
M.Phys Option in Theoretical Physics: C6. Problem Sheet 2

Question 11. Consider a fermion ‘system’ with just one single-particle orbital, so that the only states of the
system are |0〉 (unoccupied) and |1〉 (occupied). Show that we can represent the operators a and a† by the matrices

a† =

(
0 0
C 0

)
, a =

(
0 C∗

0 0

)
.

You can do this by checking the values of aa, a†a† and a†a+ aa†. What values may the constant C take?

Question 12. A quantum-mechanical Hamiltonian for a system of an even number N of point unit masses
interacting by nearest-neighbour forces in one dimension is given by

H =
1

2

N∑
r=1

(
p2r + (qr+1 − qr)2

)
,

where the Hermitian operators qr, pr satisfy the commutation relations [qr, qs] = [pr, ps] = 0, [qr, ps] = iδrs, and
where qr+N = qr. New operators Qk, Pk are defined by

qr =
1√
N

∑
k

Qkeikr and pr =
1√
N

∑
k

Pke−ikr,

where k = 2πn/N with n = −N/2 + 1, . . . , 0, . . . , N/2.

Show that:

(a) Qk =
1√
N

N∑
s=1

qse
−iks and Pk = 1√

N

∑N
s=1 pse

iks

(b) [Qk, Pk′ ] = iδkk′

(c) H = 1
2

(∑
k PkP−k + ω2QkQ−k

)
, where ω2 = 2(1− cos k).

Similarly to the treatment of the simple harmonic oscillator in QM I we then define annihilation operators ak by

ak =
1

(2ωk)1/2
(ωkQk + iP−k).

Show that the Hermitian conjugate operators are

a†k =
1

(2ωk)1/2
(ωkQ−k − iPk),

and determine the canonical commutation relations for ak and a†p. Construct the Fock space of states and determine
the eigenstates and eigenvalues of H .

Question 13. Bosonic creation operators are defined through their action on basis states in the occupation
number representation as

c†l |n1n2 . . . 〉 =
√
nl + 1|n1n2 . . . nl + 1 . . . 〉 ,

a) Deduce from this how bosonic annihilation operators act.
b) Show that the creation and annihilation operators fulfil canonical commutation relations

[cl, cm] = 0 = [c†l , c
†
m] , [cl, c

†
m] = δl,m.

Question 14. Consider the N -particle interaction potential

V̂ =

N∑
i<j

V (r̂i, r̂j),

where V (r̂i, r̂j) = V (r̂j , r̂i). Show that in second quantization it is expressed as

V̂ =
1

2

∫
d3rd3r′ V (r, r′) c†(r)c†(r′)c(r′)c(r).
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To do so consider the action of V̂ on a basis of N -particle position eigenstates

|r1 . . . rN 〉 =
1√

N !n1!n2! . . .

∑
P

(±1)|P ||r1〉 ⊗ |r2〉 ⊗ |rN 〉 =
1√

n1!n2! . . .

N∏
j=1

c†(rj)|0〉 ,

where nj is the occupation number of the jth single-particle state. Argue that in an arbitrary basis of single-particle
eigenstates |l〉 V̂ can be expressed in the form

V̂ =
∑
ll′mm′

〈ll′|V̂ |mm′〉c†l c
†
l′cm′cm.

Question 15. Consider a system of fermions moving freely on a one-dimensional ring of length L, i.e. periodic
boundary conditions are applied between x = 0 and x = L. The fermions are all in the same spin state, so that
spin quantum numbers may be omitted. Fermion creation and annihilation operators at the point x are denoted by
ψ†(x) and ψ(x).
a) Write down the complete set of anticommutation relation satisfied by ψ†(x1) and ψ(x2).
b) Write down the wave-functions of single-particle momentum eigenstates (make sure to take the boundary con-
ditions into account!). What are the allowed values of momentum? Using this result, derive an expression for the
momentum space creation and annihilation operators Ψ†p and Ψp in terms of ψ†(x) and ψ(x) (hint: use the general
result for basis transformation obtained in the lecture notes).
c) Starting with your expression for the anticommutator {ψ†(x1), ψ(x2)}, evaluate {Ψ†p,Ψq}.
d) Derive an expression for ψ(x) in terms of Ψk.
e) The density operator ρ(x) is defined by ρ(x) = ψ†(x)ψ(x). The number operator is

N =

∫ L

0

dx ρ(x) .

Express ρ(x) in terms of Ψ†p and Ψq , and show from this that

N =
∑
k

Ψ†kΨk .

Let |0〉 be the vacuum state (containing no particles) and define |φ〉 by

|φ〉 = A
∏
k

(uk + vkΨ†k)|0〉,

where uk and vk are complex numbers depending on the label k, and A is a normalisation constant.
Evaluate (i) |A|2, (ii) 〈φ|N |φ〉, and (iii) 〈φ|N2|φ〉. Under what conditions is |φ〉 an eigenstate of particle

number?

Question 16. Consider a system of fermions in which the functions ϕ`(x), ` = 1, 2 . . . N , form a complete
orthonormal basis for single particle wavefunctions.
a) Explain how Slater determinants may be used to construct a complete orthonormal basis for n-particle states
with n = 2, 3 . . . N . Calculate the normalisation constant for such a Slater determinant at a general value of n.
How many independent n-particle states are there for each n?
b) Let C†` and C` be fermion creation and destruction operators which satisfy the usual anticommutation relations.
The quantities ak are defined by

ak =

N∑
`=1

Uk`C`,

where Uk` are elements of an N ×N matrix, U . Write down an expression for a†k. Find the condition which must
be satisfied by the matrix U in order that the operators a†k and ak also satisfy fermion anticommutation relations.
c) Non-interacting spinless fermions move in one dimension in an infinite square-well potential, with position
coordinate 0 ≤ x ≤ L. The normalised single particle energy eigenstates are

ϕ`(x) =

(
2

L

)1/2
sin

(
`πx

L

)
,
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and the corresponding fermion creation operator is C†` .
Write down expressions for C†(x), the fermion creation operator at the point x, and for ρ(x), the particle

density operator, in terms of C†` , C` and ϕ`(x).
d) What is the ground state expectation value 〈ρ(x)〉 in a system of n fermions?

In the limit n→∞, L→∞, taken at fixed average density ρ0 = n/L, show that

〈ρ(x)〉 = ρ0

[
1− sin 2πρ0x

2πρ0x

]
.

Sketch this function and comment briefly on its behaviour for x→ 0 and x→∞.

Question 17. A magnetic system consists of two types of Heisenberg spin SA and SB located respectively on
the two inter-penetrating sublattices of an NaCl crystal structure (i.e. a simple cubic structure with alternate A and
B in any Cartesian direction). Its Hamiltonian is

H = J
∑
i,j

SAi · SBj

where the i, j are nearest neighbours, respectively on theA andB sublattices. J is positive. Show that the classical
ground state has all the A spins ferromagnetically aligned in one direction and all the B spins ferromagnetically
aligned in the opposite direction. Assume the quantum mechanical ground state is well approximated by the
classical one. To a first approximation the spin operators are given in terms of boson operators a, b by

A sublattice B sublattice
Szi = SA − a†iai Szj = −SB + b†jbj
S+
i ≡ Sxi + iSyi ' (2SA)1/2ai S+

j ≡ Sxj + iSyj ' (2SB)1/2b†j
S−i ≡ Sxi − iSyi ' (2SA)1/2a†i S−j ≡ Sxj − iSyj ' (2SB)1/2bj

Discuss the validity of this approximation. Use these relations to express the Hamiltonian in terms of the boson
operators to quadratic order.

Transforming to crystal momentum space using (with N the number of sites on one sublattice)

ai = N−1/2
∑
k

e−ik·riak, bj = N−1/2
∑
k

eik·rj bk

show that your result can be expressed in the form

H = E0 +
∑
k

[
Aka

†
kak +Bkb

†
kbk + Ck(a†kb

†
k + bkak)

]
and determine the coefficients. Hence calculate the spectrum of excitations at low momenta. Consider both the
cases with SA = SB and SA 6= SB and comment on your results.

Question 18. Consider the ideal Fermi gas at finite density N/V in a periodic 3-dimensional box of length L.
(a) Give an expression of the ground state in terms of creation operators for momentum eigenstates.
(b) Calculate the single-particle Green’s function

Gστ (ω,q) =

∫
dt eiω(t−t

′)

∫
d3r e−iq·(r−r

′)Gστ (t, r; t′, r′) ,

Gστ (t, r; t′, r′) = −i〈GS|Tcσ(r, t) c†τ (r′, t′)|GS〉, (1)

where T denotes time-ordering (i.e. TO(t1)O(t2) = θ(t1− t2)O(t1)O(t2)− θ(t2− t1)O(t2)O(t1) for fermionic
operators), and

cσ(r, t) ≡ e i
~Htcσ(r)e−

i
~Ht.

First express the creation/annihilation operators c†σ(r, t), cσ(r, t) in terms of creation/annihilation operators in
momentum space c†σ(p, t), cσ(p, t). Then show that for annihilation operators in momentum space we have

cσ(p, t) ≡ e i
~Htcσ(p)e−

i
~Ht = cσ(p)e−

i
~ tε(p) ,
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where ε(p) = p2/2m− µ. Use this to show that

cσ(r, t) =
1

L3/2

∑
p

e−
i
~ tε(p)+ip·r cσ(p). (2)

Now insert (2) into (1) and evaluate the ground state expectation value to obtain an integral representation for
Gστ (t, r; t′, r′). Why does the Green’s function only depend on t− t′ and r− r′? Finally, calculate Gστ (ω,q).

Note: the imaginary part of the single-particle Green’s function is (approximately) measured by angle resolved
photoemission (ARPES) experiments.
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