
M.Phys Option in Theoretical Physics: C6. Problem Sheet 6

Qu 1. Consider a system of fermions moving freely in one dimension with coordinate x. Periodic boundary
conditions are applied between x = 0 and x = L, and the fermions are all in the same spin state so that spin
quantum numbers may be omitted. Fermion creation and annihilation operators at the point x are denoted by
ψ†(x) and ψ(x).

Write down the anticommutation relation satisfied by ψ†(x1) and ψ(x2).
A transformation to a basis of momentum eigenstates is defined by

Ψk =
1√
L

∫ L

0

dx e−ikxψ(x),

where k = 2πn/Lwith integer n. Write down the corresponding expression for Ψ†
k. Starting from your expression

for the anticommutator {ψ†(x1), ψ(x2)}, evaluate {Ψ†
p,Ψq}. Suggest with justification an expression for ψ(x) in

terms of Ψk.
The density operator ρ(x) is defined by ρ(x) = ψ†(x)ψ(x). The number operator is

N =

∫ L

0

dx ρ(x) .

Express ρ(x) in terms of Ψ†
p and Ψq , and show from this that

N =
∑
k

Ψ†
kΨk .

Let |0⟩ be the vacuum state (containing no particles) and define |ϕ⟩ by

|ϕ⟩ = A
∏
k

(uk + vkΨ
†
k)|0⟩,

where uk and vk are complex numbers depending on the label k, and A is a normalisation constant.
Evaluate

(a) |A|2

(b) ⟨ϕ|N |ϕ⟩

(c) ⟨ϕ|N2|ϕ⟩.

Under what conditions is |ϕ⟩ an eigenstate of particle number?

Qu 2. Consider a system of fermions in which the functions φℓ(x), ℓ = 1, 2 . . . N , form a complete orthonor-
mal basis for single particle wavefunctions. Explain how Slater determinants may be used to construct a complete
orthonormal basis for n-particle states with n = 2, 3 . . . N . Calculate the normalisation constant for such a Slater
determinant at a general value of n. How many independent n-particle states are there for each n?

LetC†
ℓ andCℓ be fermion creation and destruction operators which satisfy the usual anticommutation relations.

The quantities ak are defined by

ak =

N∑
ℓ=1

UkℓCℓ,

where Ukℓ are elements of an N ×N matrix, U . Write down an expression for a†k. Find the condition which must
be satisfied by the matrix U in order that the operators a†k and ak also satisfy fermion anticommutation relations.

Non-interacting spinless fermions move in one dimension in an infinite square-well potential, with position
coordinate 0 ≤ x ≤ L. The normalised single particle energy eigenstates are

φℓ(x) =

(
2

L

)1/2
sin

(
ℓπx

L

)
,

and the corresponding fermion creation operator is C†
ℓ .
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Write down expressions for C†(x), the fermion creation operator at the point x, and for ρ(x), the particle
density operator, in terms of C†

ℓ , Cℓ and φℓ(x). What is the ground state expectation value ⟨ρ(x)⟩ in a system of n
fermions?

In the limit n→ ∞, L→ ∞, taken at fixed average density ρ0 = n/L, show that

⟨ρ(x)⟩ = ρ0

[
1− sin 2πρ0x

2πρ0x

]
.

Sketch this function and comment briefly on its behaviour for x→ 0 and x→ ∞.

Qu 3. A quantum-mechanical Hamiltonian for a system of an even number N of point unit masses interacting
by nearest-neighbour forces in one dimension is given by

H =
1

2

N∑
r=1

(
p2r + (qr+1 − qr)

2
)
,

where the Hermitian operators qr, pr satisfy the commutation relations [qr, qs] = [pr, ps] = 0, [qr, ps] = iδrs, and
where qr+N = qr. New operators Qk, Pk are defined by

qr =
1√
N

∑
k

Qke
ikr and pr =

1√
N

∑
k

Pke
−ikr,

where k = 2πn/N with n = −N/2 + 1, . . . , 0, . . . , N/2.

Show that:

(a) Qk =
1√
N

N∑
s=1

qse
−iks and Pk = 1√

N

∑N
s=1 pse

iks

(b) [Qk, Pk′ ] = iδkk′

(c) H = 1
2

(∑
k PkP−k + ω2QkQ−k

)
, where ω2 = 2(1− cos k).

With ak defined by

ak =
1

(2ωk)1/2
(ωkQk + iP−k),

show that
a†k =

1

(2ωk)1/2
(ωkQ−k − iPk),

and hence obtain the spectrum of the elementary excitations of the system.

Qu 4. Consider the N -particle interaction potential

V̂ =
N∑
i<j

V (r̂i, r̂j),

where V (r̂i, r̂j) = V (r̂j , r̂i). Show that in second quantization it is expressed as

V̂ =
1

2

∫
d3rd3r′ V (r, r′) c†(r)c†(r′)c(r′)c(r).

To do so consider the action of V̂ on a basis of N -particle position eigenstates

|r1 . . . rN ⟩ = 1√
N !n1!n2! . . .

∑
P

(±1)|P ||r1⟩ ⊗ |r2⟩ ⊗ |rN ⟩ = 1√
n1!n2! . . .

N∏
j=1

c†(rj)|0⟩ ,

where nj is the occupation number of the jth single-particle state. Argue that in an arbitrary basis of single-particle
eigenstates |l⟩ V̂ can be expressed in the form

V̂ =
∑

ll′mm′

⟨ll′|V̂ |mm′⟩c†l c
†
l′cmcm′ .
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Qu 5. Consider a one dimensional fermion pairing model with Hamiltonian

H = −t
N∑
j=1

c†jcj+1 + c†j+1cj + γ
[
c†jc

†
j+1 + cj+1cj

]
,

where cj are fermionic annihilation operators at site j.
(a) Derive an expression for H in terms of a Fock space basis built from momentum eigenstates. Hint: use our

general formula for basis transformations to relate the creation operators

c†j =
∑
k

c†(k) ⟨k|j⟩ = 1√
L

∑
k

c†(k) e−ikj .

(b) Under what conditions do the operators α(k), α†(k) defined by(
α(k)
α†(−k)

)
=

(
u(k) v(k)
v∗(−k) u∗(−k)

)(
c(k)
c†(−k)

)
fulfil canonical anticommutation relations?

(c) Now consider the special Bogoliubov transformation(
c(k)
c†(−k)

)
.

(
cos θk i sin θk
i sin θk cos θk

)(
α(k)
α†(−k)

)
with θ−k = −θk to diagonalize the Hamiltonian. Show that the dispersion relation for the elementary excitations
is

ϵ(k) = −2t cos(k)
√

1 + γ2 tan2(k).

(d) Give an expression for the ground state of H .
(e) Derive an integral expression for the ground state expectation value

⟨c†jc
†
j+1⟩.

Qu 6. A magnetic system consists of two types of Heisenberg spin SA and SB located respectively on the two
inter-penetrating sublattices of an NaCl crystal structure (i.e. a simple cubic structure with alternate A and B in
any Cartesian direction). Its Hamiltonian is

H = J
∑
i,j

SA
i · SB

j

where the i, j are nearest neighbours, respectively on theA andB sublattices. J is positive. Show that the classical
ground state has all the A spins ferromagnetically aligned in one direction and all the B spins ferromagnetically
aligned in the opposite direction. Assume the classical ground state is a good first approximation in the quantum
case.

To a first approximation the spin operators are given in terms of boson operators a, b by

A sublattice B sublattice
Sz
i = SA − a†iai Sz

j = −SB + b†jbj
S+
i ≡ Sx

i + iSy
i ≃ (2SA)1/2ai S+

j ≡ Sx
j + iSy

j ≃ (2SB)1/2b†j
S−
i ≡ Sx

i − iSy
i ≃ (2SA)1/2a†i S−

j ≡ Sx
j − iSy

j ≃ (2SB)1/2bj

Discuss the validity of this approximation. Use these relations to express the Hamiltonian in terms of the boson
operators to quadratic order.

Transforming to crystal momentum space using (with N the number of sites on one sublattice)

ai = N−1/2
∑
k

e−ik·riak, bj = N−1/2
∑
k

eik·rj bk
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show that your result can be expressed in the form

H = E0 +
∑
k

[
Aka

†
kak +Bkb

†
kbk + Ck(a

†
kb

†
k + bkak)

]
and determine the coefficients. Hence calculate the spectrum of excitations at low momenta. Consider both the
cases with SA = SB and SA ̸= SB and comment on your results.

Qu 7.∗ Consider the ideal Fermi gas at finite density N/V in a periodic 3-dimensional box of length L.
(a) Give an expression of the ground state in terms of creation operators for momentum eigenstates.
(b) Calculate the single-particle Green’s function

Gστ (ω,q) =

∫
dt eiω(t−t′)

∫
d3r e−iq·(r−r′)Gστ (t, r; t

′, r′) ,

Gστ (t, r; t
′, r′) = −i⟨GS|Tcσ(r, t) c†τ (r′, t′)|GS⟩, (1)

where T denotes time-ordering (i.e. TO(t1)O(t2) = θ(t1− t2)O(t1)O(t2)− θ(t2− t1)O(t2)O(t1) for fermionic
operators), and

cσ(r, t) ≡ eiHtcσ(r)e
−iHt.

First express the creation/annihilation operators c†σ(r, t), cσ(r, t) in terms of creation/annihilation operators in
momentum space c†σ(p, t), cσ(p, t). Then show that for annihilation operators in momentum space we have

cσ(p, t) ≡ eiHtcσ(p)e
−iHt = cσ(p)e

−itϵ(p) ,

where ϵ(p) = p2/2m− µ. Use this to show that

cσ(r, t) =
1

L3/2

∑
p

e−itϵ(p)+ip·r cσ(p). (2)

Now insert (2) into (1) and evaluate the ground state expectation value to obtain an integral representation for
Gστ (t, r; t

′, r′). Why does the Green’s function only depend on t− t′ and r− r′? Finally, calculate Gστ (ω,q).

Note: the imaginary part of the single-particle Green’s function is (approximately) measured by angle resolved
photoemission (ARPES) experiments.
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