M.Phys Option in Theoretical Physics: C6. Problem Sheet 5

1.) Consider the set $Sl(2,\mathbb{C})$ of complex 2×2 matrices with determinant one.

a) Show that this set forms a group.

b) Compute the Lie-algebra of this group, show that the dimension of this algebra is 6 and write down a basis of generators using the Pauli matrices.

c) By making an appropriate choice for the generators and computing their commutation relations, show that the Lie algebra of $Sl(2, \mathbb{C})$ is a representation of the Lorentz group Lie algebra.

d) As explained in the lecture, representations of the Lorentz group Lie algebra are classified by two spins (j_+, j_-) . Which pair of spins does the Lie algebra of $Sl(2, \mathbb{C})$ corresponds to and why?

2.) The Lagrangian density $\mathcal{L} = \mathcal{L}(\partial_{\mu}\phi_a(x), \phi_a(x))$ for a set of fields $\phi_a = \phi_a(x)$ is assumed to be invariant under the infinitesimal transformation

$$\phi_a \to \phi_a - it^i (T_i)_a{}^b \phi_b$$
,

where T_i are the generators of a Lie algebra with commutators $[T_i, T_j] = i f_{ij}^k T_k$ and t^i are the symmetry parameters.

a) Find the conserved currents $j_{i\mu}$ and the associated conserved charges Q_i for this symmetry.

3.) A model with a real scalar field σ and three other real scalar fields $\phi = (\phi_a)$ is specified by the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \phi_a \partial^{\mu} \phi_a \right) - V(\sigma, \phi) , \quad V = \frac{m^2}{2} (\sigma^2 + \phi^2) + \frac{\lambda}{4} (\sigma^2 + \phi^2)^2$$

a) Show that this Lagrangian is invariant under SO(4) acting on the four-dimensional vectors (σ, ϕ) .

b) Show that infinitesimal SO(4) transformations of the fields can be written as

$$\sigma \to \sigma + \beta \cdot \phi , \quad \phi \to \phi + \alpha \times \phi - \beta \sigma ,$$

for suitable defined small symmetry parameters α and β .

c) Find the six conserved currents and charges.

d) Analyze spontaneous breaking of the SO(4) symmetry in the case where $m^2 < 0$. In particular, find the vacua, determine the unbroken sub-group and the Goldstone modes. (Hint: For the two final tasks, choose a minimum of the potential for which $\phi = 0$ and $\sigma \neq 0$.)

4.) a) Derive the energy-momentum tensor $T^{\mu\nu}$ from the Lagrangian formulation of the free Maxwell theory, using the general procedure explained in the lecture. b) Given that $T^{\mu\nu}$ is conserved show that

$$\tilde{T}^{\mu\nu} = T^{\mu\nu} + \partial_o K^{\rho\mu\nu}$$

is still conserved provided the tensor $K^{\rho\mu\nu}$ is anti-symmetric in its first two indices. c) Choosing $K^{\rho\mu\nu} = F^{\mu\rho}A^{\nu}$ show that $\tilde{T}^{\mu\nu}$ is a symmetric tensor. d) Write down the conserved charges associated to $\tilde{T}^{\mu\nu}$ and (by writing them in terms of **E** and **B**) show that they yield the standard expressions of the electromagnetic energy and momentum densities.

5.) Consider a real scalar $\phi(t, x)$ field living on a two-dimensional space-time and defined on an interval $x \in [0, L]$ with *Dirichlet boundary conditions* $\phi(t, 0) = \phi(t, L) = 0$. a) Show that the (classical) positive- and negative-frequency solutions to the Klein-Gordon

equation that also satisfy the boundary conditions have the form

$$\phi_n^{(\pm)}(t,x) = \frac{1}{\sqrt{\omega_n L}} e^{\pm i\omega_n t} \sin(k_n x) .$$

Give the expression for k_n in terms of L. How is ω_n related to k_n ? b) Now quantise the field $\phi(t, x)$, keeping in mind that momentum is discrete

$$\phi(t,x) = \sum_{n=1}^{\infty} \left(\phi_n^{(-)}(t,x) a_n + \phi_n^{(+)}(t,x) a_n^{\dagger} \right) ,$$

with the annihilation/creation operators satisfying $[a_n, a_m] = [a_n^{\dagger}, a_m^{\dagger}] = 0$ and $[a_n, a_m^{\dagger}] = \delta_{mn}$. Compute the vacuum expectation value $\langle 0|\mathcal{H}|0\rangle$ of the Hamiltonian density

$$\mathcal{H} = \frac{1}{2} \left[\dot{\phi}^2 + (\partial_x \phi)^2 + m^2 \phi^2 \right]$$

Integrating your result over the interval [0, L] and show that the total vacuum energy is

$$E_0(L) = \frac{1}{2} \sum_{n=1}^{\infty} \omega_n \, .$$

c) Since this quantity is infinite, we need some form of regularisation in order to handle the divergence. Let us introduce an exponentially damping function $\exp(-\delta\omega_n)$ with $\delta > 0$ in the sum, and consider for simplicity the case of a massless field. Prove that in this case the vacuum energy can be written as

$$E_0(L,\delta) = \frac{\pi}{8L} \sinh^{-2}\left(\frac{\delta\pi}{2L}\right)$$

Take the limit $\delta \to 0$ and determine the vacuum energy for the case when no boundary conditions are imposed. With all this at hand calculate the *Casimir force*, that is, the attractive force associated to the mismatch between the vacuum energy of the unbounded space and that of the theory on the interval.