)

The general solution to (379) is of the form

y(x) = c1y1(x) + c2y2(x) + yp(x) . (380)

Here y1,2(x) are linearly independent solutions of the homogeneous equation (i.e. equation
(379) with F (x) = 0) and yp(x) is a particular solution of the inhomogeneous equation (379). Here
linear independence means that the equation

α1y1(x) + α2y2(x) = 0 (381)

has the only solution α1 = α2 = 0.

23 Series Solutions to ODEs

In our forthcoming study of partial differential equations we will encounter several examples of second
order ODEs, which don’t have solutions in terms of familiar functions. In fact, we may take the ODEs
to define new functions, which are their solutions.

We will now discuss a general method for constructing series solutions to second order linear
ODEs. Note that this topic is not part of the syllabus.

23.1 Warmup Exercise: simple harmonic oscillator

As a warmup exercise consider the ODE for the simple (classical) harmonic oscillator (SHO)

d2y

dx2
+ m2y = 0 . (382)

Let us assume that we do not know that the solution to (382) is

A exp(imx) + B exp(−imx) . (383)

Let us make the following power-series ansatz for y:

y(x) =
∞∑

n=0

an xn . (384)

Substituting (384) back into the differential equation (382) we obtain

∞∑

n=0

n(n− 1)anxn−2 + m2
∞∑

n=0

anxn = 0 . (385)

In order for (385) to hold for all values of x, the coefficient of each power of x must vanish separately.
It is useful to collect the coefficients of the various powers of x in a table
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x0 x1 x2 x3 xn

d2y
dx2 2a2 6a3 12a4 20a5 . . . (n + 2)(n + 1)an+2

m2y m2a0 m2a1 m2a2 m2a3 . . . m2an

We see that we must have

a2 = −m2a0

2
, a4 = −m2a2

12
, . . . , a2n+2 = − m2a2n

(2n + 2)(2n + 1)
, (386)

and independently

a3 = −m2a1

6
, a5 = −m2a3

20
, , . . . , a2n+1 = − m2a2n−1

(2n + 1)2n
. (387)

The relations are called recurrence relations. Clearly we can express all even coefficients a2n in
terms of a0

a2n =
(−1)nm2n

(2n)!
a0 . (388)

Similarly we can express all odd coefficients a2n+1 in terms of a1

a2n+1 =
(−1)nm2n

(2n + 1)!
a1 . (389)

Substituting these back into our ansatz for y(x) we obtain

y(x) = a0

∞∑

n=0

(−1)n

(2n)!
(mx)2n +

a1

m

∞∑

n=0

(−1)n

(2n + 1)!
(mx)2n+1

= a0 cos(mx) +
a1

m
sin(mx) , (390)

where we define the factorial of zero to be equal to 1. This is indeed the general solution to our
ODE, which we have found in a rather complicated way here. The point is that the series solution
method works also in cases, where the ODE does not have a solution in terms of familiar functions.
Let us turn to such an example next.

23.2 Bessel’s equation

Bessel’s equation arises is the study of partial differential equations in problems with cylidrical
symmetry. It is given by

x2 d2y

dx2
+ x

dy

dx
+ (x2 −m2)y = 0 , (391)

where m is an integer. We will see that late how Bessel’s equation emerges in physical problems with
cylindrical symmetry. Let us again try to find a solution in terms of a power series

y(x) =
∞∑

n=0

an xn . (392)
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Substituting (392) back into the differential equation (391) we obtain

∞∑

n=0

n(n− 1)anxn +
∞∑

n=0

nanxn +
∞∑

n=0

anxn+2 −m2anxn = 0. (393)

Let us consider the case m = 0 first

x0 x1 x2 x3 x4 xn

x2 d2y
dx2 0 0 2a2 6a3 12a4 n(n− 1)an

x dy
dx 0 a1 2a2 3a3 4a4 nan

x2y 0 0 a0 a1 a2 an−2

We see that for the x1 term to vanish, we must have a1 = 0. However, the we must have a3 = 0
for the x3 term to vanish and by the same mechanism all odd a2n+1 must actually be zero. This
leaves us with the even a2n’s.

From the conditions that the coefficient of the x2 term must be zero we find

a2 = −a0

22
. (394)

From the conditions that the coefficient of the x4 term must be zero we find

a4 = −a2

42
=

a0

4222
. (395)

In general we have

a2n = −a2n−2

(2n)2
=

a2n−4

(2n)2(2n− 2)2
= − a2n−6

(2n)2(2n− 2)2(2n− 4)2

= (−1)n a0

(2n)2(2n− 2)2(2n− 4)2 · · · 4222

= (−1)n a0

22n(n!)2
. (396)

This gives us the series representation for the Bessel function J0(x) = y(x)
a0

J0(x) =
∞∑

n=0

(−1)n x2n

22n(n!)2
. (397)

Carrying out the analogous analysis for m = 1, 2, 3, . . . leads to series representation for the Bessel
functions Jm(x)

Jm(x) =
∞∑

n=0

(−1)n x2n+m

22n+mn! (n + m)!
. (398)

At this point we should realize that we have run into a problem. Bessel’s equation is a second
order ODE, so for every value of m we should find two linearly independent solutions. Why have we
missed the second solution? Well, basically our ansatz for y(x) has been too restrictive. The easiest
way around the problem is to solve Bessel’s equation (391) for generic noninteger m by an ansatz of
the form

y±(x) = z±m
∞∑

n=0

anxn . (399)
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The recurrence relation is
an = − an−2

n(n± 2m)
, (400)

and in addition we have a1 = 0. This then leads to two solutions Jm(x) and J−m(x) of Bessel’s
equation. The trouble for integer m is that these solutions become linearly dependent:

J−m(x) = (−1)mJm(x) , m integer. (401)

The way around this problem is to define for integer m

Nm(x) = lim
ν→m

cos(πν) Jν(x)− J−ν(x)

sin(πν)
. (402)

These Neumann functions provide the second linearly independent solution to Bessel’s equation for
integer m.

23.3 Associated Legendre Equation

The associated Legendre equation arises is the study of partial differential equations in problems
with spherical symmetry. It is of the form

(1− x2)
d2y

dx2
− 2x

dy

dx
+

[
l(l + 1)− m2

1− x2

]
y = 0 . (403)

Here l and m are integers and m ranges between−l and l. Let us first simplify this ODE by separating
off a factor (1− x2)

m
2 , i.e.

y = (1− x2)
m
2 z . (404)

Substituting this back into (403) we obtain

(1− x2)
d2z

dx2
− 2x(m + 1)

dz

dx
− [m(m + 1)− l(l + 1)]z = 0 . (405)

The latter ODE can be solved by making the ansatz

z =
∞∑

k=0

ak xk . (406)

The coefficients ak fulfil the recurrence relation

(k + 2)(k + 1)ak+2 = [(m + k +
1

2
)2 − 1

4
− l(l + 1)]ak . (407)

The special case m = 0 of the associated Legendre equation is known as Legendre’s equation.
The recurrence relation in this case is

(k + 2)(k + 1)ak+2 = [k(k + 1)− l(l + 1)]ak . (408)

The corresponding solutions are polynomials, the Legendre polynomials. The first few of them
are

P0(x) = 1 , P1(x) = x , P2(x) =
1

2
(3x2 − 1) , P3(x) =

1

2
(5x3 − 3x) . (409)
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24 Eigenvalues/Eigenfunctions of Differential Operators

As we have seen some time ago, there is a close relationship between differential operators and
matrices/linear operators. We now want to explore this connection further.

Consider for example Legendre’s equation
[
(1− x2)

d2

dx2
− 2x

d

dx

]

︸ ︷︷ ︸
L̂

y = −l(l + 1)︸ ︷︷ ︸
λ

y . (410)

This has the form of an eigenvalue equation

L̂y = λ y (411)

for the differential operator L̂. Here λ is the eigenvalue and y is the eigenfunction and plays
the role of the eigenvector in the linear vector space on which L̂ acts. Note that we can cast the
differential equation for the simple harmonic oscilaltor (382) in the same form

L̂SHO =
d2

dx2
, λSHO = −m2 . (412)

You’ll see plenty of other examples of this structure in the Quantum Mechanics course. There
you have for example [

− !2

2m

d2

dx2
+ V (x)

]

︸ ︷︷ ︸
Ĥ

ψ = Eψ , (413)

where the energy E is the eigenvalue of the linear operator Ĥ, the Hamiltonian of the system.
An important role is played by the boundary conditions of the differential equation. In particular,

the boundary conditions lead to constraints on the possible eigenvalues: they lead to the quanti-
zation of the eigenvalues. Consider for example the Schrödinger equation for a free particle in a
one-dimensional box

− !2

2m

d2

dx2
ψ = Eψ . (414)

The general solution to this equation is of course

ψ(x) = A exp(ikx) + B exp(−ikx) , (415)

where k2 = 2mE
!2 . At this point the energy E is completely arbitrary. However, once we impose

boundary conditions
ψ(0) = 0 = ψ(L) , (416)

we find that A = −B and
exp(2ikL) = 1. (417)

The latter condition leads to the quantization of the energy eigenvalues

En =
!2

2m

[πn

L

]2

, n = 1, 2, . . . (418)

This relationship holds quite generally, i.e.

boundary conditions −→ quantization of eigenvalues.

Ordinary Differential Equations 68

25 The Sturm-Liouville Problem

Let us consider a rather general second order ODE of the form

L̂ u(x) = p0(x)
d2u

dx2
+ p1(x)

du

dx
+ p2(x)u(x) = 0 , (419)

where pj(x) are at least 2− j times differentiable functions of some interval

a ≤ x ≤ b . (420)

In the linear algebra part of the course we have seen that Hermitian operators have particularly
nice properties. Let us therefore investigate under what circumstances the differential operator in
(419) is Hermitian. Recall that a Hermitian operator has the property that A = A†, or equivalently

〈v|A |u〉 = 〈u|A |v〉∗ . (421)

So for our differential operator to be Hermitian, we require that

〈v| L̂ |u〉 = 〈u| L̂ |v〉∗ , (422)

where

〈v|u〉 =

∫ b

a

dx v∗(x) u(x) . (423)

Hence

〈v| L̂ |u〉 =

∫ b

a

dx v∗(x)[p0(x)
d2u

dx2
+ p1(x)

du

dx
+ p2(x)u(x)]. (424)

Integrating by parts we can bring this to the form

〈v| L̂ |u〉 =

∫ b

a

dx u(x){p0(v
∗)′′ + [2p′0 − p1] (v

∗)′ + v∗(p2 − p′1 + p′′0)}

+p0[v
∗u′ − u(v∗)′]

∣∣∣
b

a
(425)

In order for this to be equal to 〈u| L̂ |v〉∗, we require that

1. p′0(x) = p1(x)

2. The boundary contributions in (425) cancel, i.e.

0 = p0(x)[v∗(x)u′(x)− u(x)(v∗(x))′]
∣∣∣
b

a

= p0(x)v∗(x)u′(x)
∣∣∣
b

a
− p0(x)u(x)(v∗(x))′

∣∣∣
b

a
. (426)

This is a requirement on the boundary conditions imposed on the solutions of the differential
equation. We emphasize that hermiticity involves the boundary conditions imposed on the
differential equations.

Note that as the boundary condition (426) have to hold for any functions v(x) and u(x), it is
sufficient that

0 = p0(x)v∗(x)u′(x)
∣∣∣
b

a
.

(427)
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Under these conditions we can write our Hermitian differential operator as

L̂SL =
d

dx

[
p0(x)

du

dx

]
+ p2(x) . (428)

The associated eigenvalue equation

L̂SL u(x) = λ w(x) u(x) (429)

is called a Sturm-Liouville problem. The function w(x) > 0 is called the weight function. All
the differential equations we have encountered so far can be written in the form (429)

Equation p0(x) p2(x) λ w(x) [a, b]

SHO 1 0 n2 1 [−π,π]
Legendre 1− x2 0 −l(l + 1) 1 [−1, 1]

Associated Legendre 1− x2 − m2

1−x2 −l(l + 1) 1 [−1, 1]

Bessel x −n2

x −1 x [0,∞]

The SHO problem is also compatible with the boundary conditions (426) as we may impose
u(π) = u(−π). Similarly the Legendre and associated Legendre equations fulfil appropriate boundary
conditions for integer l (and |m| ≤ l for the associated Legendre equations). The case of Bessel’s
equation is more involved.

25.1 Orthogonality and Completeness

In analogy to the case of Hermitian matrices in Linear Algebra, the eigenvalues and eigenfunctions
of Hermitian Sturm-Liousville operators have a number of very important properties.

1. The eigenvalues of a Hermitian operator are real.

2. The eigenfunctions of a Hermitian operator are orthogonal.

3. The eigenfunctions of a Hermitian operator form a complete set.

These properties are completely analogous to what we have seen for matrices in Linear Algebra. On
the other hand, as the setting is slightly different, let us repeat parts of the proofs. Let

L̂ ui − λi w ui = 0 , (430)

L̂ uj − λj w uj = 0 . (431)

Taking the complex conjugate of the second equation, we get

L̂ u∗j − λ∗j w u∗j = 0 . (432)

Here we have used the the functions entering the definition of L̂ as well as the weight function w(x)
are real. Subtracting (432) from (430) and then integrating over [a, b] we have

∫ b

a

dx u∗j L̂ui −
∫ b

a

dx uiL̂u∗j = (λi − λ∗j)

∫ b

a

dxuiu
∗
jw . (433)
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As L̂ is Hermitian, the left hand side of this equation is zero. Hence

(λi − λ∗j)

∫ b

a

dxuiu
∗
jw = 0. (434)

Now, setting i = j we obtain

(λj − λ∗j)

∫ b

a

dx|uj|2w = 0. (435)

However, by definition we have w(x) > 0 and hence the integral is positive. This leaves no choice
other than

λj = λ∗j . (436)

Let us now turn to property 2. Let us return to equation (434) but now consider the case λi -= λj.
Then (434) implies that ∫ b

a

dx ui(x) u∗j(x) w(x) = 0 . (437)

This is actually the definition of orthogonality of the eigenfunctions of a Strum-Liouville operator
with weight function w(x). Note the presence of w(x)! Just like for matrices, we have to consider
the case where two or several eigenvalues are equal separately. Again orthogonality can be achieved
through application of the Schmidt method.

Examples:

1. Sines and Cosines: Let’s return to our SHO problem on the interval [−π,π]. As we have seen
above, the solutions are cos(mx) and sin(mx). They fulfil the orthogonality relations

∫ π

−π

dx sin(nx) sin(mx) = δnm , n, m ≥ 1 ,

∫ π

−π

dx cos(nx) cos(mx) = π(δnm + δn0) ,

∫ π

−π

dx sin(nx) cos(mx) = 0 . (438)

These will play an important role in the theory of Fourier series.

2. Legendre polynomials: The Legendre polynomials form an orthogonal set on the interval [−1, 1]
∫ 1

−1

dx Pn(x) Pm(x) =
2

2n + 1
δnm . (439)

Note that the standard normalization used in the literature is not to unity!

3. Associated Legendre functions: Using that the eigenvalue is −l(l + 1) whereas m enters the
definition of p2(x) we conclude that

∫ 1

−1

dx Pm
l (x) Pm

l′ (x) = δl,l′
2

2l + 1

(l + m)!

(l −m)!
. (440)

Note that the standard normalization is once again not to unity.
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A particularly important property of a Hermitian operator is that its eigenfunctions form a complete
set. We have already encountered this in the Linear Algebra part of the course, where we showed
that the eigenstates of a Hermitian matrix form a basis of the linear vector space on which the matrix
acts. For differential operators L̂SL of the Sturm-Liouville type on an interval [a, b] this means that
any well-behaved function f(x) can be approximated by a series

f(x) =
∞∑

n=0

an un(x) (441)

to any degree of accuracy. Here un(x) are the eigenfunctions of L̂SL and

am =

∫ b

a

dx w(x) f(x) um(x) . (442)

More precisely we have

lim
k→∞

∫ b

a

dx w(x)

[
f(x)−

m∑

n=0

an un(x)

]2

= 0. (443)

A proof of this remarkable property of Sturm-Liouville differential operators can be found e.g. in R.
Courant and D. Hilbert, Methods of Mathematical Physics, Chapter 6 section 3.

Examples:

1. Simple Harmonic Oscillator:

The completeness property of the eigenfunctions of the SHO Sturm - Liouville operator leads
to the theory of Fourier series. As we have already seen, we may expand any reasonably
well-behaved periodic function f(x) as

f(x) =
a0

2
+

∞∑

n=1

an cos(nx) + bn sin(nx), (444)

where

an =
1

π

∫ π

−π

dx f(x) cos(nx) ,

bn =
1

π

∫ π

−π

dx f(x) sin(nx). (445)

2. Legendre’s Equation:

The completeness property of the eigenfunctions of the Sturm-Liouville operator of Legendre’s
equation allows us to expand a function f(x) on the interval [−1, 1] in a Legendre series

f(x) =
∞∑

n=1

an Pn(x) ,

an =
2n + 1

2

∫ 1

−1

dx f(x) Pn(x) . (446)

Here the extra factor of 2n+1
2 is due to the normalization of the Legendre polynomials.
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26 Use of Complete Function Systems

26.1 Electrostatics: Linear Multipole Expansions

The generating function of the Legendre polynomials is

[1− 2xt + t2]−
1
2 =

∑∞
n=0 Pn(x) tn , |t| < 1.

(447)

Indeed, for |x|, |t| < 1 we may Taylor expand the LHS around t = 0 to obtain

1√
1− 2xt + t2

= 1 + tx +
t2

2
(3x2 − 1) +

t3

3!
(15x3 − 9x) + . . .

=
∞∑

n=0




[n/2]∑

k=0

(−1)k (2n− 2k)!

22n−2kk!(n− k)!(n− 2k)!
(2x)n−2k



 tn.

Let us use the generating function to describe the electrostatic potential of a dipole. Let us imagine
we have a charge +q at position z = a and a charge −q at position z = −a as shown in Fig.19. The

q

a!a z

r

r

r

1

2

!!q

Figure 19: Electric Dipole.

potential at position r is simply

V (r) =
q

4πε0

[
1

|r1|
− 1

|r2|

]
, (448)

where r1,2 are the vectors shown in Fig.19. It is a simple matter to rewrite this as

V (r) =
q

4πε0

{[
1− 2

a

r
cos(θ) +

a2

r2

]− 1
2

−
[
1 + 2

a

r
cos(θ) +

a2

r2

]− 1
2

}
, (449)

where r = |r|. Now we may use that the functions occurring in (449) are generating functions of
Legendre polynomials. We obtain

V (r) =
2q

4πε0 r

∞∑

n=0

P2n+1(cos(θ))
(a

r

)2n+1

, r > a . (450)
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The leading term in this series for r 6 a

2aq

4πε0

P1(cos θ)

r2
(451)

is called electric dipole potential. The potential due to two point charges of q at ±a and a
point charge −2q at z = 0 can be analyzed analogously. The expansion now starts with the term
proportional to P2(cos θ) and describes a linear electric quadrupole.

26.2 Quantum Mechanics: Resolution of the Identity

In Quantum Mechanics observables such as energy or momentum are represented by Hermitian
operators. The eigenfunctions of these operators then form complete function systems, i.e. bases of
the linear vector spaces (“Hilbert spaces”) of quantum mechanical states. Let Ĥ be the Hamiltonian
of a quantum mechanical system. Then the energy eigenstates fulfil

Ĥ |ψn〉 = En |ψn〉 , (452)

where En are the quantized energies. Because the states |ψn〉 form a complete set, we can expand
any quantum mechanical state in the energy eigenbasis

|Φ〉 =
∑

n

〈ψn|Φ〉 |ψn〉 . (453)

The identity operator I is defined as the operator that when acting on any quantum mechanical
state gives back the state

I |Φ〉 = |Φ〉 . (454)

Using that the eigenstates of the Hamiltonian form a complete set of states we can represent I as

I =
∑

n |ψn〉 〈ψn| .
(455)

Indeed acting with (455) on a state |Φ〉 we find

I |Ψ〉 =
∑

n

{|ψn〉 〈ψn|} |Φ〉 =
∑

n

|ψn〉 〈ψn|Φ〉 . (456)

This is indeed equal to |Φ〉 by equation (453). Equation (455) is sometimes referred to as resolution
of the identity. This is something we use very frequently in Quantum Mechanics.

Part IV

Partial Differential Equations

27 Partial Differential Equations

A partial differential equation is a differential equation for a function of several variables.
Examples:
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• Time-dependent Schrödinger Equation

i!∂Ψ(r, t)

∂t
= − !2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t). (457)

Here the “Laplacian” is given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (458)

You’ll deal a lot with this PDE in the QM course. Ψ is the quantum mechanical wave function.

• Wave Equation [
1

c2

∂2

∂t2
−∇2

]
Ψ(r, t) = 0. (459)

You have already met this PDE in the “waves” course last year.

• Diffusion Equation
∂Ψ(r, t)

∂t
= D∇2Ψ(r, t) . (460)

The diffusion equation describes the temperature Ψ in a region containing no heat sources or
sinks. D is called diffusion constant .

• Laplace’s Equation
∇2Ψ(r) = 0. (461)

• Poisson’s Equation

∇2Ψ(r) = −ρ(r)

ε0
. (462)

You deal with Laplace’s equation and Poisson’s equation in the Electromagnetism course.

All of these equations are of the form

D̂Ψ + fΨ = g, (463)

where D̂ is a differential operator and f, g are known functions.

• Such equations are linear PDEs as Ψ enters linearly. Nonlinear PDEs such as the sine-Gordon
equation [

1

c2

∂2

∂t2
+

∂2

∂x2

]
Ψ(t, x) + µ sin(Ψ(t, x)) = 0 (464)

are MUCH harder to solve and we won’t deal with them here.

• If g = 0 the PDE is called homogeneous. Homogeneus equations have the wonderful
property of linear superposition of solutions: if Ψ1 and Ψ2 are solutions of the PDE

D̂Ψ1 + fΨ1 = 0 , D̂Ψ2 + fΨ2 = 0 , (465)

then so is αΨ1 + βΨ2 where α, β are numbers

D̂(αΨ1 + βΨ2) + f(αΨ1 + βΨ2) = 0 . (466)

• If g -= 0 the PDE is called inhomogeneous.

• PDEs must always be supplemented by boundary conditions in order to make the solution
unique. In general this is a tricky isssue, although not for the cases we consider here.
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27.1 Classification of 2nd order linear homogeneous PDEs

27.2 Boundary Conditions

In Physics problems there are three main types of boundary conditions. Let us denote by u the
function subject to the PDE.

• Dirichlet Boundary Conditions

u is specified at each point along a boundary of a region.

• Neumann Boundary Conditions

The values of the normal derivative ∂u
∂n of the function 8 are specified at the boundary.

• Cauchy Boundary Conditions

Both u and ∂u
∂n are specified at the boundary.

An example is the one dimensional wave equation describing the displacement of a string at
time t and position x [

1

c2

∂2

∂t2
− ∂2

∂x2

]
u(x, t) = 0. (467)

Here we would specify the initial displacement u(x, t = 0) as well as the initial velocity ∂u
∂t (x, t =

0) in order to obtain a unique solution. The boundary is the line t = 0 in the two-dimensional
(x, t) plane.

28 Separation of Variables in Cartesian Coordinates

Let us consider heat flow in a semi-infinite rectangular plate, see Fig. 20.

0

x

y

0 L

T=0T=0

T=T

Figure 20: Heat flow in a semi-infinite rectangular plate.

8 ∂u
∂n = ∇u · n, where n is the normal to the boundary at each point.
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The symmetry of the problem is such that cartesian coordinates are most convenient. Let us
denote the temperature by Θ(t, x, y). It obeys the heat equation

∂Θ

∂t
= D∇2Θ. (468)

If we wait long enough the system reaches a stationary state in which the temperature becomes time
independent. Then the heat equation reduces to Laplace’s equation

∇2Θ = 0. (469)

The boundary conditions are as follows:

• The temperature at the sides of the plate at x = 0 and x = L is zero, i.e.

Θ(x = 0, y) = 0 , Θ(x = L, y) = 0 . (470)

• The temperature at the bottom of the plate is T0

Θ(x, y = 0) = T0 , 0 ≤ x ≤ L. (471)

• The temperature at infinity is zero

Θ(x, y = ∞) = 0. (472)

This condition is physically motivated: in order to have a nonzero temperature at y = 0 an
infinite amount of heat would have to be supplied to the plate.

Let us now solve Laplace’s equation for the specified boundary conditions. This is done by a method
called separation of variables. We make an ansatz

Θ(x, y) = X(x)Y (y) , (473)

and substitute this back into Laplace’s equation. This gives

d2X(x)

dx2
Y (y) +

d2Y (y)

dy2
X(x) = 0. (474)

Note that we have total derivatives here as e.g. X is a function of x only. Dividing by XY we arrive
at

1

X(x)

d2X(x)

dx2
= − 1

Y (y)

d2Y (y)

dy2
. (475)

Now comes the crucial observation: the LHS of this equation depends only on x, whereas the RHS
depends only on y. The only way this is possible is if both sides are equal to the same x and y
independent constant. Let us call this constant −k2. Then

1

X(x)

d2X(x)

dx2
= −k2 ,

1

Y (y)

d2Y (y)

dy2
= k2. (476)



Partial Differential Equations 77

We observe that the separation of variables ansatz has reduces the PDE to two ODEs, which are
coupled through the separation constant.

You know from last year that the general solutions of these differential equations are

Xk(x) = Ak sin(kx) + Bk cos(kx) ,

Yk(y) = Cke
ky + Dke

−ky. (477)

Laplace’s equation is a linear homogeneous equation, which means that the superposition prin-
ciple holds. Hence the general solution is

Θ(x, y) =
∑

k

fk Xk(x) Yk(y). (478)

Here fk are arbitrary coefficients. Clearly they can be absorbed in a redefinition of Ak, Bk, Ck, Dk,
so without loss of generality we can set fk = 1. Hence

Θ(x, y) =
∑

k Xk(x) Yk(y).
(479)

The sum is over all separation constants k.
Let us now impose the boundary conditions on Θ(x, y):

• Θ(x, y = ∞) = 0

This implies that for any value of x

lim
y→∞

∑

k

Xk(x)Yk(y) = 0 =
∑

k

Xk(x) lim
y→∞

Yk(y) = 0 . (480)

Now we use that the Xk(x) form a linearly independent set of functions. Hence the sum
over k can only be zero if every individual term is zero, i.e.

lim
y→∞

Yk(y) = 0 ⇒ Ck = 0.
(481)

• Θ(0, y) = Θ(L, y) = 0.

For x = 0 we have ∑

k

Xk(0) Yk(y) = 0. (482)

Now we use that the Yk(y) form an independent set of functions and therefore the sum can
only be zero if any individual term vanishes. Hence

Xk(0) = 0. (483)

This implies that

Bk = 0.
(484)

By the same argument as above we obtain that Xk(L) = 0 as well, which implies that

sin(kL) = 0 ⇒
kn =

nπ

L
.

(485)
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At this point our solution looks like

Θ(x, y) =
∑

kn

An sin (knx) Dne
−kny =

∞∑

n=1

bn sin
(nπx

L

)
e−nπy/L. (486)

Note that although we obtained the allowed values for kn by considering a boundary
condition on Xk, they enter into the form of Yk as well! Don’t get this wrong in the
homework!

• The final boundary conditions is Θ(x, y = 0) = T0.

This gives us

T0 = Θ(x, 0) =
∞∑

n=1

bn sin
(nπx

L

)
. (487)

This one condition fixes all coefficients bn as it must hold for all 0 ≤ x ≤ L! In order to pick
out an individual term in the sum on the RHS we use a trick. Let us integrate both sides of
the equation from 0 to L with sin(mπx/L):

T0

∫ L

0

dx sin
(mπx

L

)
=

∞∑

n=1

bn

∫ L

0

dx sin
(mπx

L

)
sin

(nπx

L

)

=
∞∑

n=1

bn

∫ L

0

dx
1

2

[
cos

((n−m)πx

L

)
− cos

((n + m)πx

L

)]

=
∞∑

n=1

bn
L

2
δnm =

Lbm

2
. (488)

This gives us

bm =
2T0

L

∫ L

0

dx sin
(mπx

L

)
=

{
4T0
mπ m odd
0 m even.

(489)

Our final result in its full glory then reads

Θ(x, y) =
∞∑

m=1

4T0

π(2m− 1)
sin

(
(2m− 1)πx

L

)
exp

(
−(2m− 1)πy

L

)
.

(490)

28.1 Some Comments

• Choice of separation constant.

Recall that we chose out separation constant to be −k2, which we implicitly assumed to be
real. This choice, perhaps unsurprisingly, turned out to be very convenient. However, a
priori all we know is that the separation constant is a complex number. So if we had called
our separation constant α and allowed it to be complex, we still would have arrived at exactly
the same result, although the calculation would have been somewhat messier! How did we
come up with our convenient choice then? Well, if you look at the boundary conditions you see
that X(x) must vanish both at x = 0 and x + L, which suggests that X(x) exhibits oscillating
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behaviour. Inspection of the differential equation for X(x) reveals that the solutions will be
sines and cosines (with the desired oscillating behaviour) if the separation constant is real and
negative.

• At what stage to impose boundary conditions?

Note that we have imposed boundary conditions only after writing down the most general
solution obtainable by separation of variables. Using the linear independence of the solutions
with different separation constants, the boundary conditions (470), (472) on Θ translated to
boundary conditions on Xk and Yk. The answers are the same as imposing the boundary
conditions directly on Xk and Yk. However, as you can see from the treatment of the boundary
conditions (471), you cannot always impose the boundary conditions directly on the solutions
Xk, Yk for fixed separation constant k. So the correct procedure is always to first find the
general solution by superposition, and only then to impose the boundary conditions.

29 Separation of Variables in Cylindrical Polar Coordinates

Next we consider two examples of separation of variables in problems with cylindrical symmetry.

29.1 Infinitely long metal rod in a perpendicular electric field.

Consider an infinitely long earthed metal rod in an electric field. The axis of the rod is the z-axis
and the electric field is taken to be perpendicular to it. Very far from the origin the electric field is
given by

"E −→ (E, 0, 0). (491)

2a

x

y

Figure 21: Metal rod in a perpendicular electric field.

The geometry of the problem is such that we can drop the z-coordinate as nothing depends on it.
We want to determine the electric field close to the rod. In order to do so, we need to solve Laplace’s
equation for the scalar potential

∇2Φ(x, y) = 0 . (492)

Partial Differential Equations 80

This equation holds outside the rod, and the boundary conditions are

• Φ = 0 on the surface of the rod (as it is earthed).

• "E = −"∇Φ, which implies that far from the origin

Φ −→ −Ex. (493)

The problem clearly has cylindrical symmetry, implying that cylindrical coordinates are most con-
venient. As nothing depends on z these simple reduce to planar polar coordinates. We then have
Φ = Φ(r,φ) and

∇2 =
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂φ2
. (494)

The separation of variables ansatz reads

Φ(r,φ) = R(r) P (φ). (495)

Substituting this back into Laplace’s equation we obtain

P (φ)
1

r

d

dr

[
r
dR

dr

]
+

R

r2

d2P

dφ2
= 0. (496)

Multiplying both sides by r2/(RP ) we arrive at

r

R

d

dr

[
r
dR

dr

]
= − 1

P

d2P

dφ2
. (497)

The LHS depends only on r whereas the RHS depends only on φ. This is only possible if both are
equal to the same constant, which we denote by m2. This gives us two ODEs

r
d

dr

[
r
dR

dr

]
= m2R , (498)

d2P

dφ2
= −m2P. (499)

The general solution to (499) is9

Pm(φ) = am cos(mφ) + bm sin(mφ). (500)

As φ is an angular variable we must have

Pm(φ) = Pm(φ + 2π) , (501)

which forces m to be integer.
The general solution of (498) is obtained by inspection 10

Rm(r) =

{
cmrm + dmr−m if m > 0
c0 ln(r) + d0 if m = 0.

(502)

9The Pm’s are not to be confused with the Legendre polynomials!
10For fixed m (498) is a second order linear homogeneous ODE, which tells us that there must be two independent

solutions.
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Using the superposition principle we find that the general solution of (492) is given by

Φ(r,φ) =
∑

m

Rm(r) Pm(φ). (503)

Next we impose the boundary conditions:

• Φ(a,φ) = 0.

As the Pm(φ) are linearly independent, we must have

Rm(a) = 0 , m = 0, 1, 2, . . . (504)

This implies that

c0 ln(a) + d0 = 0 , cmam + dma−m = 0 , m = 1, 2, . . . . (505)

Hence

Rm(r) = cm

[
rm − a2m

rm

]
, m = 1, 2, . . . (506)

• For r →∞ we must have Φ(r,φ) −→ −Er cos(φ).

This implies that
∞∑

m=0

Rm(r)Pm(φ) −→ −Er cos(φ). (507)

In order to isolate the individual summands we again use a trick. Note that
∫ 2π

0

dφ Pm(φ) cos(nφ) = πam δnm ,

∫ 2π

0

dφ Pm(φ) sin(nφ) = πbm δnm. (508)

Using these in (507) we find that

Rn(r)πan −→
∫ 2π

0

dφ [−Er cos(φ)] cos(nφ) = −πErδn,1 ,

Rn(r)πbn −→
∫ 2π

0

dφ [−Er cos(φ)] sin(nφ) = 0. (509)

We conclude that

bn = 0 , n = 1, 2, . . .

an = 0 , n = 0, 2, 3 . . .

a1R1(r) = a1c1(r −
a2

r
) −→ −Er . (510)

This fixes a1c1 = −E and our final solution hence takes the form

Φ(r,φ) = E

[
a2

r
− r

]
cos(φ).

(511)
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Figure 22: A circular drum.

29.2 Vibrations of a circular drum.

As another example of separation of variables in cylindrical variables let us consider the vibrations
of a circular drum of radius a.

The displacement u(t, r,φ) fulfils the wave equation

1

c2

∂2u

∂t2
= ∇2u. (512)

The boundary conditions reflect the fact that the displacement must vanish at the rim of the drum

u(t, a, φ) = 0. (513)

Let us try to find solutions by the following separation of variables ansatz

u(t, r,φ) = T (t)R(r)P (φ). (514)

Substituting this back into the wave equation and dividing by TRP we arrive at

1

c2

1

T

d2T

dt2
=

1

rR

d

dr
(r

dR

dr
) +

1

r2

1

P

d2P

dφ2
. (515)

Now we proceed in two stages. We first realize that the LHS only depends on t, whereas the RHS
only depends on r and φ. This is only possible if they are both equal to the same constant, which
we denote by −ω2/c2

1

T

d2T

dt2
= −ω2 , (516)

1

rR

d

dr
(r

dR

dr
) +

1

r2

1

P

d2P

dφ2
= −ω2

c2
. (517)

Equation (517) can be brought to the form

r

R

d

dr
(r

dR

dr
) +

ω2

c2
r2 = − 1

P

d2P

dφ2
. (518)
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Now the RHS only depends on φ and the LHS only on r, so they must both be equal to the same
constant, which we denote by k2. This leaves us with three ODEs coupled through the separation
constants ω and k

d2T

dt2
+ ω2T = 0 , (519)

d2P

dφ2
+ k2P = 0 , (520)

r
d

dr
(r

dR

dr
) +

[
ω2

c2
r2 − k2

]
R = 0 . (521)

The equations for T and P are easily solved

P (φ) = Ameimφ + Bme−imφ , (522)

T (t) = Cωeiωt + Dωe−iωt . (523)

Here m must be an integer because φ is an angular variable P (φ) = P (φ + 2π). Let us rewrite rhe
equation for R using a dimensionless variable

κ =
ωr

c
, (524)

κ2d2Rm

dκ2
+ κ

dRm

dκ
+ (κ2 −m2)Rm = 0.

(525)

This differential equation is known as Bessel’s equation and we have already encountered it in the
ODE section. Its general solution is

Rm(κ) = emJm(κ) + fmNm(κ) , (526)

where Jm and Nm are Bessel and Neumann functions respectively. Recalling that the Neumann
functions are singular at the origin

lim
κ→0

Nm(κ) = −∞ , (527)

we conclude that on physical grounds
fm = 0. (528)

Superposing solutions we arrive at

u(t, r,φ) =
∑

ω

{
Cωeiωt + Dωe−iωt

} ∞∑

m=0

Jm

(ωr

c

) [
Ameimφ + Bme−imφ

]
. (529)

Next we impose the boundary condition u(t, a, φ) = 0. Using the linear independence of the Tω(t)
and the Pm(φ) we conclude that we must have

Jm

(ωa

c

)
= 0. (530)

This means that ωa/c must be a zero of Jm(κ)! Let us denote the zeroes of Jm(κ) for fixed m by

αm,p , p = 1, 2, . . . (531)
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The values of αm,p are known from numerical tables. Condition (530) then fixes the allowed values
of the normal mode frequencies

ωm,p =
c

a
αm,p .

(532)

Interestingly the allowed frequencies are not simple multiples of a fundamental frequency as is the
case e.g. for string. This is the reason for the interesting sound of a drum.

The final form of our solution for the displacement is

u(t, r,φ) =
∞∑

m=0

[
Ameimφ + Bme−imφ

] ∞∑

p=1

{
Cm,pe

iωm,pt + Dm,pe
−iωm,pt

}
Jm

(αm,pr

a

)
. (533)

As expected, the boundary condition do not fix a unique solution. In order to do that we would need
to specify initial conditions, i.e. say how we have hit the drum.

29.2.1 Some Low-Order Normal Modes

Let us look in more detail at the normal modes (i.e. terms in (533) with fixed m and p) for small
m, p. The nodes (values of r,φ where u(t, r,φ) = 0) are determined by e.g.

Ameimφ + Bme−imφ ≡ am sin(mφ + δm) = 0. (534)

So for m = 1 there is a node at φ = −δ1 mod π.
In Fig.23 we show the lines of zeroes of several normal modes (we set δm = 0 in these figures).

We also indicate the regions in which u(t, r,φ) is positive (+) and negative (−).

(a)

+

(b)

zeroes

+

!

lines of

(c)

!

+

(d)

!

lines of

zeroes

+

+

!

Figure 23: Normal modes of a circular drum: (a) m = 0, p = 1 (b) m = 0, p = 2 (c) m = 1, p = 1
(d) m = 1, p = 2

30 Separation of Variables in Spherical Polar Coordinates

Let us consider the problem of the near field of an earthed metal sphere or radius a in an electric
field. We want to solve Laplace’s equation for the potential

∇2V (r, θ, ϕ) = 0 , (535)

subject to the boundary conditions

V (r →∞, θ,ϕ) = −Ez = −Er cos(θ) , (536)

V (r = a, θ, ϕ) = 0 . (537)
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The problem clearly has spherical symmetry and the most convenient choice of coordinate system is
spherical polar coordinates. Recall that the Laplacian ∇2 is spherical polar coordinates is

∇2 =
1

r2

∂

∂r

[
r

∂

∂r

]
+

1

r2 sin2 θ

∂2

∂φ2
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂

∂θ

]
(538)

Exercise: Derive this expression starting from ∇2 = ∂2

∂2
x

+ ∂2

∂2
y

+ ∂2

∂2
z
.

Let us try to find solutions to Laplace’s equation of the form

V (r, θ, ϕ) = R(r) Θ(θ) Φ(ϕ) . (539)

Substituting this back into Laplace’s equation and multiplying through by r2/(RΘΦ) we arrive at

− 1

R

d

dr

[
r2dR

dr

]
=

1

sin2 θ

1

Φ

d2Φ

dφ2
+

1

sin θ

1

Θ

d

dθ

[
sin θ

dΘ

dθ

]
. (540)

The LHS depends only on r whereas the RHS depends only on θ and φ. Hence they both must be
constant

1

R

d

dr

[
r2dR

dr

]
= const = l(l + 1),

(541)

1

sin2 θ

1

Φ

d2Φ

dφ2
+

1

sin θ

1

Θ

d

dθ

[
sin θ

dΘ

dθ

]
= −l(l + 1). (542)

Multiplying by sin2 θ we can bring the second equation to the form

− 1

Φ

d2Φ

dφ2
=

sin θ

Θ

d

dθ

[
sin θ

dΘ

dθ

]
+ l(l + 1) sin2 θ. (543)

Now the LHS depends only on φ and the RHS only on θ, so they must be equation to the same
constant which we denote by m2

1

Φ

d2Φ

dφ2
= −m2,

(544)

sin θ

Θ

d

dθ

[
sin θ

dΘ

dθ

]
+ l(l + 1) sin2 θ −m2 = 0.

(545)

Through separation of variables we have replaced Laplace’s equation by three ODEs which are
coupled through l and m. Let us now solve the ODEs. Equations (541) and (544) are solved by
inspection

Rl(r) = al rl +
al

rl+1
, (546)

Φm(φ) = Cmeimφ + Dme−imφ. (547)

As φ is an angular variable we must have Φ(φ + 2π) = Φ(φ), which forces m to be an integer. For
m = 0 we have

Φ0(φ) = C0 + D0φ. (548)

Partial Differential Equations 86

This leaves us with (545). Changing variables to x = cos θ, −1 ≤ x ≤ 1, we find that Θ fulfils the
associated Legendre equation

d

dx

[
(1− x2)

dΘ

dx

]
+

[
l(l + 1)− m2

1− x2

]
Θ(x) = 0.

(549)

Non-singular (at x = ±1) solutions exist only for integer l ≥ 0 and |m| ≤ l. This is precisely the case
we considered previously in the ODE section. The solutions are the associated Legendre polynomials
Pm

l (x). The general solution to Laplace’s equation in spherical polar coordinates that is non-singular
at θ = 0,π is therefore

V (r, θ, φ) =
∞∑

l=0

Rl(r)
l∑

m=0

Φm(φ) Pm
l (cos θ).

(550)

Let us now return to our problem of a earthed sphere in an electric field. As nothing in our
problem depends on φ we must have Φ(φ) = const. This fixes the coefficients Cm, Dm to be

Dm = Cm = 0 , m = 1, 2, . . . , D0 = 0. (551)

Recalling that for m = 0 the associated Legendre polynomials reduce to the Legendre polynomials
P 0

l (θ) = Pl(θ), we conclude that

V (r, θ) =
∞∑

l=0

[
alr

l +
bl

rl+1

]
Pl(cos(θ)) , (552)

where Pl are Legendre polynomials. Let us now calculate

∫ π

0

dθ sin(θ) V (r, θ) Pk(cos(θ) =
∞∑

l=0

[
alr

l +
bl

rl+1

] ∫ 1

−1

dx Pl(x) Pk(x),

=
2

2k + 1

[
akr

k +
bk

rk+1

]
. (553)

Here we have used the orthogonality relation for Legendre polynomials (439) to carry out the x-
integral. On the other hand, for r →∞ we have by virtue of the boundary conditions (536)

∫ π

0

dθ sin(θ) V (r →∞, θ) Pk(cos(θ) = −Er

∫ π

0

dθ sin(θ) cos(θ) Pk(cos(θ)

= −Er

∫ 1

−1

dx P1(x) Pk(x)

= −2

3
Erδk,1. (554)

Here we have used that
P1(cos(θ)) = cos(θ). (555)

Comparing equation (554) to (553) for r →∞ we conclude that

an = −E0δn,1 . (556)
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Similarly, by considering ∫ π

0

dθ sin(θ) V (r = a, θ) Pk(cos(θ) (557)

and then using the boundary conditions (537) we conclude that

bn = E0a
3 δn,1 . (558)

The solution to our electrostatics problem is thus

V (r, θ) = −Er

(
1− a3

r3

)
P1(cos(θ)). (559)

30.1 Spherical Harmonics

It is customary to combine the solutions to (544) and (545) to form the spherical harmonics. For
m ≥ 0 the latter are defined to be

Y m
l (θ,φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l + m)!
Pm

l (cos θ) eimφ. (560)

For m < 0 they are dfined via

Y −|m|
l (θ, φ) = (−1)m

(
Y |m|

l (θ, φ)
)∗

. (561)

Using the spherical harmonics we can write the angular part of our solution (550) as

l∑

m=0

Φm(φ)Pm
l (cos θ) =

l∑

m=−l

cmY m
l (θ,φ), (562)

where the cm are linear combinations of Cm and Dm. The spherical harmonics form an orthonormal
set of functions on the unit sphere (sphere of radius 1)

∫ 2π

0

dφ

∫ π

0

dθ sin θ
(
Y m′

l′ (θ,φ)
)∗

Y m
l (θ, φ) = δl,l′δm,m′ .

(563)

Furthermore, under very general conditions a function f(θ, φ) of two angular variables can be ex-
panded in terms of the spherical harmonics

f(θ, φ) =
∞∑

l=0

l∑

m=−l

flm Y m
l (θ,φ) ,

flm =

∫ 2π

0

dφ

∫ π

0

dθ sin θ
(
Y m′

l′ (θ,φ)
)∗

f(θ, φ). (564)
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31 Green’s Functions

So far we have considered only homogeneous PDEs. How to solve, e.g. Poisson’s equation

∇2Ψ = − ρ

ε0
? (565)

Let us assume that we are given a solution to

∇2G(r) = −δ(3)(r) = −δ(x)δ(y)δ(z). (566)

Then

Ψ(r) =
1

ε0

∫
d3r′ G(r− r′) ρ(r′) (567)

solves Poisson’s equation. G is called the Green’s function.
Proof:

∇2Ψ(r) =
1

ε0

∫
d3r′ ∇2

rG(r− r′) ρ(r′)

=
1

ε0

∫
d3r′ [−δ(3)(r− r′)] ρ(r′)

= −ρ(r)

ε0
. (568)

So far so good, but we still have to solve the equation (566) for the Green’s function. This is easily
done by Fourier transform:

1

(2π)3/2

∫
dx dy dz e−i(kxx+kyy+kzz) G(r) = g(k) ,

1

(2π)3/2

∫
d3k eik·r g(k) = G(r) . (569)

Fourier transforming both sides of (566) and using that the Fourier transform of d
dxG(r) is ikxg(k)

and so on we find

−(k2
x + k2

y + k2
z)g(k) =

1

(2π)3/2
. (570)

Here we have used that the Fourier transform of the three dimensional delta function is (2π)−3/2.
Hence

g(k) = − 1

(2π)3/2|k|2 . (571)

Employing the inverse Fourier transform we have

G(r) = − 1

(2π)3

∫
d3k

1

|k|2 eik·r. (572)

This integral is most conveniently done in polar coordinates (|k| = k)

G(r) = − 1

4π2

∫ ∞

0

dk

∫ π

0

dθ
k2 sin θ

k2
eikr cos θ

= − 1

4π2

∫ ∞

0

dk
2 sin(kr)

kr
=

1

2π2r

∫ ∞

0

dz
sin(z)

z
= − 1

4πr
. (573)
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The last integral is done by writing z = limε→0
1
2

[
1

z+iε + 1
z−iε

]
and then using the residue theorem.

We have found that the Green’s function of the Laplacian is equal to

G(r) = − 1

4π|r| .
(574)

This allows us to express the solution to Poisson’s equation as

Ψ(r) = − 1

4πε0

∫
d3r′

ρ(r′)

|r− r′| .
(575)


