M.Phys Option in Theoretical Physics: C6. Problem Sheet 7

1) A Green's function

$$\Delta(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ikx} \tilde{\Delta}(k) , \qquad (1)$$

of the Klein-Gordon equation is defined as a function satisfying $(\Box + m^2)\Delta(x) = -i\delta^{(4)}(x)$. **a)** Show that the Fourier transform $\tilde{\Delta}$ of Δ is given by $\tilde{\Delta}(k) = i/(k^2 - m^2)$.

b) Insert the result from **a)** into (1) and discuss the various paths in the complex k_0 plane in relation to the two poles at $k_0 = \pm \sqrt{\mathbf{k}^2 + m^2}$ which can be chosen to carry out the k_0 integral.

c) Perform the k_0 integral for the paths in b) and show that for one choice of path $\Delta(x) = 0$ whenever $x_0 > 0$ and for another choice $\Delta(x) = 0$ whenever $x_0 < 0$. Interpret the physical relevance of these two Green's functions, as solutions to the Klein-Gordon equation with a delta function source.

2) Consider a real, free scalar field ϕ with mass m, evaluate the following time-order product of field operators $\int d^4x \langle 0|T(\phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4)\phi(x)^4)|0\rangle$, using Wick's theorem and draw the associated Feynman diagrams. Focus on the part without loops, Fourier transform x_1, \ldots, x_4 to k_1, \ldots, k_4 and express the result in terms of momentum-space Feynman propagators.

3) Consider a complex, free scalar field φ . Apply Wick's theorem to $T(\varphi(x_1)\varphi^{\dagger}(x_2))$ and prove the so-obtained relation explicitly. Do the same for $T(\varphi(x_1)\varphi(x_2))$.

4) Consider the decay of a particle with mass M into two particles with mass m.
a) Use the general formulas (1.86) and (1.87) of the script "Interacting Quantum Fields" to show that

$$\Gamma = \frac{1}{16\pi M} \sqrt{1 - \left(\frac{2m}{M}\right)^2 |\mathcal{A}|^2}$$

if the matrix element \mathcal{A} describes a isotropic decay.

b) Two particle species A_1 and A_2 with masses m_1 and m_2 scatter in a process of the type $A_1 + A_2 \rightarrow A_1 + A_2$. For incoming momenta k_1 , k_2 and outgoing momenta q_1 , q_2 define the Mandelstam variables s, t, u by $s = (k_1 + k_2)^2$, $t = (k_1 - q_1)^2$, and $u = (k_1 - q_2)^2$. Show that $s + t + u = 2m_1^2 + 2m_2^2$.

c) Set $m = m_1 = m_2$ for simplicity. In the centre of mass frame, express the Mandelstam variables in terms of the total centre-of-mass (CM) energy $E_{\rm CM}$ and the scattering angle θ (and the mass m).

d) Show that the matrix element \mathcal{A} for the scattering process in b) can always be written as a function of s and t.

5) A model with two real scalar fields ϕ_1 and ϕ_2 is described by the Lagrangian density $\mathcal{L} = \frac{1}{2} \left((\partial_\mu \phi_1)^2 + (\partial_\mu \phi_2)^2 - M^2 \phi_1^2 - m^2 \phi_2^2 - \mu \phi_1 \phi_2^2 \right).$

a) Derive the Feynman rule for the triplet vertex (*i.e.* the vertex involving one ϕ_1 and two ϕ_2 fields) in this theory by computing the appropriate *amputated* Green's function as defined in Section 1.6 of the script "Interacting Quantum Fields".

b) Assume that M > 2m and compute the rate Γ for the decay of a ϕ_1 particle into two ϕ_2 particles at leading order.

c) Compute the matrix element for scattering of two ϕ_2 particles into two ϕ_2 particles at leading order and express it in terms of Mandelstam variables.

d) Write the matrix element in c) in terms of the total CM energy $E_{\rm CM}$ and the scattering angle θ . Compute the differential cross section $(d\sigma/d\Omega)_{\rm CM}$ for the process in c), assuming, for simplicity, that $E_{\rm CM} \gg m$. Without derivation you can use (1.98) of the script "Interacting Quantum Fields".