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1 Introduction

The main purpose of this project is to test the applicabilityof Stochastic Rota-
tion Dynamics (SRD) for the study of confined flows of suspended particles. Be-
cause SRD includes both Brownian and hydrodynamic forces, it is particularly
well suited for the study of dispersion phenomena. We therefore choose to test
it by simulating Taylor diffusion for colloidal particles.Taylor’s original argu-
ments assumed tracer particles, whereas if the size of the suspended particles is no
longer negligible compared to the size of the pores they are transported through,
there should be substantial corrections to Taylor’s predictions. In particular when
the channel becomes so narrow that particles cannot diffusepast each other – the
case of one-dimensional diffusion – we expect to find important differences. This
should have applications to flow in porous media.

Particle based methods like SRD have advantages over traditional continuum
methods because complex boundary conditions are much easier to implement. It
is therefore easier to simulate particle laden flows. Moreover, interactions between
the particles can be added in a straightforward manner, so that aggregation pro-
cesses under confined flow conditions can be studied. These have many potential
applications in industry (e.g. asphaltenes in heavy oils etc...). Such applications are
the longer term goals of my PhD, but first we must develop and test the method,
which is the goal of this CPGS report.

In §2 we review some basic fluid dynamics. In §3 we describe thecase of
two particles sedimenting in solution, and study what happens when Brownian
motion is added to the classic solution by Brenner[3]. §4 presents SRD and we
discuss our choice of simulation parameters. §5 gives an account of the effects
of walls on the self diffusion of colloidal particles. §6 explains Taylor diffusion
solutes and §7 shows the corrections to the dispersion introduced by finite size
of colloids, as demonstrated by Brenner & Edwards[18]. In §8we describe one-
dimensional diffusion and §9 gives an overview of an experiment carried out to
investigate laning at high Reynolds.

2 Basic Fluid Dynamics

We will begin by giving a brief overview of some basic fluid dynamics and show
how the main equations of motion are derived.

2.1 The Navier-Stokes Equations

Fluid flows are usually described by the velocityu = u(x; t) at any pointx and
time t. In Cartesian coordinates, the velocity field can be writtenin terms of the
componentsu, v andw

u= u(x;y;z; t); v= v(x;y;z; t); w= w(x;y;z; t): (1)
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It is often useful to view the flow as streamlines. These are defined as curves along
which the velocity is parallel to the local velocity at any given time.

The rate of change of any given quantity (sayf ) at a fixed point of the flow is
∂ f=∂t. In contrast, the rate of change off , as would be measured by an observed
moving with flow asD f=Dt and is given by

D f
Dt

= d
dt

f [x(t);y(t);z(t); t℄ (2)

wherex(t), y(t) andz(t) give the local velocity field

dx=dt = u; dy=dt = v ;dz=dt = w: (3)

Using the chain rule, (2) can be written as

D f
Dt

= ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

+ ∂ f
∂t

; (4)

such that
D f
Dt

= ∂ f
∂t

+ ∂ f
∂x

u+ ∂ f
∂y

v+ ∂ f
∂z

w: (5)

It follows that
D f
Dt

= ∂ f
∂t

+(u �∇)f: (6)

The operatorD=Dt is called the Lagrangian derivative and describes the rate of
change with time measured by an observed moving with the fluid. This should
be distinguished from the local Eulerian derivative∂ f=∂t which measures change
relative to a fixed position.

The principle of conservation of mass requires that the rateof change of a mass
of fluid contained within a certain volumeV must equal the outflow through its
boundaries∂V

d
dt

Z
V

ρdV =�Z
∂V

ρu �ndS (7)

wheredV anddSare the differential operators for volume and surface andn the
outward normal to the boundary. Applying the divergence theorem and the fact
thatV is fixed we obtain Z

V

∂ρ
∂t

dV =�Z
V

∇ � (ρu)dV: (8)

Equating the integrands yields the conservation of mass equation

∂ρ
∂t

+∇ � (ρu) = 0 (9)

or
Dρ
Dt

+ρ∇ �u = 0: (10)

5



When the density of the fluid particles does not change with time, the fluid is said
to be imcompressibe and∇ �u=0.

The stressτ is defined as the force per unit area acting across a surface offluid.
Balancing the forces on an infinitesimally small volume shows thatτ is linearly
related to the surface normaln by τ = σ �n whereσ is the stress tensor.

The rate of change of the momentum acting onV is due to the outflow of mo-
mentum through the boundary and to the forces acting on the surface (like pressure
or friction) and on the volume (like gravity)

d
dt

Z
V

ρudV =� Z
∂V
(ρu)u �ndS| {z }

momentum flux

+ Z
V

fdV| {z }
body forces

+ Z
∂V

σ �ndS| {z }
surface forces

: (11)

By using the divergence theorem again and equating the integrals, we arrive at

ρ
Du
Dt

+u
�

∂ρ
∂t

+∇ � (ρu)�= f +∇ �σ (12)

The second term is zero from the conservation of mass principle so the momentum
equation now reads

ρ
Du
Dt

= f +∇ �σ: (13)

The stress tensor is shown to be symmetric (σ = σT ) by applying the conservation
rule to angular momentum. We define the strain-rate tensore as the symmetric
part 1

2(∇u+ (∇u)T) of the velocity gradient. If the fluid is incompressible and
Newtonian1 then the stress tensor can be rearranged as

σ =�pI +2ηe (14)

wherep is the pressure,η the viscosity andI the identity matrix. Combining (14)
& (13) gives

ρ
Du
Dt

= �∇p+η∇2u+ f (15)

∇ �u = 0: (16)

where∇2 denotes the Laplace operator∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . These equations are know
as the Navier-Stokes equations and govern the motion of fluids. Due to their non
linearity, solutions to these equations are generally hardto find. Only in a few
special cases such as for the Stokes equations has this been done exactly.

1A Newtonian fluid is characterised by the fact that application of a shear stress produces a flow
with constant shear strain. This induced strain is proportional to the applied stress and the constant
of proportionalityη is the viscosity
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2.2 The Stokes Equations

Let U and L denote the characteristic speed and length scale of the flow.The
expression of the coordinates in terms of the dimensionlesscoordinates are

r = Lr̃ , u =U ũ (17)

where the tilde indicates a dimensionless quantity. It follows that

t = U
L

t̃ = Tt̃ , p= ηU
L

p̃= Pp̃ (18)

whereT andP indicate the scales for time and pressure. Scaling the derivatives
yields ∂

∂t = 1∂̃
T∂t and∇ = 1

L ∇̃. Upon substituting into the Navier-Stokes equations,
rearranging and dropping the tildes, we obtain

Re

�
∂u
∂t

+(u �∇)u�=�∇p+∇2u: (19)

We define

Re= ρUL
η

(20)

as the dimensionless Reynolds number. We can see that forRe� 1, the viscous
term ∇̃2ũ will dominate and forRe� 1, inertia ((ũ:∇̃)ũ) will be more important.
The Reynolds number is thus of particular importance as it can give a rough indi-
cation of the relative magnitude of two key terms in the Navier-Stokes equation[1].
The case of steady ’very viscous’ flow with very small Reynolds number (Re� 1),
involves the omission of the inertial terms compared to viscous terms resulting in
the so-called creeping motion equations or Stokes equations

∇ �σ = ∇2u� 1
η

∇p = �f

∇ �u = 0 (21)

wheref denotes the force applied on the fluid. As there is no longer a∂=∂t term in
the equation, the force is proportional to the velocity and not ∂u=∂t. The absence
of inertia means the fluid particles have no ’memory’. The flowis solely governed
by the current boundary conditions and applied forces and responds to changes in-
stantaneously. If all the forces were abruptly removed, thefluid would stop flowing
outright. The Stokes equations are linear too, so solutionsfor a given geometry can
be superimposed. Stokes flow is also said to be reversible. Itis so well ordered that
if all forces are reversed then the particles will retrace their paths exactly. For ex-
ample, this is the reason why particles sedimenting under Stokes flowcannotmove
relative to each other. If the spheres were flowing towards each other for instance
then all the forces were suddenly reversed, the spheres would sediment away from
each other, not describing the same motion.
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2.3 Extension to Flow Between Plates : Plane Poiseuille Flow

In real systems, the flow is often surrounded by boundaries that can affect the
motion. It is thus useful to have solution for such cases. Thesimplest example of
bounded flow is flow between parallel plates. If we assume flow in thex direction
only, the velocity is independent ofx and the Stokes equations reduce to the scalar
form

d2u
dy2 = ρg

η
: (22)

We have written the pressure difference asdp=dx= ρg whereρ is the fluid density
andg the applied field. A flow with this velocity distribution is know as a plane
Poiseuille flow.

It has been observed that viscous fluids have no-slip (stick)boundary condi-
tions. The components of the velocity field of the fluid must equal those of the
boundary. If the boundary is at rest thenu= 0 at the boundary. For parallel plates
separated by a distanceh= 2ap, the boundary conditions areu(0) = u(h) = 0. In-
tegrating the Stokes equations in two dimensions and implementing the boundary
conditions yields

u= ρg
2η

y(h�y): (23)

The average velocity across the plates is given by

ū= 1
2ap

Z ap

0
udy (24)

and can be rearranged in terms ofap andu such that

u= 3
2

ū

 
1� y2

a2
p

! : (25)

3 Particles in a Fluid Under Gravity: Sedimentation

If an isolated hard sphere of radiusa is dropped in a fluid, it accelerates under
gravity until the drag forceFs described by Stokes’ law balances the gravitational
force Fg and it attains terminal velocityUs, known as the Stokes velocity. Ifg is
the strength of the gravitational field and the spheres’ density differs from that of
the liquid by4ρ. Us is found by balancing the forces acting on the sphere

Fs = 6πηaUs

Fg = 4
3πa34ρg

�
Us = 2a24ρg

9η
:

Note that in two dimensions, balancing the forces acting on adisk yields

Fs = 6πηaUs

Fg = πa24ρg

�
Us = a4ρg

6η
:

The sedimenting sphere sets up a velocity fieldu in the fluid. The derivation ofu
consists of two steps. First we show an example of general solution to the Stokes’
equation and then an application of that solution to a sphere.
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3.1 Example of a General Solution to Stokes Equation

Papkovic & Neuber[4] derived an exact solution to the StokesEquations. Here is a
brief outline of their proof.

By rewriting the pressurep= ∇2Π in terms of a scalarΠ and substituting into
the Stokes equation we obtain∇2(ηu�∇Π)= 0. For reasons that will become
apparent later, we further introduce the harmonic vectorΦ such thatηu = ∇Π�Φ.
Substituting this expression for the velocity into the incompressibility equation, we
further obtain∇2Π= ∇�Φ. Integrating yieldsΠ= 1

2(x �Φ+χ) with ∇2χ = 0.
Thus in the absence of body forces, any Stokes flow can be written in terms of

a harmonic vectorΦ and a harmonic scalarχ

2ηu = ∇(χ+x �φ)�2Φ andp= ∇ �Φ:
It is sometimes possible to find a harmonic scalarφ such thatχ = u:∇φ�2φ. If so,
we can dispense withχ in the above equation by replacingΦ by Φ0= Φ + ∇φ (we
can do so becauseΦ0 is harmonic2). Any Stokes flow can thus be written in terms
of a harmonic vectorΦ and a harmonic scalarχ

2ηu = ∇(χ+x� Φ )�2 Φ and p= ∇�Φ.

3.2 Solution for a Sphere Under Stokes flow

Oseen then extended the problem to a sphere in a Stokes flow[2]. The field is
modelled by a point force acting on its centre. The problem iswritten as

∇ �σ � η∇2u�∇p=�fδ(x) (26)

∇ �u = 0: (27)

His derivation is as follows: We now assume the solution holds for a harmonic
function of the formΦ= αf=r. By substitutingΦ into the expression derived by
Papkovic & Neuber, we arrive at3

2ηu = �αf
r

�
I + xx

r2

� : (28)

Utilising (14) we also obtain the following expression for the stress

σ = 3α
xx(x:f)

r5 : (29)

On the surface of a hard sphere immersed in a viscous fluid,r = R, n = x=R and

u �n = �αf �n
ηR

andσ �n = 3α
n(n � f)

R2 : (30)

2Proof of this can be found in the appendix.
3Recall∇x = I , ∇r = x

r and∇ f (r) = f 0(r)∇r = f 0(r) x
r . Hence∇

� 1
r

� = � x
r3 and∇∇

� 1
r

� =� I
r3 +3xx

r5 .
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The force acting on the surface of the sphere is

f =�Z
r=R

σ �ndS=�3αf ��Z nn
dS

R2 = 4π
3

I
�

(31)

such thatα must satisfy the conditionα =�1=4π.
Using (28), the velocity field set up in the fluid by the sedimenting sphere now

reads

u = fJ(x) whereJ(x) = 1
8πηr

�
I + xx

r2

�
(32)

whereJ(x) is known as the Oseen tensor. When all the forces are balanced, Fs= Fg

the velocity field set up by the sphere reads

u = FsJ(x) = 3a
4r

Us

�
I + xx

r2

� : (33)

and decays as 1=r.

3.3 Effect of a Second Particle

We now wish to study the effect of a second sphere. We assume the particles
are close enough to interact hydrodynamically and that theyare sedimenting in
an unbounded fluid. To find a solution to this two particle problem, we use the
method of reflections. The method decomposes the velocity and pressure into a
sum of linear terms and uses successive iterations whereby each term must satisfy
the boundary conditions associated with the particles.

The method of reflections was first introduced by Smoluchowski(1911) and
was treated at length by Happel & Brenner for the case of sedimenting spheres[3].
The method is presented below.

The appropriate boundary conditions for any sphere (saya) translating through
an unbounded fluid which is at rest at infinity are

u = ua ona (34)

u ! 0 asr ! ∞ (35)

and the local fluid motion is assumed to satisfy the Stokes equations. Given that
the equations of motion and boundary conditions are linear,the local velocity and
pressure fields may be decomposed into a sum a fields, namely

u = u(1)+u(2)+u(3)+u(4)+ : : : (36)

p = p(1)+p(2)+p(3)+p(4)+ : : : (37)

each term of which separately satisfies the equations of motion and vanishes at
infinity. Again because of linearity we may further subdivide each of these into
a finite sum of terms also satisfying the the governing equations and vanishing at
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infinity. Focusing on particlea, we define the fieldu(1) such that it satisfies the
boundary conditions ona and decays as 1=r away froma i.e.

u(1) = ua ona: (38)

At the boundary of any other sphere in the system (sayb), the boundary condition
is then defined as

u(1)+u(2) = ub onb; (39)

termed as the ’reflection’ of the fieldu(1) from particleb, whereu(1) andu(2) are
the local values of the velocity fields. Nowu(2) will in turn decay as 1=r away from
b such that

u(3) =�u(2) ona; (40)

termed as the ’reflection’ of the fieldu(2) from particlea. In order to complete
the approximation for the entire fluid field it is necessary toestablishu(3) in the
vicinity of b also. An approximation of the field is now available for a system of
two spheres in an unbounded fluid, and is given byu = u(1)+u(3). This reflection
process may be continued as many times as necessary to obtainsatisfaction of all
boundary conditions to the desired accuracy. The forcefa exerted on the particle
by the fluid is then obtained by summing the drag contributions of the individual
fields such that

fa = f(1)a + f(3)a + f(5)a + : : : (41)

wheref(j)a is the force ona associated with thejth reflection. It is convenient to
choose an axis (thez axis say) of the reference system of coordinates along a line
connecting the centres of the two particles, and we will assume they only move in
a plane(zx). We denotel the distance separating the centre of the two spheres of
radii. We recall that the boundary conditions to be satisfiedare

u(1) = ua on a (42)

u(2) = �u(1)+ub on b (43)

u(3) = �u(2) on a (44)

u(4) = �u(3) on b; etc: (45)

The force exerted by the fluid ona is

f(1)a =�µKaua =�µKa(iUax+kUaz) (46)

which correctly indicates that it is anti parallel to the velocity vector. Note thatKa=
6πµa is the resistance coefficient for a hard sphere. We compute the translational
effect froma by assuming it generates the same field as would be produced bya
point force situated at the centre of the particle and so from(32) we can express
u(1) as

u(1) = KaUax
8πr

�
i + r

x
r2

�+ KaUaz
8πr

�
k + r

x
r2

�
(47)
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wherer is the distance measured from the centre ofa. The centre ofb has the
coordinatesx= 0, y= 0, z= l such that the value ofu(1) at this point is[u(1)℄b = Ka

8πl
(iUax+2kUaz) : (48)

From which we can compute the force exerted onb

f(2)b = �µKb(Ub� [u(1)℄b) (49)= �iµKb

�
Ubx� KaUax

8πl

��kµKb

�
Ubz� KaUaz

4πl

� :
Similarly we can compute the velocity field generated byf(2)b acting onb. Note that
in this case the coordinate system will be at the centre ofb such that[u(2)℄a = i

Kb
8πl

�
Ubx� KaUax

8πl

��k
Kb
4πl

�
Ubz� KaUaz

4πl

� : (50)

Using this result we can computef(3)a and find that

f(3)a = µKa[u(2)℄a (51)= i
µKbKa

8πl

�
Ubx� KaUax

8πl

��k
µKbKa

4πl

�
Ubz� KaUaz

4πl

� :
Similarly,

f(5)a = iµKa

�
Ka
8πl

��
Kb
8πl

�2�
Ubx� KaUax

8πl

�
(52)+ kµKa

�
Ka
4πl

��
Kb
4πl

�2�
Ubz� KaUaz

8πl

� :
Thus, upon summation we obtain

fa = f(1)a + f(3)a + f(5)a + : : := � iµKa

 
Uax� Kb

8πl

�
Ubx� KaUax

8πl

��"1+�Ka
8πl

��
Kb
8πl

�+�Ka
8πl

�2�Kb
8πl

�2+ : : :#!� kµKa

 
Uaz� Kb

4πl

�
Ubz� KaUaz

8πl

��"1+�Ka
4πl

��
Kb
4πl

�+�Ka
4πl

�2�Kb
4πl

�2+ : : :#!
Expressing the geometric series as a fraction and combiningterms, we find

fa
µKa

=�i
Uax� (KbUbx=8πl)
1� (KaKb)=(8πl)2 �k

Uaz� (KbUbz=4πl)
1� (KaKb)=(4πl)2 : (53)

Note thatfb can be obtained by interchanging the subscriptsa andb in the above
equation.
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Figure 1: Coordinate system for the two particle interaction
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In the case of equal-size spheres, as shown in Fig1, (53) reduces to� f
6πµa

= i
Ux

1+(3=4)(a=l) +k
Uz

1+(3=2)(a=l) : (54)

wherea is the radius of the sphere. The fluid exerts the same force on both spheres
such that their motion is parallel with the same velocity. Asa result they will
always maintain the same distance between each other.

If α is the angle gravity makes with the line of centres, and the absolute value
of the gravitational fieldF is defined, we can find expressions for the velocity in
the direction of gravityUF and for the velocity of drift in the horizontal direction.
We begin by recalling that

UF = Uxcosα+Uzsinα (55)

where

Ux = �Fsinα
6πµa

�
1+ 3a

4l

�
, Uz= �Fcosα

6πµa

�
1+ 3a

2l

� : (56)

By combining these relationships we obtain

UF =US

�
1+ 3a

4l
(1+cos2 α)� : (57)

Similarly

UH =US
3a
4l

sinαcosα (58)

and the fall velocity satisfiesU =qU2
F +U2

H .
Drift will thus only occur when the angleα 6= 0 or 90o, that is, when the spheres

are not falling one behind each other along their line of centres, or side by side
perpendicular to their line of centres. The fall velocity will be at its minimum
in the latter case. when they are closer together (Fig.2). Asmentioned earlier
sedimenting spheres have no relative motion. Consequently, if they fall with a drift
they will appear to be chasing each other.

As it is assumed all hydrodynamic interactions are instantaneous, the Schmidt
numberSc= η=ρDs, 4 which represents the relative velocity with which momen-
tum diffuses across, is assumed to be infinite also.

3.4 Brownian Motion

So far, we have seen that two particles fall faster when falling close to each other,
and along their line of centres. However, all the analysis upto now has been carried
out ignoring Brownian effects. When examining dilute suspensions of colloidal
spheres in water or some liquid, one notices that each particle moves about with a
continuous but random jiggling motion. We can think of theseparticles as being

4Ds denotes the diffusion constant of the solvent particles.
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for different values of

the angle gravity makes with their line of centres (α), and the relative distance be-
tween their centres (a=l ). The fall velocity is normalised byUS, the Stokes velocity
for an isolated particle sedimenting in an unbounded fluid.
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constantly bombarded by random impacts of the molecules of the liquid. The re-
sulting motion of the colloids is known as Brownian motion[8], which sees them
diffuse relative to one another. In order to interpret this diffusive spreading, it can
be useful to model their behaviour using random walks. This involves allowing
each particle to take a step (δx say) in any (equally probable) direction along each
axis every time-stepδt. The motions in each of these directions are statistically
independent as the colloids upon colliding with the water molecules will ’lose’
memory of their initial velocity. The particles will thus move independently from
one another such that the walk will not be biased. We expect the behaviour of
the colloids to be different in the case of sedimentation when Brownian effects are
taken into consideration. In contrast to pure Stokes flow, the particles now move
relative to each other such thatl is no longer fixed.

The particles’ positions are updated as�
xi(t)
zi(t) �!�

xi(t +δt) = xi(t)�4xi(t)
zi(t +δt) = zi(t)�4zi(t): �

The spreading of a particle undergoing a random walk can be measured by the
mean squared distance traversed in a timet< x2 >=< z2 >= 2Dt (59)

whereD denotes the diffusion constant of each particle. For particles diffusing
relative to each other, we expect the relative diffusion constant to be twice the
standard diffusion constant as each particle is undergoingits own random walk.
The particles’ relative mean squared displacement along the x-axis is thus given by< x2

rel >=< (xi�x j)2 >=< x2
i >+< x2

j >�2< xix j >| {z }
0

= 2Drelt (60)

whereDrel = 2D is the relative diffusion constant. We can relate this relative dis-
placement tol andα by

l =qx2
rel +z2

rel , cosα = zrelq
x2

rel +z2
rel

, sinα = xrelq
x2

rel +z2
rel

; (61)

such that

U
US
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UF

US
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rel

�
1+ z2

rel
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rel +z2

rel
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4
q

x2
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rel

x2
relz

2
rel

x2
rel +z2

rel

1A2= f (xrel ;zrel) (62)
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The probability that the particles have diffused a distancer = l from each other at
any given time is

P(r) = P(xrel)P(zrel) = 1
4πDrelt

e�(x2
rel+z2

rel)=4Drelt (63)

from which we can see that larger diffusion constants will render flatter distribution
functions. The average fall velocity, which takes into account Brownian effects
now reads < U

Us
>= Z Z

P(xrel)P(zrel) f (xrel ;zrel): (64)

3.4.1 Simulation and Results

We performed a simple simulation to see the evolution of (64). This was done
using the inbuilt Gaussian distribution function in Matlab. Results are shown in
Fig.3.

As expected the inclusion of diffusion causes a temporal evolution in the rel-
ative fall velocity. The normalised fall velocity decays tothe Stokes velocity with
time. This means the velocity of each particle tends to the velocity of an isolated
particle implying the particles are diffusing away from oneanother and gradually
no longer feel each others’ presence.

As the particles now move relative to each other, the angle their line of centres
makes with gravity now changes randomly. While they remain close enough to
influence each other they will be seen to still follow each other and the ’direction’
along which they fall will keep changing randomly.

The results are scaled with the Stokes timets = a=Us and the diffusion time
tb = a2=D. They indicate the time a particle takes to sediment or diffuse a distance
equal to its own radius. These timescales are significant as they give an indication
of how the particles are behaving relative to each other. Thenon dimensional Peclet
number is given by their ratio

Pe= td
ts
: (65)

For examplePe= 5 impliestd = 5ts which indicates that by the time a particle has
sedimented a distance equal to five times its radius, it has diffused a distance equal
to once its radius. The Peclet number thus indicates the amount of diffusion; the
higher its value, the slower the diffusion. Their relative motion is therefore reduced
and we would expect their relative fall velocity to decay to the Stokes velocity less
rapidly.

Fig.3(top) shows the decay of a particles normalised velocity with Pe= 5. For
larger Peclet numbers, the decay would be slower while for smaller Peclet numbers
the normalised velocity would decay much faster. Fig.3(bottom) shows that when
time is normalised by the diffusion timetd, all curves eventually collapse to a
master curve. This illustrates the fact that the normalisedfall velocity evolves
on the same timescale as diffusion. After 10tb, there is still a correction to the
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Figure 3: Temporal evolution of the normalised average fallvelocity < U
Us

>=R R
P(xrel)P(zrel) f (xrel ;zrel) plotted for different initial startup positionsxrel and

zrel . The new expression for the fall velocity now incorporates effects of Brownian
motion and is plotted as a function of time normalised by the Stokes timets and the
diffusion timetd.

Stokes velocity of around 10%. The decay gets increasingly slow with time as
diffusion scales as�pt. Note that Fig.3(top) is Peclet number dependent, whereas
Fig.3(bottom) is Peclet number independent.

The relative fall velocity also gives a measure of the effectof a secondary
particle and therefore gives an indication as to level of correlation in the particles’
motion. The time their motion will be correlated therefore depends on the amount
of diffusion the particles will undergo as they are sedimenting, and thus on the
Peclet numberPe.

Note that we have assumed Brownian motion only occurred in two dimen-
sion. In three dimensions, we would also include the y-component of the rela-

tive distance between the spheresyrel, such thatr =qx2
rel +y2

rel +z2
rel andP(r) =

P(xrel)P(yrel)P(zrel). We do not expect to see qualitatively significant changes but
further work will include analysis in three dimensions.
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4 Stochastic Rotation Dynamics

As we have seen, Brownian forces should not be neglected whenlooking at sedi-
mentation. To study the effect of diffusion on more complex systems, we make use
of Stochastic Rotation Dynamics (SRD). The SRD model, whichwas first intro-
duced by Malenavets & Kapral [5], is in the spirit of lattice gas models. It has the
advantage of easily being coupled to a solute, such as polymers or colloids which
can subsequently be treated using molecular dynamics algorithms. SRD provides
a novel way of treating hydrodynamics problems with Brownian effects.

The solvent is modelled by an ensemble of particles whose positions (r i(t)) are
updated by successive streaming and collision procedures.During the streaming
step, the particles are allowed to propagate for a given timeδtc, after which their
positions are updated via

r i(t +δtc) = r i(t)+vi(t)δtc (66)

wherevi(t) is the velocity of the particles. The collision step (which occurs every
δtc) involves splitting the particles into small cells and the velocity of each particle
within a cell (vcell) is rotated relative to the centre of mass velocity of the cell,

vi(t +δtc) = vcell(t)+ω � (vi(t)�vcell(t)) (67)

whereω denotes a rotation matrix which rotates the particles by an angle�α with
equal probability. The collision procedure transfers momentum between the fluid
particles while conserving the total momentum of each cell.

The fluid particles only interact with one another through the collision proce-
dure. Direct interactions between the solvent particles are not taken into account.
This coarse graining step is the main cause of the efficiency of simulations using
SRD. This carefully constructed rotation procedure ensures energy and momentum
are conserved locally, thus capturing the properties of theNavier-Stokes equations.
The Brownian behaviour of the fluid particles is included by assigning each particle
with a random velocity drawn from a Maxwell type distribution.

The system is coupled to a thermostat to prevent any significant fluctuations
in the average temperature. This can arise when an external field is applied for
example. The thermostat acts by rescaling the relative velocities (i.e. the velocity
of a fluid particle relative to the centre of mass velocity) when the local temperature
deviates from the desired temperature.

Kikuchiet.al.[6] calculated analytical expressions for the viscosityη = ηkin+
ηcol, resulting from contributions of the streaming and collision steps respectively
in 2 dimensions

ηkin = γkBTδtc
a2

0

�
γ(γ�1+e�γ)(1�cosα) � 1

2

�
(68)

ηcol = m(1�cosα)
6δtc

(γ�1+e�γ) (69)
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whereγ is the number of solvent particles per cell,m the mass of a fluid particle.
Colloids of massM can be embedded in the solvent if we wish to simulate the

behaviour of spherical colloids in a fluid. They are propagated through the Velocity
Verlet algorithm with the molecular dynamic time stepδt

Ri(t +δt) = Ri(t)+Vi(t)δt + Fi(t)
M

δt2 (70)

Vi(t +δt) = Vi(t)+ Fi(t)+F(t +δt)
2M

δt (71)

whereRi andVi are the position and velocity of the colloid, andFi the total force
exerted on the colloid.

They interact with each other through a repulsive potential:

ϕcc(r) =( 4ε
��σcc

r

�48� �σcc
r

�12+ 1
4

� (r � 21=24σcc)
0 (r � 21=24σcc)

while the interaction between the colloid and the solvent isdescribed by the less
precipitous potential:

ϕcs(r) =( 4ε
��σcs

r

�12� �σcs
r

�6+ 1
4

� (r � 21=6σcs)
0 (r � 21=6σcs)

where the L-J repulsive strength is chosen usually chosen tobe ε = 2:5kBT. We
choose smaller exponents to describe the latter potential as both the mass and range
of the colloid-fluid interaction are less than that of the colloid-colloid interaction.
The colloid-colloid potential enables colloids to be modelled as hard spheres while
allowing accurate integration of the Verlet equations for relatively large timesteps
δt. Although exponents in the potential are chosen such that itis as large as possi-
ble, ϕcc(r) is constrained by the fact thatδt is limited by the colloid-fluid interac-
tion, and not the colloid-colloid interaction.

When the density of the solvent particlesns is much higher than that of the col-
loids, even small overlaps between two colloids can lead to large attractive forces.
Louiset.al.[7] showed that for low enough colloid densities, the equilibrium deple-
tion interaction between two colloids is given by

Φdepl(d) = nskBT [Vexcl(d)�Vexcl(∞)℄ ; (72)

whereVexcl(d) is the free volume excluded to the solvent by the overlap. Unwanted
depletion forces can be counterbalanced by introducing compensating interactions
Φcomp=�Φdepl.

4.1 Simulation Parameters

We now explain the motivation behind our choice of SRD parameters.
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Simulation units for mass and unit cell size were set asm= ms= 1, a0 = 1 and
kBT = 1. The program units for time and velocity are be related to real units via[kBT℄ = ML2

T2[m℄ = M[a0℄ = L

9=; [time℄ = a0

r
m

kBT

and [vel℄ = L[time℄ =rkBT
m

: (73)

In order to eliminate depletion, it can prove useful to simulate colloids with a
slightly smaller hydrodynamic core. Accordingly, we set the colloid-solvent inter-
action range to be slightly less the colloid half diameterσcc. We further we chose
ε such that the colloid-colloid potentialε(d) = ε at distancesd = 2σcs, and that at
that distanced, depletion interactions have just become zero. This ensurethere are
never too few solvent particles between two colloids thus avoiding any depletion
forces.

As mentioned earlier, the molecular dynamic timestepδt is limited by the
colloid-solvent interaction. We do not want the potentialϕcs to ever become too
large and consequently wish to construct a fairly conservative timestep. The for-
mer is achieved by preventing any individual solvent molecule from approaching
too close toσcs. It will only interact with the colloid particle beyond the cutoff
range 21=6σcs so we would like for an SRD particle to travel a distance equalto
1=5 of the distanceσcs(21=6�1) for a given timestep at most. SRD particles each

have an average velocitycF =q kBT
m and hence an appropriate value ofδt should

satisfy

cF = σcs(21=6�1)
5δt

) δt = σcs(21=6�1)=5cF : (74)

This leads to values in the order ofδt = 0:1a0(ms=kBT)1=2 whenσcs= 2a0. Using
the same arguments, we can compare this timestep with the onewe would construct
if we were simulating standard Brownian motion. Brownian motion is scale invari-
ant; the random walk does not depend on the size mean free path. The Brownian
timestep is henceforth constrained by the colloid-colloidinteraction only. Like-
wise, we desire colloids to travel 1=5 of the distanceσcc(21=24�1) at each Brow-
nian timestep such that< x2 >= 2Dδtb = (σcc(21=24�1))2

25
) δtb = (σcc(21=24�1))2

50D
: (75)

Using analytical expressions such as that derived by Kikuchiet.al.[6] we can calcu-
late the self diffusion constant D of the fluid and predict that the ratio of the SRD
to Brownian timesteps isδtb=δt � 0:12.

To ensure the motion is liquid like, care must be taken in picking the SRD
collision intervalδtc such that the Schmidt numberSc= v=Ds= kBTνδtc

m � 1, where
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ν = ηs=ρs is the kinematic viscosity of the solvent. We choose a relatively small
collision interval (δtc = 4δt) leading toSc� 5.

The current version of the SRD code does not yet implement stick bound-
ary conditions on the colloids such that it experiences dragforce with coefficient
ξ = 4πνa (instead of 6). In real suspension the value is much closer to6 and so
changing the boundary condition should give slightly more accurate results, al-
though we do not expect the changes to be qualitatively significant.

Under plane Poiseuille flow, between parallel plates separated by a distanceh=
2a, the fluid and the colloids usually travel with mean velocities v̄= 2

3vmax�4v.
vmax is the velocity at the midpoint between the plates and can be predicted by in-
tegrating the Stokes equations and utilising the boundary conditions for Poiseuille

flow vmax= ρga2

2η . The field applied on the solventg is usually chosen such that

vmax� cF =p2kBT=mf , wherecF denotes the speed of sound in the fluid. Typi-
cally, we chooseg such that the Mach number is bounded byMa= v̄=cF � 0:1.

To avoid inertial effects, the Reynolds number must be kept relatively. Drawing
attention to the fact that for small collision intervals thecollisional part of the
viscoscity term dominates (η� ηcol), and thatη� γ, the Reynolds number for the
flow can be shown to scale as

Re= v̄a
ν
� ρsg

2η
a3� gδt2

ca3: (76)

This quantity therefore only depends on the field applied on the solvent and the
width of the channel only.

The density of colloids is chosen to more or less match that ofthe solvent
(ρc = γ) in order to avoid any sedimentation. We define the Peclet number of a
colloid Pec = Pe(σcc=2a). Given that the colloid self diffusion constant scales as
Dcol � η�1, Pec can also be shown to scale as

Pec = v̄σcc

2Dcol
� ρgσcc

4η
a2η� γgσcca

2; (77)

i.e. the colloid Peclet number depends on the average numberof fluid particles per
unit cell, the gravitational field, the size of the colloid and the width of the channel.

These approximations are very useful as they enable us to efficiently tune the
properties of the system from the outset.

5 Diffusion in a Pipe without Flow

5.1 Diffusion and the Velocity Autocorrelation Function

As stated earlier, a hard sphere of radiusac sedimenting with velocityU in an un-
bounded fluid experiences a drag forceF = 6πηacU . If the sphere also undergoes
Brownian diffusion, the characteristic diffusion coefficient for the motion is given
by the Stokes-Einstein relation[8]

D = kBT
6πηac

: (78)
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According to Newton’s law, a particle’s massmc multiplied by its acceleration
dv=dt, wherev is its velocity, equals the sum of all forces acting upon it. From
these principles, we can write the equation of motion for a particle undergoing
Brownian motion as[8]

m
dv
dt

= f (t)�ξv (79)

known as theLangevin equation. In this model representation, two forces act on
the particle; friction described by Stokes’ law with the drag coefficientξ = 6πηac,
and a random force due to the Brownian motionf (t).

The Langevin model can further be used to illustrate the ideaof the time cor-
relation function[9]. Here are the main arguments:

The velocity autocorrelation function reveals how quicklya particle forgets its
initially velocity due to Brownian fluctuations and is constructed by first multiply-
ing the velocity of a particle at timet = 0 with its subsequent velocity at timet and
then averaging the product over many collisions to get the time correlation function
C(t) = hv(0)v(t)i.

An expression for the velocity autocorrelation function isobtained by manip-
ulating the Langevin equation appropriately. We first pointout that the direc-
tion of the Brownian force is uncorrelated to the particle velocity, we may writehv(0) f (t)i = hv(0)ih f (t)i. Also, as the Brownian force is random, it will on aver-
age by equal to zero over many realisations (h f (t) = 0i).

By multiplying both sides of the equation byv(0), taking the ensemble average
and utilising the statements above, it is shown thathv(0)v(t)i = hv2(0)ie�ξt=m: (80)

Sincehv2(0)i= hkbT=mi, the above equation can be rewritten ashv(0)v(t)i = kBT
m

e�ξt=m; (81)

i.e. the function decays exponentially with time. This is only true for short times
however. At longer times5, the correlation function has been shown[10] to follow
the well known algebraic long time tailC(t)� td=2 whered is the dimensionality of
the system. Ignoring the tail and integrating the velocity autocorrelation function
gives Z ∞

0
hv(0)v(t)i = kBT

m

Z ∞

0
e�ξt=mdt = kBT

ξ
= D; (82)

because
R ∞

0 e�ξt=mdt = m=ξ. In the two dimensional geometry, the longtime tail
of the correlation function goes as 1=t so that the integral diverges logarithmically,
suggesting that the self diffusion coefficient remains timedependent even at long
times. This is not the case in three dimensions.

The study of correlation functions is thus useful as their integrals are related to
transport coefficients.

5Here we mean long on the hydrodynamic timescale
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5.2 Wall effects

In this section, we turn our attentions to the motion of a colloidal particle in a
confined geometry. It is well documented that a sphere suspended in a fluid at
rest next to a flat wall is subject to hydrodynamic effects dueto the sphere-wall
interaction.

Happel & Brenner[3] showed that the effect of containing walls was in many
ways analogous to the effect of a secondary particle, and could be accurately pre-
dicted by an extension of the method of reflections describedin section 3.3. They
demonstrated that when a sphere got closer to a wall, the Stokes drag force acting
on it increased, and that its diffusion coefficient was therefore smaller than in the
bulk. For this reason, the effect of a tube wall is to slow downthe motion of a
particle travelling in its vicinity.

In three dimensions, the drag force acting on a sphere can be separated into
independent components due to the linearity of the Stokes equations, for motion
parallel and perpendicular to the wall

Fk = Fζk (83)

F? = Fζ? (84)

and consequently, the diffusion constants for motion parallel and perpendicular to
the wall are

Dk = ζ�1k D (85)

D? = ζ�1? D; (86)

whereζ(k;?) is the appropriate correction factor due to the presence of the wall.
Furthermore, even in the low Reynolds number limit, the exact solutions for the
effective wall drag force do not have a closed analytical form. Approximate rep-
resentations forζ(k;?) can be obtained using the method of reflections and to first
order are given by [3]

ζ�1k = Dk
D
� 1� 9

16
ac

x
+O �ac

x

�3
(87)

ζ�1? = D?
D
� 1� 9

8
ac

x
+O �ac

x

�3 ; (88)

wherex is the distance from the centre of the sphere to the wall.
The method of reflections nonetheless fails to provide an exact analytical solu-

tion for the drag force acting on a sphere when a second wall ispresent. In their
simplest form, approximate analyses based on the linearityof the Stokes’ equa-
tions, have assumed the effects of the drag from each wall could be independently
superimposed[3].

Due the friction exerted by the walls, the long time tail of the velocity correla-
tion will also be lost as expected. In their theoretical study of a particle suspended
in a fluid between two parallel plates, Bocquet and Barrat[11] showed that this was

24



indeed the case. In the two dimensional case, the integral ofthe velocity correlation
function in a bounded fluid will no longer diverge as the algebraic tail sinks at long
times. The sink in the algebraic tail occurs at a timeT, dependent on the width of
the channelh. The diffusion constant thus evolves asD� R T

0 1=t � log(h).
5.3 Simulation and Results

Simulations were performed in SRD to illustrate wall effects. All simulations were
performed in two dimensions. Colloidal particles were represented as disks of the
same radius in a fluid bounded by infinitely thin parallel plates and in the bulk. No
external field was applied and the particle was allowed to diffuse freely.

Fig.4 shows the evolution of the self diffusion coefficientsfor the motion of a
disk like particle in a quiescent fluid. Only the case of motion parallel with respect
to the boundary was considered. We see that, as expected, thediffusion coefficient
does not converge in the bulk. In the case of diffusion in a narrow channel, the
diffusion constant reached a maximum, before eventually saturating at a slightly
lower value. The velocity autocorrelation function is plotted in the inset. In an
unbounded fluid, the function is always positive. We see thatin the presence of
walls it becomes negative but a longtime tail is recovered atlong times. These
features have also been observed in other computational studies[12].

In Fig.5, we show the particle diffusion constant for channels of different sizes.
We see that within the error bars, the evolution is consistent with D � log(h).
We observe rapid fluctuations for narrower channels. The increase becomes less
important as the duct becomes larger. No study of the drag coefficients has been
reported in two dimensions. We will in future studies carry out simulations in three
dimensions to determine the correction factor for the drag due to the wall, and
check whether we can get good agreement with the theoreticalvalues predicted by
Happel & Brenner.

Fig.6 shows that, at first glance, collisions with the wall (circled) seem to cause
a reversal in the diffusion to a certain extent. This correlation (if any)may be down
to hydrodynamic effects due to the particle being very closeto the wall. The low
density of fluid particles between the colloid and the wall may also render mea-
surements difficult. We will address these points in more depth in future studies.

6 Flow in a Pipe with Diffusion: Taylor Diffusion

Taylor diffusion is the result of convection due to a flow and molecular disper-
sion, as first studied by G.I Taylor [13]. When a coloured solute is injected into a
channel of liquid flowing under a Poiseuille flow, it initially gets stretched out into
a paraboloid type slug by the velocity distribution. Convection alone contributes
to this early axial spreading. Radial diffusion subsequently causes the deformed
concentration profile to even out, as particles at the front of the paraboloid migrate
onto streamlines closer to the edges, and particles at the rear diffuse inwards onto
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Figure 4: Parallel (x) component of the self diffusion coefficient of a disk like
particle (Dcol) of radiusa = 2:15a0 relative to the orientation of the channel, in a
bounded and unbounded fluid respectively. The particle is initially located at the
midpoint between two walls separated by a distanceh= 12a0. The fluid is at rest
and is simulated withγ = 5 SRD particles per unit cell. The inset shows a plot of
the particle’s velocity autocorrelation function and illustrates the recovery of the
long time tail.
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particle of radiusa=2:15a0 in channels of increasing widthh=2ap: The evolution
of the solvent diffusion coefficient (Ds) is also shown.
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Figure 6: Parallel component of the displacement. The collisions with the wall are
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Figure 7: Taylor dispersion between parallel plates. Neglecting radial diffusion,
the initial solute gets stretched to a paraboloid shaped plug. Diffusion, indicated
by the vertical arrows, evens out the concentration profile leading to a wider plug.

the faster velocity streamlines. This in effect slows down the front of the slug and
causes the rear to speed up, resulting in a more elongated region of the solute with
a Gaussian like concentration profile.

6.1 Taylor Dispersion of Small Solutes

To get a better physical understanding of Taylor diffusion,lets assume that convec-
tion and diffusion can occur successively[14]. Convectioninitially stretches the
solute into a parabola. The solute at front end of the parabola leads the solute at
the edges by a distanceu0t after a timet. Hereu0 = 3

2ū denotes the velocity in the
centre of the pipe. Diffusion across the channel then smearsthe parabola into a
plug, as shown in Fig.7. This occurs at timestD � a2

p=D it takes the solute to reach
the the edges. On such timescales, the plug has a widthWtD � u0tD = u0a2

p=D.
Seeing that diffusion scale as� pt, after N tb ’times’, the plug is stretched by a
factor ofN1=2. The plugs thus grows diffusively and its width scales ashW2i1=2� N1=2WtD � u2

0a2
p

D
t

!1=2 : (89)

Accordingly, in addition to molecular diffusivityD ,the solute can be seen to diffuse
along the channel with an effective dispersion coefficient

D� � u2
0a2

p

D
: (90)

Note that the effective dispersion coefficient is inverselyproportional to the
molecular diffusion coefficient, which may seem counter intuitive at first glance.
However, solute molecules with higher molecular diffusivities spend more time
diffusing across the pipe and less time sampling particularvelocity streamline thus
reducing theireffectivespreading. Probstein[15] presents detailed analysis for flow
in a three dimensional pipe of radiusap that yields the prefactor

D� � ū2a2
p

48D
: (91)
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We shall carry out analysis in a two dimensions. Simulationsrun faster in that
geometry so arguments are easier to test. Once sufficient understanding has been
gained at that level, we shall continue to three dimensions.

6.1.1 Taylors’ Derivation in two Dimensions

We now present the derivation for obtaining the correct prefactor in two dimen-
sions. Our analysis follows closely the arguments of Probstein but is adapted to
take into account the two dimensional geometry.

The Convection-Diffusion Equation

The dispersion process is an example of combined convectionand diffusion ob-
served when a solute of concentrationc(y; t) is allowed to flow between two plates
under a plane Poiseuille flow.

The convection-diffusion equation describing the evolution of the concentra-
tion is given by

∂tc+u(y)∂xc= D
�
∂2

xc+∂2
yc
� ; (92)

whereD is the diffusion constant as would be observed under diffusion alone.
We scale the convection-diffusion equation by introducingthe following non-

dimensional constants

x= lox̃; y= apỹ; t = l0
ū

t̃; u= ūũ (93)

wherel0 andap represent the characteristic lengths over which concentration changes
along the x-axis and the y-axis respectively. We shall thus assume they represent
the dimensions of the channel. The dimensionless equation upon dropping the
tildes has the form

Pe∂tc+ Pe
ap

l0
u(y)∂xc| {z }

axial convection

= ∂2
yc|{z}

radial diffusion

+ a2
p

l2
0

∂2
xc| {z }

axial diffusion

: (94)

For high Peclet numbers, the terms on the left-hand side willdominate, and we
will be in the convection dominated regime. Conversely, forlow Peclet number,
the terms on the right-hand side will become important and diffusion will domi-
nate. Note that because of thea2

p=l2
0 term, radial diffusion will set in at different

conditions than axial diffusion. In the case where only radial diffusion is promi-
nent, these coefficients will scale as

1� l0
ap

= ūt
ap

= ūa2
p

apD
= PeandPe� l0

ap
; (95)

where the characteristic time for radial diffusion ist = tD = a2
p=D.
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The Solution

The only change in the concentration in the axial direction will follow from con-
vection and, we assume so axial diffusion can be neglected. It is thus useful to
switch to a coordinate system in which the x-axis moves with the mean speed of
the flow. We will usex0 andu0 to denote the moving axis and the velocity with
respect to the moving axis,

x0 = x� ūt andu0 = ū
2

 
1�3

y2

a2
p

! : (96)

Under this coordinate transformation, the convection-diffusion equation becomes

∂tc+ ū
2

 
1�3

y2

a2
p

!
∂xc= D∂2

yc: (97)

where∂t now denotes differentiation with respect to time at points along the mov-
ing axis. We also assume that the plates are impermeable and that there is no flux
at the boundaries such that∂yc= 0 ony= ap.
Taylor then made the assumption that in the moving frame, theflow was quasi-
steady after long times (t � a2

p=D), and that concentration only varies in the radial
direction such that∂tc � 0. He then extended this assumption to say that ifc
were independent ofx with large t, then∂c=∂x0 would be independent ofr. In
other words, as we move with the fluid, we would expect that after a long time the
axial concentration gradient will become independent of the radial position. Con-
sequently,∂x0c� ∂x0 c̄ wherec̄ is the average concentration across the plates.
The equation we wish to solve for is now reduced to

∂2
yc= ū

2D
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∂x0c (98)

which can be readily integrated to give the solution
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wherec0 is the concentration aty = 0. The average concentration over the plate
separation is given by

c̄= 1
ap

Z ap

0
cdy: (100)

Upon integration, we find

c̄= c0+ 7
10

ūa2
p

4D
∂x0c (101)

such that we can express the concentration in terms of ¯c

c= c̄+ ūa2
p

4D
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p

!
∂x0c: (102)
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According to Taylor∂x0c� ∂x0 c̄ and so, upon differentiating the above expression
for c the following condition must be satisfied

ūa2
p

4D
1
l0
� 1 ) Pe� 4l0

ap
: (103)

The average mass flux across the plates is

J̄ = 1
ap

Z ap

0
ydymcu0 = map

Z 1

0

y
ap

d

�
ap

y

�
cu0 (104)

with m the unit mass across the plates. By replacing∂x0c by ∂x0 c̄ andρ̄ = mc̄ and
integrating we obtain

J̄ =�D�∂x0 ρ̄ (Fick’s law) (105)

where

D� = 2a2
pu2

0

105D
(106)

is referred to as the Taylor dispersion coefficient.
This result is somewhat significant as it states that the average solute gets dispersed
relative to a plane moving with mean velocity ¯u as though it were being dispersed
by a molecular diffusion process with a dispersion coefficient D = D�.
From the conservation of mass principle we obtain

ρ∂tc=�∂x0 J̄ ) ∂t c̄= D�∂2
x0 c̄: (107)

In the original rest frame, the diffusion equation is written

∂t c̄+ ū∂xc̄= D�∂2
xc̄ (108)

and is often termed theTaylor dispersion equation.
These equation are valid provided the effect of axial molecular diffusion is negli-
gible compared with the Taylor dispersion,

D�� D ) Pe�p
105=2� 7: (109)

Combining this result with the previous constrains onPe, we find that Taylor dis-
persion only occurs in the range

7� Pe� 4l0
ap

: (110)

If the initial quantity of the substance is know, sayn0, then it can easily be
shown that the dispersion relation has solution

c̄= n0p
πD�t exp

��(x� ūt)2

4D�t � : (111)
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Measurement of the width of the concentration profile can prove useful as it pro-
vides a way of determining self diffusion constants of colloids by experiment[16].

So far, we have assumed molecular diffusion in the axial direction to be neg-
ligible. Aris[17] showed that when this was not the case (D� � D) the effective
diffusion could be written as the sum of the molecular and theTaylor dispersion
coefficients

DTA = D�+D: (112)

DTA is termed the Taylor-Aris dispersion coefficient.

7 Taylor Diffusion of Colloids

The dispersion of colloids incurs some corrections to the original analysis by Tay-
lor. The modifications arise when these are comparable in size to plate separation
[18], namely whenλ = ac

ap
becomes appreciable. The colloids sample smaller por-

tions of the Poiseuille velocity distribution as the distance their centre can approach
the walls is limited by their own radius. This excluded region ensures that, on aver-
age, colloids travel through the capillary faster than the solvent. Colloids of smaller
sizes are also expected to travel slower than larger ones as they can get closer to the
boundaries and sample the lower velocities. This size exclusion phenomenon can
used to analyse the size of colloidal particles (hydrodynamic chromatography[19]).

Here, we follow the argument of Brenner & Edwards in three dimensions, and
we assume that the colloids have the same velocity as the fluid. Then, their average
velocity is given by

uc = 3
2

ū
ap�ac

Z ap�ac

0
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2
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�
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+ 2

3
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3
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For infinitely small colloidal particles,λ = 0 anduc = ū while for particles the size
of the channel,λ = 1 anduc = 3

2ū.
If we redo the derivation of the previous section (6.2.1) taking into account the

new boundary conditions then, we find

D� = 2a2
cū2

105D

�
1�2:5λ+0:75λ2+O (λ3)� : (114)

The radial dispersion of the colloids is now effectively reduced as they are unable to
sample the higher velocity gradients near the edges, effectively reducing the radial
dispersivity, thus leading to a lower value of the Taylor dispersion coefficient.

Through their moment analysis, Brenner & Gaydos[20] found that, in three
dimensions, the presence of walls introduced corrections to the first order inλ.
The extra terms reduced all the numerical coefficients in in the three dimensional
expression of the dispersivity obtained when considering ’excluded region’ effects
alone. Boundaries therefore reduce the dispersity further.
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No study of this problem has been reported in two dimensions.In future simu-
lations, we will try to measure the effect of the wall in threedimensions in order to
approximate this contribution.

7.1 Simulation and Preliminary Results

To test Taylor diffusion, and the corrections due to the excluded regions and the
wall effects, we performed preliminary simulations of colloidal particles undergo-
ing Taylor diffusion. The simulations were performed in twodimensions, for SRD
particles with number densityγ = 5 between parallel plates bounded separated by
a distanceh = 32. The colloids were assumed to be disk like particles of radius
ac = 2:15a0, such thatλ� 0:13.

Simulations of Taylor diffusion were run for 24 closely packed colloidal par-
ticles at pipe Peclet numberPe� 17. The runs were carried out in channel of
width h= 32 (λ� 0:13). The solvent particles were subjected to an external field
g = 0:0004 along the length of the channel. We measured the resulting mean ve-
locity of the colloids as 5:4�10�2. The mean square displacement with respect to
the frame moving at the mean speed along the x-direction was then calculated from

W(t) = 1
N

N

∑
i

h([xi(t)�xcom(t)℄)2i; (115)

wherexi denotes the x-coordinate of each particles, andxcom the position of the
centre of mass of the particles at timet. We for simplicity, we shall now refer to
this relative average mean square displacement as the m.s.d. The results are shown
in Fig.7.

From the m.s.d of the colloids simulated in SRD, we calculated the effective
dispersion coefficient of the particles in the channel and found it to beD � 0:22.
The Taylor diffusion coefficient calculated using his original arguments was found
to beD� 0:87 and implementing the ’excluded region’ corrections madeby Bren-
ner & Edwards yielded a valueD� 0:57 for the dispersion coefficient.

As expected, for finite size particles the Brenner correction gives a slightly
better estimate of the motion of the particles although there remains a significant
discrepancy between the value given by the correction and the one obtained by
simulation. We believe the discrepancy to be due to several factors. Firstly, we
have not included any correction terms inλ on account of the walls, which would
yield a lower value ofD. Furthermore, we have not taken density effects into
consideration. As the colloids are closely packed together, hydrodynamic effects
will ensue leading to further deviations. Finally, the higher order contributions
more important in two dimensions, as we have seen in the case of the diverging
diffusion constant in the bulk. We will duly address all these issues in prospective
studies.
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Figure 8: m.s.d of colloidal disk like particles undergoingTaylor diffusion with
λ� 0:13 for pipe Peclet numberPe� 17. The solid curve shows the m.s.d averaged
over 24 colloidal particles obtained using SRD. The dashed line corresponds to the
theoretical m.s.d of a solute particle as originally predicted by Taylor. The dotted
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& Edwards.
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7.2 Outlook

As previously stated, colloids of different sizes flowing between plates are expected
to separate because they sample different ranges of the Poiseuille distribution. For
the separation to become apparent,λ should be large enough so that the ’excluded
region’ correction becomes relevant. If the colloids are too large however, they
might have trouble getting past each other, which might may well lead to other
corrections.

The derivation of the corrections induced by the channel have been carried out
to evaluate the perturbation of the boundaries on the diffusion of colloids. The
analysis does not include however the perturbations the colloid itself would induce
on the flow. In other words, we have somewhat naı̈vely assumedso that fluid passes
through the colloid particle freely. For large enough colloids, or large enough
density of colloids, we would expect their contribution to become more apparent.
Will the profile still maintain a Poiseuille distribution insuch cases?

The ’excluded region’ property of colloid dynamics can alsobe extended to
polymers flowing in narrow channels. The analysis would be less trivial however
as polymers can change their shape with the flow.

8 The Limit of 1-D Diffusion: Single File diffusion

In this section, we turn our attention to the motion of colloids in the limitλ� 1, i.e
to the limit of one dimensional or single file diffusion.

Single file diffusion (SFD) refers to the-one dimensional motion of particles
in channels that are so narrow that mutual passage is excluded. The sequence
of the particles remains unchanged and diffusion of any particle depends on the
collective motion of neighbouring particles in the same direction. This dependence
leads to anomalous (non-Fickian) diffusion in the long timelimit for over damped
systems. In such systems, particles no longer diffuse in thenormal sense but with
a hx2i � t1=2 dependence of the mean square displacement upon time.

Moreover, if the channel is filled with fluid, the motion of theparticles be-
comes correlated on even more rapidly. As they move through the liquid, they
create a flow field that affects the velocities of the particles in the vicinity. Con-
sequently, the motion becomes correlated on a timescale shorter than the direct
collision between neighboring particles. On that account,we define the following
time scales; the direct interaction timetI which is time it takes adjacent particles to
interact via collisions and the hydrodynamic interaction time tH which refers to the
time it takes a particle to feel its nearest neighbour via hydrodynamic coupling.

The long time behaviour (t � tI ) induced by the correlated motion has been
predicted for infinitely long systems to be[21, 22]hx2i= F

p
t (116)

whereF is the SFD mobility.
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8.1 Experimental Review

Several experimental studies have been carried out to investigate hydrodynamic
coupling in SFD. Lutzet.al.[28] performed an experiment which covered both regimes
in order to compare the particle mobility obtained by short time measurements with
the long time approximation predicted by theory. The experiments were performed
with colloidal particles, and, in contrast to previous SFD studies, the particles were
confined to a 1 dimensional geometry by using scanned opticaltweezers in order to
avoid any hydrodynamic wall effects. Their experimental setup consisted of a silica
glass cuvette with 200µmspacing filled with a highly diluted aqueous suspension
of sulphate-terminated polystyrene particles of diameter2:9µm.

The particle trajectories were recorded for several hours and the mean square
displacement was calculated fromZ(t) = 1

N ∑N
i h([xi(t)�xi(0)℄)2i. Z(t) was then

plotted as a function oft1=2 and by fitting the data with (116), the mobility was ob-
tained. This was only carried out however for large times where the diffusion was
no longer linear. They found good agreement between the dataand the theoretical
predictions.

The particle displacement distribution function is definedas the conditional
probability of finding a particle at positionx after timet and is given by

P(x; t) = 1p
4πFt1=2

e�x2=4Ft1=2: (117)

Measurements were taken at different times, all greater that tI and the data was
found to be in good agreement with (117). Rescaling the data by t1=4 also led to all
the curves collapsing to a single master curve.

Lin et.al.[26] studied the diffusive behaviour of silica colloidal spheres sus-
pended in water (ac � 1:58µm;ρ = 2g=cm3) and confined in long narrow grooves
2 mm long and 3µmwide and deep. The colloids were slightly charged resultingin
slightly attractive pair potential and the system was equilibrated for 6 hours before
any measurements were taken. ( atT = 24C). Using video microscopy they were
able to locate the centre of the spheres along the groove and the trajectories were
extracted from a sequence of digitised images. Measurements were made at five
different packing fractionη = Nac=L whereL is the length of the groove in the
field of view (L = 106µm).

They found that in the time regime shorter than the hydrodynamic interaction
time, the system underwent normal diffusion. For larger times, still smaller than
the direct interaction time, the motion of the spheres was dictated by hydrodynamic
interactions. At high enough packing fraction (η> 0:39) the spheres separated into
clusters and moved in synchrony within each cluster. The number of spheres in a
cluster also increased as a function of packing fraction. They further constructed
a same time pair correlation function (for the four nearest neighbours only). The
correlation increased at higher packing fractions as expected. At low packing frac-
tions the correlation to the furthest neighbour was negligible while the was not the
case at higher (η = 0:71).
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8.2 Preliminary Results and Further Work

Simulations were performed in two dimensions for colloids of radiusac =2:15a0 in
a channel of widthap = 8a0 (such thatλ = 0:5375) for several packing fractions, as
observed in experiments[26]. Preliminary results show agreement with the results
found by Linet.al. Fig.8 shows that SRD captures the long time diffusive behaviour
of the particles for the different packing fractions. Fig.9shows the correlation
between neighboring particles that becomes more pronounced at higher densities.

Further simulations will be carried out to calculated the exact SFD mobilities
and the values will be compared to those predicted by theory[21] and found in
experiment[28].The precise nature of the correlation behaviour can be better un-
derstood by constructing more thorough temporal and spatial velocity correlation
functions for the motion of the spheres. This would provide afurther test of the ap-
parent density dependence on the size of the particle clusters reported by Linet.al.
We can also add flow in the channel and study the system to see ifthe colloids will
behave differently.

9 Laning at High Reynolds Number: Experimental Re-
view

Particles flowing in pipes at finite Reynolds number have beenobserved to form
trains (groups of three or more particles) aligned in the direction of the flow. The
trains (sometimes of up to 40 particles) are usually locatedat the Segré-Silberberg
equilibrium position, typically located at a distancer = 0:6R from the centre of the
pipe, and move closer to the walls at higher Reynolds numbers. Below is a detailed
account of an experiment carried out by Mataset al. [29].

Two sets of polystyrene spheres with mean diametersd = 425� 25µm and
d = 825� 25µm were added to a mixture of water (around 78%) and glycerol
(around 22%) such that the density formed by the fluidρ f matched that of the
particles (ρp = 1:05g=cm3). The solutions were kept at temperatureT = 25oC
such that their viscosity remained betweenρ = 1:45� 1:55cP. They were then
allowed to flow through two horizontal glass tubes of lengthL= 26mand diameters
D = 8mmandD = 14mmsuch that measurements could be made forD=d = 33
and 17 in the larger tube andD=d = 19 with the smaller particles in the smaller
tube. Measurements were made at a distance of 1:8m from the tube entrance to
ensure a fully developed Poiseuille flow had been attained. Measurements were
made for values of the pipe-scale Reynolds numberRe= ρ fUD=ν ranging from
100� Re� 2400, withU the mean axial velocity. All experiments were carried
out at particle packing fractions ofφ = 0:17%, 0:06% and 0:24% for D=d = 33,
17 and 19 respectively. Any correlation between packing thefraction and laning
of particles was not investigated as visualisation became increasingly difficult at
higher concentrations.

Particles began to form visible trains aligned in the direction of the flow at
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Figure 11: Photograph reproduced from[29]. The picture shows trains trains in the
pipe from two perspectives for D/d=19. sad Re=600 (in this photograph, the trains
are located on the top of the tube and preferentially in the back), (b) Re=1120 (in
this photograph, one observes a very long train having an angle relative to flow).
The arrows indicate the walls of the tube from the two perspectives.
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Re�100. Some trains were also observed to be at an angle to the x-axis of the pipe.
The number of particles observed in trains was normalised bythe packing fraction
and the results showed that asRebecame larger the amount of particles in trains
increased to a maximum before decreasing. Maxima were reached for D=d = 17
and 19 atRe� 700 and atRe� 950 forD=d = 33. A higher percentage of small
particles were found to be in trains (14% forD=d = 19 and 8% forD=d = 17 at
Re� 700) than larger ones (4% atRe� 950). It was also found that the percentage
of particles in a given train generally decreased with the size of the train. In other
words longer size trains were less probable that shorter ones.

The mean surface separation, normalised by the particle separation l=d was
found to depend on the particle Reynolds numberRep = Re(d=D)2. Rep describes
how fluid flows around a given particle. Results showed thatl=d decreased for
increasingRebut always remained significantly larger forD=d = 33. On the other
hand, when results were plotted forRep the data was found to collapse to a sin-
gle curve, suggesting that interactions between particleswithin trains are indeed
controlled byRep, and particles gathered closer together for increasingRep.

Numerical solutions of the flow equations have revealed thatthe regions of
closed streamlines around the particles, predicted forRep = 0 rapidly collapse with
increasingRep. The collapsing streamlines give birth to a region of reversed flow,
with fluid approaching and receding on each side along the mid-plane of the par-
ticle. The fluid is prevented from returning towards the particle by the pipe walls.
Furthermore, laning only occurs along the mid-plane, so it seems that flow reversal
entices this phenomenon. Solutions forRep = 10 compares with the highestRep

studied by Mataset al.. Further analysis revealed that the boundary of the reversing
streamline grew closer to the particle with increasingRep. This relates to particles
gathering closer together for higherRep as observed by Mataset al. Zones of re-
versed flow were also seen to extend out of the shear plane in the direction of the
vorticity, resulting in the formation of angles trains. This was also observed by
Mataset al. The process of train formation is very much similar to drafting in sus-
pensions except that in the latter case, the particles will kiss, tumble and separate
thereafter. Some experiments have revealed however that inthin fluidised beds at
22� Re� 43 particles were seen to form steady arrangements of three or four
where each sphere would settle in the shear field of the next.

When the Reynolds number is increased toRe� 600, the particles are seen to
migrate from the Segré-Silberberg annulus to a new annuluswhich forms closer to
the centre of the pipe. No trains are formed on the new annulus, possibly due to
the fact that it is broader and thus particles remain too far apart. This accounts for
the maxima attained by the amount of particles in trains stated earlier.

In summary, Mataset al. have investigated the dependence of lane formation
of particles upon the Reynolds number in pipe flow. They have seen that particles
will form trains along the Segré-Silberberg annulus, which drifts towards the wall
of the pipe for increasingRe. The arrangement of the particles however depends
on Rep which determines the nature of the flow around the particle. Some of these
results could be useful for colloids flowing in a pipe. It might provide a convenient
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way of aggregating colloids, or at least ordering them in flow. Adjusting the flow
properties helps determine the arrangement and position ofparticle trains. As fluid
flows faster in the centre of the tube, the flow properties can be adjusted in order to
control the position of the train within the tube, slowing itdown or speeding it up.

We would like to try and reproduce these experiments with SRD. However, at
present, we have not yet been able to reach the desired Reynolds numbers while
maintaining a low enough Mach number.
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A Appendix

A.1 Proof that Φ0 is harmonic

We wish to prove the following relation

∇2Φ0 = ∇2(Φ+∇φ) = 0 i.e. ∇2∇φ = ∇∇2φ = 0 (118)

for a harmonic scalarφ(r) in spherical coordinates. From the definition

∇2φ = 1
r2

∂
∂r

�
r2 ∂φ

∂r

�= 2
r

∂φ
∂r

+ ∂2φ
∂r2 = 0 (119)
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and so

∇∇2φ = r
∂
∂r

�
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∂φ
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+ ∂2φ
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�=�2
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From the definition it also follows that

∇2∇φ = 1
r2

∂
∂r

�
r2 ∂

∂r

�
r

∂φ
∂r

��= 2
r

∂φ
∂r

+4
∂2φ
∂r2 + r

∂3φ
∂r3 (121)

and

∇2∇φ�∇∇2φ = 4
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= 0: (122)

thus∇2∇φ = ∇∇2φ, i.e. the operators commute for a harmonic scalarφ in spherical
coordinates.
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