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1 Path Integrals in Quantum Field Theory

In the solid-state physics part of the lecture you have seen how to formulate quantum me-
chanics (QM) in terms of path integrals. This has led to an intuitive picture of the transition
between classical and quantum physics. In this lecture notes I will show how to apply path
integrals to the quantization of field theories. We start the discussion by recalling the most
important feature of path integrals in QM.

1.1 QM Flashback

It has already been explained how QM can be formulated in terms of path integrals. One
important finding was that the matrix element between two position eigenstates is given by

t
(2,82, #) = (z]e= 1)) o / Dar exp <z / dt”ﬁ(x,x’)) | (1.1)
t/

Notice that here |z,t) = e'*|z)g and |2/, t') = ¥ |2') 5 are Heisenberg picture states.

We also learned in the lectures on interacting quantum fields that the central objects
to compute in quantum field theory (QFT) are vacuum expectation values (VEVs) of time-
ordered field-operator products such as the Feynman propagator

Dp (z —y) = (0[T¢(x)(y)[ 0) - (1.2)
In QM the analog of is simplyﬂ
(gt |T2(ty)T(te)] @iy ti) - (1.3)

'Tn this part of the lecture, we will use hats to distinguish operators from their classical counterparts which
appear in the path integral.



Focusing on the case t; > t5 and inserting complete sets of states we can write the latter
expression as

<*77f7 tf ’n%(tl)i’(b)l T, ti> _ <£L’f |€_iH(tf_t1)ise_iH(tl_tz)i’ge_iH(tQ_ti)

(1.4)

= /d:vldasg (xf ‘e_iH(tf_tl) |:U1)(xl|£ge_iH(t1_t2)|x2)(x2|£56_iH(t2_“)| T;) .

Using now that z|x) = x|z), replacing all three expectation values by (|1.1) and combining
the three path integrals with the integrations over x; and x5 into a single path integral the
result (1.4) simplifies further. One finds that

(g, ty [T (t)a(t)] 2, i) oc/Da:x(tl)x(tg) exp (z /: dtﬁ(x,:t)) . (1.5)

For t, > t; the same result holds, because time ordering is automatic in the path-integral
formulation. It should also be clear that results similar to (1.5) apply for a product of an
arbitrary number of operators . Furthermore, it can be shown that

lim (2t [T (E(t) . .. @(t))| 2 b)) o (0T (2(t1). .. & ()] 0). (1.6)
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Therefore one arrives at
0T (2(t1)...2(tn))] 0) x /Dx x(ty) ... x(ty) Sl , (1.7)

with S[z] the action functional.

1.2 Basics of QFT Path Integrals

In order to keep the following discussion as simple as possible we will focus on the real scalar
field ¢. An extension to more complicated theories would however be straightforward. As we
saw the Green’s functions of the form

G (z1,...,2n) = (0|T (¢(z1) ... (24))]0), (1.8)
play an important role in QFT. In analogy to (1.7]) these objects can be written as

G (zy, . zm) = N/m) S(t1) . B(t) 5 (1.9)

where N is a normalization constant.
Like in QM, we introduce the generating functional

WlJ] = N/m exp {z /d4x [L(¢,0,0) + J(x)gb(a:)]} , (1.10)



for the Green’s functions such that

(n) _ i O"WJ] 111
G @) = S S T Y (1.11)

The value of NV is fixed by requiring that
WJ]|,_, = WI[0] = (0]0) = 1. (1.12)

Recalling that in QM a second generating functional called Z[J] has been introduced, we
also define

Z[J] = —ilnW/[J]. (1.13)
By apply n functional differentiations to Z[.J] we get another type of Green’s functionﬂ

VAN
0J(z1)...00(zn) | ;g

G (xy,...,x,) = (1.14)

which correspond to connected Feynman diagrams, so that it makes sense to call Z[J] the
generating functional for connected Green’s functions. Notice that all information on the

QFT is now encoded in the generating functionals, which are hence the primary objects to
calculate. We will do this below for the simplest case of a free real scalar field.

1.3 Generating Functionals For Free Real Scalar

For the purpose of explicit calculations it turns out to be useful to introduce a Fuclidean
or Wick-rotated version Wg[J] of the generating functional. To do this we define Euclidean
4-vectors T = (Zo, &) = (izg, x), associated derivatives 9" = 9/0z,, and an Euclidean version
of the Lagrangian, Lg = Lg(¢,,6). To give an example,

1

L= (00— 5m*6 = Ly = —3 (3,0 — w6, (1.15)

Starting from ((1.10]) it is easy to see that the Euclidean version of W[J] is

WalJ] = N / Do exp {1 / 4z [Co(6,8,6) + J(@)d(@)] } | (1.16)
The corresponding Euclidean Green’s function are then obtained by
(n) /- Z_nénWE[J] 11
L) = . A7
G (@) = 7 S | (L17)
We now want to derive W[J] for the real Klein-Gordon theory. We start by writing
[z @o@)@ o) = [drdgow) @086 - po@) . (119

2Realize that these Green’s functions are the ones we meet already in (1.65) and (1.66) of the script
“Interacting Quantum Fields”.



It follows that
Weld| = [Doep{ -} [dadgomamaom + [das@om}. 9

with o

A(y,z) = (040" + m?) W (z — 7). (1.20)
This is a Gaussian path integral with a source J of precisely the type you have discussed in
the QM context in the solid-state part of this lecture.

Given this analogy we perform a variable transformation to find an explicit expression
for ((1.19). Skipping over the details of the actual calculation, one obtains

W[ J] :Nexp{%/d4fd4y J(g)D?(g—f)J(f)} : (1.21)
with

DE(y—7) = ANy — 1), (1.22)

and N an appropriate normalization.
Fine, but how do we calculate the inverse of the operator A? The idea is to use Fourier
transformations and then to go back to Minkowski space. We first recall that

o D iy
oWz —7) = / Tk p(E=) (1.23)
which we use to write
_ d*p NV
A(,z) = (040 + m?) 6W(z — y) = / (275;1 (p* +m?) eV, (1.24)

Now we invert A by taking the inverse inside the Fourier transformation, i.e.,

(s - E(- _ = d'p 1 ey
A" (g—z)=Dg(y—=z) = Wﬁ2+m26 . (1.25)

To go to Minkowski space we introduce p = (pg, p) = (ipo, p). Putting things together one
finds for the generating functional in Minkowski space

W{J| = exp {—% /d4xd4y J(y)Dp(y — x)J(x)} : (1.26)
where .
D)= | <§7£4 e (1:27)

is our Feynman propagator. Notice that we have chosen N' = 1 so that holds.

From we can now derive Green’s functions effortless. FE.g., for the 2-point function
we get from
W 1J]

) = e

) = DF(x — y) , (1.28)
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which agrees with the result that we got using canonical quantization.

From ((1.13) and ([1.26])) we also find

l

7 =5

/d4xd4y J(y)Dp(y — x)J(z), (1.29)

for the generating functional Z[J] of connected Green’s functions. It is important to bear in
mind that the results ((1.26) and ([1.29)) hold for the free field theory only.

1.4 Effective Action

Path integrals also provide an intuitive picture for the transition between classical and quantum
physics. In order to illustrate this property we define the classical field ¢. by

Ge(z) = gf([ﬁ : (1.30)
We have R
bolz) = %(x) (il W[J]) = —Wim (;ZV([;)] _ <O‘fé’f)>>?>J | (1.31)
Here we have defined VEVs in the presence of J as follows
o0y =W, 01600 =~ 5. (132)

The final result for ¢. shows that the classical field is the suitably normalized VEV of the field
operator (;3, which from a physical standpoint sounds quite reasonable. Recall also that W[J] =
exp (1Z]J]) which suggest that the generating functional of connected Green’s functions is
something like the action in our path integrals [Dé¢ ... ¢3¢l This suggest that Z[.J] is some
sort of effective action.

To remove the effect of the source term that is present in Z[.J] we use a Legendre transform.
We define the effective action as

Mo = 210) - [d's J(w)o.(a). (1.3
In fact, with this definition one has

5F[¢C] = 6Z[J] - A 5J(I) Tr) = — e @ (r — ) =
5J(y)  0J(y) /d 57() Pe(r) = Pe(y) /d 6 (x —y)ge(x) =0, (1.34)

so ['[¢.] is independent of the source J.




To further see that the definition ((1.33)) is meaningful, let us discuss the free field case. We
begin by deriving an explicit expression for the classic field:

00) = 57055 [ s T Doy =272
= % {/d4yd4z [6W(z —y) Dp(y — 2)J(2) + 6W(z — 2) Dp(y — 2)J(y)] } (1.35)
= i/d4y Dr(z —y)J(y) .
Since
(O, + m?) Dp(x —y) = —i6W(z —y), (1.36)
we arrive at
(Ox +m?) ¢elw) = J(x), (1.37)

which means that ¢.(z) is a solution to the Klein-Gordon equation with source J(z). This is
exactly what one would expect for a classical field coupled to J. Furthermore, inserting (|1.29))
and (1.35)) into the effective action (1.33)) it follows that

T[g] = % / dzdy J(2)De(x — y)J(y) — / 'z J(2)u(2)
== /d4$ de(z)J(x) = —% /d4x ¢e(x) (O, + m?) ¢e(x) (1.38)

_ / i B (0,80(2))? — %m%ﬁ(x)] ,

where in the last step we have used integration by parts. In the free field case the effective
action hence coincides with the classic action of the real scalar field.

For interacting theories, the generating functional can typically not be calculated exactly.
Yet, one can evaluate the path integral in the saddle point approximation. The solu-
tion ¢ to the classical equations of motions (EOMs) is determined from

3S[9] 68
op(x) b=do - 0o(x)

Then to leading order in the saddle point approximation one has

6] = —J (@) (1.39)

WJ] = N exp |:iS[¢0] + i/d4x J(x)qﬁo(x)} ,

(1.40)
Z|J) = S[¢o] + / d*z J(z)¢o() .
Comparing these results to and it is readily seen that
Pe(w) = do(x),  Tlee] = Sgo].- (1.41)



Hence to lowest order the effective action I'[¢.] is simply the classic action S[¢pg]. Beyond the
leading order the effective action will however receive quantum corrections and as a result one
has generically I'[¢.] # S[¢o].

Let me add that the above formalism allows one to shed some light on a point that we
glossed over in our discussion of spontaneous symmetry breaking in Section 1.4 of the script
“Classical Field Theory”. In this discussion we only talked about classic theories. However,
one should ask whether the same or similar results would be obtained in the corresponding
quantum theories. In fact, as it turns out spontaneous symmetry breaking should be analyzed
with the effective action I'[¢.] (or more precisely the effective potential) rather than the classic
action S[¢go]. If this is done, one can convince oneself that our discussion based on the classic
theory makes sense even in the quantum theory. Yet, the classical analysis has to be viewed as a
leading-order approximation. Since in weakly-coupled theory quantum corrections are always
suppressed, the classic analysis of spontaneous symmetry breaking is therefore typically a good
approximation to the full story.

1.5 Feynman Integrals from Path Integrals

In order to develop perturbation theory the path integral formalism, we split the Lagrangian
as

L=Ly+ Lint , (1.42)
where L is the Lagrangian of the free theory, while £, contains all interactions. FE.g., in
the case of ¢* theory one has Ly, = —\/4! ¢*. The generating functional associated to L is

called Wy[J], while we will denote the full generating functional by W[J]. Explicitly, one has

Wol[J] = Ny / Do exp [2 / d*z (Lo + J(:C)¢(x))} ,

(1.43)
W[J] =N / D¢ exp [7, / d*z (Lo + Ling + J(x)qﬁ(m))} :
It follows that we can write W/[.J] as
W[J] = N exp [z / d*x Ling (—i %@:))} Wo[J]
. (1.44)
—N |1+ ; % /d4x1 o d Ty Ling (—i fol)> o Lint (—z’ ﬁ)] WolJ].
o N1 =exp [2 /d% Lint <—z' %)] WolJ) o (1.45)

to ensure that ((1.12)) is satisfied. The result (|1.44]) shows that W[J] is a perturbative series in
terms of Wy[J]. But from (1.26) we know that

WolJ] = exp {—% / diz by J () Dr(y — :r;),](a:)} , (1.46)
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so in fact all functional derivatives can be carried out explicitly and lead to Feynman diagrams.
It is straightforward to see that the Green’s functions ((1.11)) can be written as

) ) = "
(n) . v 4 4
g (xl,...,xn)—./\/'éj(xl)...5J<mn) 1+m5_1m!/d yi...dyn,
- (1.47)
.0 R
<o (i) o () 0

While this result looks kind of horrible it can in fact be worked out order by order in pertur-
bation theory using Wick’s theorem. This results in a sum over products of propagators Dp
(suitably integrated) and each term can be associated to a Feynman graph. This is exactly
what we have obtained before using canonical quantization, so the two approaches give at the
end the same result. The path integral formalism is however more elegant.

1.6 A Simple Application

To become more familiar with the path integral formalism in QFT it seems worthwhile to
consider a simple but educated example. In the following we will study a theory with a
massless real scalar field described by the classic Lagrangian

1 s A 3
L=3 (0u0)” — ETRE (1.48)
Remember that the dimension of the coupling A is [A\] = 1.

In this case, Wy[J] is given by (1.46) employing the massless Feynman propagator of a
scalar field. The full generating functional takes the following form

WI[J] = Nexp [—i /d4a: % (—i %@)ﬂ Wo[J]

5 (i) |

where V' and P count the number of vertices and propagators.

In order to evaluate this expression we can use the tools of Feynman diagrams. First, we
determine the number of surviving sources which is equal to the number of external legs L of
the graph. Since each propagator connects two points (external or internal) and our scalar
theory has only 3-point vertices, the number of external legs is given in terms of V' and
P by the simple formula

L=2P-3V. (1.50)



So instead of using V' and P to order the perturbative series, we can also use V' and L, and
this is what we will do below.
For instance, let us consider V = L = 1. In this case we have

“— — _% /d4xd4y J(x)Dp(x —y)Dr(y —vy), (1.51)

where the dot in the diagram denotes a vertex while the cross indicates a source. The factor
of 2 appearing in the denominator is the symmetry factor of the diagram (the ends of the line
meeting at y can be interchanged without altering the result).

In the case of V =2 and L = 0, we get on the other hand

2
= s d*zd*y Di(x —vy), (1.52)
h 12
and
)\2
-2 /d4xd4y Dp(z — 2)Di(z —y)Di(y—y).  (1.53)
z Y

The value of the symmetry factor is in the first case S = 2-3! = 12, where the factor of 2 arises

from the exchange of  with y and the factor 3! stems from the possible ways to interchange

the lines joining x and y. In the second case similar arguments lead to S =2-2-2 = 8.
Dropping the multiplicative overall factors it is also easy to give a pictorial representation

of the generating functional Z[J] as defined in (1.13]). One has

7] = x——x 4 e O(\°)

X—Q + Y + O(\)
@ + Q—Q o D oY)



Notice that I have ordered the individual diagrams in the perturbative series of Z[J] corre-
sponding to their number of external legs and powers of A (or equivalent number of vertices).

Let us now try to calculate the classic field ¢, as defined in ((1.30). Up to and including
terms of order \?, we get

de(x) = i/d4y Dp(x —y)J(y) + )\ZQ /d4yd4zd4u Dr(z — y)D3(y — 2)Dp(z — u)J (u)

(1.55)
- —x + -—<:::>»x,
xr Yy Ty zZ u

where the black square indicates the position z of the classic field ¢.(z). The factor of 1/4 in
the O(\?) term arises again from the symmetry factor of the associated graph.
We now compute Oo.(z). Recalling that Dy fulfils the Klein-Gordon equation (1.36]), we

obtain

Ooula) = @)~ 5 [ayDha ~ p)Dr(y 002, (1.56)
meaning that .
Ja) =Douls) + - [d'yDba —9)Drly - 2)J). (1.57)
We solve this equation recursively by making the ansatz
We get
Jo(x) = O (), (1.59)
and
Biz) = § [d'yd's Dita = p)Dely - )0.6()
= i /d4yd4z Di(z —y) (O.Dr(y — 2)) de(2) (1.60)

:i/&mﬁu—w%@)

To obtain the final result we have employed integration by parts twice, then used that Dp
satisfies the Klein-Gordon equation with delta function source, which in turn allowed us to

integrate over z. Combining ((1.59) and (1.60)), it follows that

2

Jw) =Ooa) + 5 [ty D= )o.ty). (161)
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We now move our attention to the effective action ((1.33). At O(A\°) one finds in terms of
Jo(x) = O¢(x) the following expression

ofgd = 5 [ ded'y Do) Dele - 1)06.(5) ~ [ d' Qoula) 6.la) .

4 1 2
— [ (B0n(@)"

Here I have again used integration by parts and the fact that Dp is a Green’s function of the
Klein-Gordon equation. This result looks quite familiar. In fact, we have already derived it
in . It is the kinetic term of the classic action. There is of course no mass term, because
we have set m = 0 by hand in the classic theory .

By inserting into the definition (1.33)), one can also show that the O(X) part of the
effective action takes the form

rilod = [t |50k - 5 De0)0u(o)] (1.63)

The term —\/3! ¢? is again part of the classic action or Lagrangian ((1.48). But the term

— S Dr(0)6u(2) = , (164

is a new contribution that arises from quantum corrections. These so-called tadpole contribu-
tions can be removed (by a proper renormalization) and therefore not affect physical processes.
So let’s forget about them and press on.

At O(\?) one gets a contribution to I'[¢.] from the graph

@ : (1.65)

i.e., the third diagram in the second line of Z[J] as given in (1.54) as well as a similar
contribution from — [d*z J(z)¢.(x). Using the expansion (1.61)) of the source .J, one finds

after some algebra

ol = [t |- outo) [aty D2 - o) - -—O—- (1.66)

This is an interesting result. Since is bilinear in ¢, the O(A?) term of the effective
action corresponds to a loop-induced mass term for the classic field. So our scalar field will
get a mass from radiative corrections even if we start with m = 0.

The general lesson to learn here is that if there is no symmetry that forbids a specific term
in the Lagrangian, one better includes it in the theory. If one does not do this, one will always
get it back in the quantum theory.
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