M.Phys Option in Theoretical Physics: C6. Revision Problem Sheet, Quantum Field Theory

1.) (Field theories with global $S O(n)$ symmetry)
a) The group $S O(n)$ consists of the real $n \times n$ matrices R satisfying $R^{T} R=\mathbf{1}_{n}$ and $\operatorname{det}(R)=1$. Consider infinitesimal transformations of the form $R=\mathbf{1}_{n}+i T$ and determine the allowed matrices T, i.e. the Lie algebra of $S O(n)$. Show that the matrices $T_{a b}$, labelled by an antisymmetric pair of indices a, b and defined as $\left(T_{a b}\right)_{c}{ }^{d}=i\left(\delta_{a c} \delta_{b}^{d}-\delta_{a}^{d} \delta_{b c}\right)$ (where $a, b, c, \ldots=1, \ldots, n$) provide a basis for the Lie algebra. What is the dimension of this algebra?
b) A set of n scalar fields $\phi_{a}(x)$, where $a=1, \ldots, n$, has a Lagrangian density $\mathcal{L}=$ $\frac{1}{2} \sum_{a=1}^{n} \partial_{\mu} \phi_{a} \partial^{\mu} \phi_{a}-V$ with scalar potential $V=\frac{1}{2} m^{2} \sum_{a=1}^{n} \phi_{a}^{2}+\frac{\lambda}{4}\left(\sum_{a=1}^{n} \phi_{a}^{2}\right)^{2}$. Show that this Lagrangian density is invariant under $S O(n)$.
c) Compute the Noether currents of this $S O(n)$ symmetry.
d) For $m^{2}<0$ and $\lambda>0$ find the minima of the scalar potential and show that the $S O(n)$ symmetry is broken to $S O(n-1)$. What is the number of Goldstone modes?

2.) ($S U(3)$ gauge symmetry with spontaneous symmetry breaking)

The Lie group $S U(3)$ is defined as the set of complex 3×3 matrices U satisfying $U^{\dagger} U=\mathbf{1}_{3}$ and $\operatorname{det}(U)=1$.
a) Show that the Lie algebra of $S U(3)$ consists of all hermitian 3×3 matrices with vanishing trace.
b) Write down a basis t^{a} for the Lie algebra of $S U(3)$ which contains the matrices $(i=1,2,3)$

$$
t^{i}=\left(\begin{array}{cc}
\tau^{i} & 0 \\
0 & 0
\end{array}\right)
$$

where $\tau^{i} \equiv \sigma_{i} / 2$ with σ^{i} the usual Pauli matrices. What is the dimension of this $S U(3)$ Lie algebra?
c) Consider now an $S U(3)$ gauge theory with a scalar field ϕ in the adjoint representation. The covariant derivative of ϕ takes the form

$$
D_{\mu} \phi_{a}=\partial_{\mu} \phi_{a}+g f_{a b c} A_{\mu}^{b} \phi_{c}
$$

where A_{μ}^{a} denote the $S U(3)$ gauge fields and $f_{a b c}$ are the corresponding fully antisymmetric structure constants, i.e. $\left[t^{a}, t^{b}\right]=i f^{a b c} t^{c}$. Which term in the Lagrangian give rise to the masses of the gauge fields?
d) The mass term can be written more clearly by defining the quantity $\Phi \equiv \phi_{a} t^{a}$. Use this notation together with the definition of the $S U(3)$ structure constants to write the mass term as

$$
\mathcal{L} \supset-g^{2} \operatorname{tr}\left(\left[t^{a}, \Phi\right]\left[t^{b}, \Phi\right]\right) A_{\mu}^{a} A^{b \mu}
$$

e) Now let Φ acquire a vacuum expectation value (VEV). Consider the following two possibilities:

$$
\langle\Phi\rangle=v\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right), \quad\langle\Phi\rangle=v\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Give the symmetry-breaking pattern induced by these VEVs and calculate the mass spectrum of the gauge bosons for both cases.

3.) (Interacting scalar field theory)

Two real scalar fields ϕ_{1} and ϕ_{2} with masses $m_{1}^{2}>0$ and $m_{2}^{2}>0$ transform as $\phi_{1} \rightarrow-\phi_{1}$ and $\phi_{2} \rightarrow \phi_{2}$ under a \mathbb{Z}_{2} symmetry.
a) Write down the most general \mathbb{Z}_{2} invariant Lagrangian (with standard kinetic terms and up to quartic terms in the fields) for ϕ_{1} and ϕ_{2}.
b) Derive the Feynman rules for the vertices in this theory by computing the appropriate Green's functions.
c) Based on the results in b) and assuming negligible masses m_{1} and m_{2}, find the amplitudes and differential cross sections for $\phi_{1} \phi_{1} \rightarrow \phi_{1} \phi_{1}$ and $\phi_{1} \phi_{1} \rightarrow \phi_{2} \phi_{2}$ scattering.

4.) (Scalar Yukawa theory)

The Lagrangian density of the scalar Yukawa theory is given by

$$
\mathcal{L}=\left(\partial_{\mu} \varphi\right)^{\dagger}\left(\partial^{\mu} \varphi\right)-M^{2} \varphi^{\dagger} \varphi+\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-g \varphi^{\dagger} \varphi \phi,
$$

where φ and ϕ is a complex and a real scalar, respectively. Assume that $g \ll M, m$.
a) The given Lagrangian density has an internal global symmetry. How does this symmetry act on the fields φ and ϕ ? Calculate the associated Noether current J^{μ} and Noether charge Q.
b) Quantise the free theory $(g=0)$ and show that the normal-ordered Noether charge : Q : can be written in the form : $Q:=N_{+}-N_{-}$, where $N_{ \pm}=\int d^{3} \tilde{p} a_{ \pm}^{\dagger}(p) a_{ \pm}(p)$ are the number operators of the "+" quanta (anti-nucleons, \bar{N}) and "-" quanta (nucleons, N) of the φ field.
c) Starting from the general result

$$
\begin{aligned}
\sigma\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)=\frac{1}{4 \sqrt{\left(p_{1} p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}} \int \prod_{i=1,2} & d^{3} \tilde{q}_{i}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-q_{1}-q_{2}\right) \\
& \times\left|\mathcal{M}\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)\right|^{2}
\end{aligned}
$$

evaluate the differential cross section for a generic $2 \rightarrow 2$ process. Work in the center-ofmass frame and assume for simplicity that the masses of all four external particles are equal to m. You should obtain

$$
\frac{d \sigma\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)}{d \Omega}=\frac{1}{64 \pi^{2} E_{\mathrm{CM}}^{2}}\left|\mathcal{M}\left(p_{1}, p_{2} \rightarrow q_{1}, q_{2}\right)\right|^{2},
$$

where $d \Omega=d \phi d \cos \theta$ with $\theta \in[-\pi, \pi]$ and $\phi \in\left[0,2 \pi\left[\right.\right.$, while E_{CM} denotes the total center-of-mass energy.
d) Draw the leading-order Feynman diagrams that describe the process $N \bar{N} \rightarrow M M$, where M denotes the quanta (mesons) of the ϕ field. Write down the matrix element $\mathcal{M}(N \bar{N} \rightarrow M M)$ using the momentum-space Feynman rules

with $\tilde{D}_{F}(p, M)=i /\left(p^{2}-M^{2}+i \epsilon\right)$ and $\tilde{D}_{F}(p, m)=i /\left(p^{2}-m^{2}+i \epsilon\right)$. Employ Mandelstam variables. Using the results of (c) derive the differential cross section for $N \bar{N} \rightarrow M M$ production in the limit $E_{\mathrm{CM}} \gg M, m$ with $m=M$. Consider only the leading term in the expansion in powers of $m^{2} / E_{\mathrm{CM}}^{2}$.

