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Question 1. Anharmonic Oscillator. Consider the anharmonic oscillator

H(λ) =
p̂2

2m
+
κ

2
x̂2 +

λ

4!
x̂4, (1)

where κ, λ > 0.
(a) Discuss how the partition function Zλ(β) can be represented as a path integral. What kinds of paths are
integrated over?
(b) What is the definition of the imaginary time Green’s function of the harmonic oscillator (λ = 0)? How can it
be expressed as a path integral (for 0 < τ < ~β)?
(c) Define a generating functional by

Wλ[J ] = N
∫
Dx(τ) e

{∫ ~β
0

dτ[− 1
2x(τ)D̂x(τ)+J(τ)x(τ)]+U

(
x(τ)
)}
, (2)

where
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)
= −1

~
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[
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4!
x4(τ)

]
, D̂ = −m

~
d2

dτ2
+
κ

~
. (3)

Show that the partition function is equal to
Zλ(β) = Wλ[0]. (4)

(d) Show that the generating functional can be expressed in the form

Wλ[J ] = exp

(
U
( δ

δJ(τ)

))
W0[J ]. (5)

(e) Draw the Feynman diagrams for the first and second order perturbative corrections in λ to the partition function.
Determine the first order corrections to the partition function.
(f) Determine the first order corrections to the two-point function

〈Tτ x̄(τ1)x̄(τ2)〉β . (6)

Draw the corresponding Feynman diagrams.

Question 2. The Hamiltonian for a one-dimensional ferromagnetic Ising model is

H = −J
L∑
n=1

SnSn+1 ,

where J > 0, Sn take the values −2,−1, 0, 1, 2, and where we have imposed periodic boundary conditions
SL+1 = S1. Write down the transfer matrix for this model. Give an exact express of the free energy per site
in terms of the transfer matrix eigenvalues (do not attempt to calculate the eigenvalues explicitly). How does the
answer simplify in the limit L→∞?

Derive an expression for the probability 〈δS1,1δS`,−1〉 that the spins at sites 1 and ` take the respective values
1 and −1 in terms of the transfer matrix eigenvalues λj and eigenvectors |j〉 (without calculating them).

Question 3. Consider the quantum spin-S chain

H = −
L∑
j=1

JxSxj S
x
j+1 + JySyj S

y
j+1 , (7)

where Jx, Jy > 0, SαL+1 = Sα1 and (
Sxj
)2

+
(
Syj
)2

+
(
Szj
)2

= S(S + 1). (8)

(a) What are the classical ground states of this model (take the spins to be classical vectors of length S)? Consider
the cases Jx 6= Jy and Jx = Jy separately.
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(b) Explain the idea of spontaneous symmetry breaking for the cases Jx > Jy and Jx = Jy in this model. Which
symmetries are broken?
(c) We now want to solve the model for Jx > Jy in the linear spinwave approximation. To that end, we first
carry out a rotation of spin quantization axis such that the classical ground state maps onto the ferromagnetic state,
where all spins point along the z-axis in spin space. Show that this transformation is of the form

S̃zj = Sxj , S̃yj = Syj , S̃xj = −Szj . (9)

Express the Hamiltonian in terms of the rotated spin operators.
Then use the Holstein-Primakoff representation

S̃zj = S − a†jaj , S̃+
j = S̃xj + iS̃yj =

√
2S − a†jaj aj , [aj , a

†
k] = δj,k , [aj , ak] = 0 (10)

to carry out an expansion of H in inverse powers of S. Ignore the constant contribution and keep only the terms
proportional to S. Give an explicit representation of the resulting Hamiltonian HLSW, in terms of creation and
annihilation operators in momentum space.
(d) What is a Bogoliubov transformation (BT), and what is its use? Diagonalize HLSW by means of a BT (you
may drop the constant contribution).

Question 4. A particle undergoes Brownian motion in one dimension. Its speed v(t) satises the Langevin
equation

dv(t)

dt
= −γv(t) + η(t), (11)

where η(t) is a Gaussian random variable, characterised by the averages

〈η(t)〉 = 0 , 〈η(t1)η(t2)〉 = Γ δ(t1 − t2). (12)

(a) Discuss the physical origin of each term in this equation.
(b) Show that, with initial condition v(0) = 0, the function

v0(t) =

∫ t

0

dt′ e−γ(t−t
′)η(t′) (13)

is a solution to the Langevin equation for t > 0.
(c) Evaluate

〈v0(t0)v0(t0 + t)〉 (14)

for t0 → ∞. Consider both cases t < 0 and t > 0. Explain how the result enables one to express Γ in terms of
temperature and other parameters characterising the system.
(d) In the presence of an additional force on the particle, the Langevin equation has the modified form

dv(t)

dt
= f − γv(t) + η(t). (15)

Show for constant f that the solution to this modified equation may be written in the form v(t) = v0(t) + u(t),
and find u(t).

Question 5. (a) Argue that the Landau free energy for a rotationally invariant system with a real,N -component
order parameter ~φ(r) = (φ1(r), φ2(r), . . . , φN (r)) is of the form

F =

∫
ddr

[
1

2
|∇~φ(r)|2 + α2

~φ(r) · ~φ(r) + α4

(
~φ(r) · ~φ(r)

)2]
. (16)

(b) What can you say about the values of α2 and α4?
(c) Discuss the different phases and the nature of the phase transitions between them.
(d) Are there gapless Goldstone modes in the ordered phase (justify your answer)?
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