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1 Introduction

The main purpose of this project is to test the applicabitityStochastic Rota-
tion Dynamics (SRD) for the study of confined flows of suspehgarticles. Be-
cause SRD includes both Brownian and hydrodynamic fordes, particularly
well suited for the study of dispersion phenomena. We tleeethoose to test
it by simulating Taylor diffusion for colloidal particlesTaylor's original argu-
ments assumed tracer particles, whereas if the size of #pesded particles is no
longer negligible compared to the size of the pores theyraresported through,
there should be substantial corrections to Taylor’s ptafis. In particular when
the channel becomes so narrow that particles cannot diffaseeach other — the
case of one-dimensional diffusion — we expect to find impurthfferences. This
should have applications to flow in porous media.

Particle based methods like SRD have advantages overidralitontinuum
methods because complex boundary conditions are muclr éasieplement. It
is therefore easier to simulate particle laden flows. Moeednteractions between
the particles can be added in a straightforward manner, etoatjgregation pro-
cesses under confined flow conditions can be studied. Thesenfeny potential
applications in industry (e.g. asphaltenes in heavy odls.gt Such applications are
the longer term goals of my PhD, but first we must develop asdttee method,
which is the goal of this CPGS report.

In 82 we review some basic fluid dynamics. In 83 we describectise of
two particles sedimenting in solution, and study what happ&hen Brownian
motion is added to the classic solution by Brenner[3]. 84@ns SRD and we
discuss our choice of simulation parameters. 85 gives aouatof the effects
of walls on the self diffusion of colloidal particles. 86 dajms Taylor diffusion
solutes and 87 shows the corrections to the dispersiondintex by finite size
of colloids, as demonstrated by Brenner & Edwards[18]. Inn&B8describe one-
dimensional diffusion and §9 gives an overview of an expenitrcarried out to
investigate laning at high Reynolds.

2 Basic Fluid Dynamics

We will begin by giving a brief overview of some basic fluid dynics and show
how the main equations of motion are derived.
2.1 The Navier-Stokes Equations

Fluid flows are usually described by the velocity= u(x,t) at any pointx and
timet. In Cartesian coordinates, the velocity field can be writteterms of the
componentsl, v andw

u: U(X’yﬂzﬂt)’ V:V(X’y’ Z’t)’ W: W(X’y’ Z’t)' (1)



It is often useful to view the flow as streamlines. These afinelé as curves along
which the velocity is parallel to the local velocity at anyeh time.

The rate of change of any given quantity (Sgyat a fixed point of the flow is
of/ot. In contrast, the rate of change bfas would be measured by an observed
moving with flow asD f /Dt and is given by

Df d
ot = gt X0V, 20,8 @

wherex(t), y(t) andz(t) give the local velocity field
dx/dt =u, dy/dt=v ,dz/dt =w. 3)
Using the chain rule, (2) can be written as

Df _ofdx ofdy ofdz of @
Dt oxdt dydt odzdt ot’

such that

D—f—g%-ﬂu%-gw—ﬁw (5)
Dt ot ox o9y 0z

It follows that
Df of
Dt ot
The operatoD/Dt is called the Lagrangian derivative and describes the rate o
change with time measured by an observed moving with the. fllilis should
be distinguished from the local Eulerian derivatd/&/ot which measures change
relative to a fixed position.
The principle of conservation of mass requires that theabthange of a mass
of fluid contained within a certain volunmé must equal the outflow through its

boundarie®V q
—/pdV:—/ ou-nds )
dt Jv v

wheredV anddSare the differential operators for volume and surface mrle
outward normal to the boundary. Applying the divergenceotbm and the fact
thatV is fixed we obtain

+ (u-D)f. (6)

/a—pdvz —/ 0. (pu)aV. ®)
v ot v
Equating the integrands yields the conservation of masatiegu

op _
E—i—D-(pu)—O 9)

or
—+pd-u=0. (20)



When the density of the fluid particles does not change witle tithe fluid is said
to be imcompressibe and- u=0.

The stresg is defined as the force per unit area acting across a surfdluecof
Balancing the forces on an infinitesimally small volume shdhatt is linearly
related to the surface normaby t = ¢ - n wherego is the stress tensor.

The rate of change of the momentum actingwis due to the outflow of mo-
mentum through the boundary and to the forces acting on tifiece(like pressure
or friction) and on the volume (like gravity)

g/pudV=—/ (pu)u-ndS+ /de + / o-ndS . (11)
dt /v v % v
S—— S——
momentum flux body forces surface forces

By using the divergence theorem again and equating theraitegve arrive at

Du op _
thJru(EJrD-(pu))—erD-c (12)

The second term is zero from the conservation of mass plsgpthe momentum

equation now reads
Du

—=f+00. 13
T (13)
The stress tensor is shown to be symmetie=(c") by applying the conservation
rule to angular momentum. We define the strain-rate teass the symmetric
part 3(Ou+ (Ou)T) of the velocity gradient. If the fluid is incompressible and

Newtoniart then the stress tensor can be rearranged as

p

0= —pl+2ne (14)

wherep is the pressure) the viscosity and the identity matrix. Combining (14)
& (13) gives

D
piij — _Op+nfPu+f (15)

O-u = 0. (16)

where[? denotes the Laplace operatﬁiE + a"—yzz + 5’—222 These equations are know
as the Navier-Stokes equations and govern the motion offluidie to their non
linearity, solutions to these equations are generally harfind. Only in a few
special cases such as for the Stokes equations has this treerexhctly.

1A Newtonian fluid is characterised by the fact that applmatf a shear stress produces a flow
with constant shear strain. This induced strain is propndi to the applied stress and the constant
of proportionalityn is the viscosity



2.2 The Stokes Equations

Let U and L denote the characteristic speed and length scale of the fldwe
expression of the coordinates in terms of the dimensiordesslinates are

r=Lf,u=Ud (17)

where the tilde indicates a dimensionless quantity. lofedl that

UL _£~_ -
t_tt_Tt,p_ Lp_Pp (18)

whereT andP indicate the scales for time and pressure. Scaling the ates
yields % = % and = %D. Upon substituting into the Navier-Stokes equations,
rearranging and dropping the tildes, we obtain

Re(g—l:+(u-D)u> = —Op+ D%. (29)

We define UL
Re= ©~&

(20)
as the dimensionless Reynolds number. We can see thRefar 1, the viscous
term CJ2 will dominate and forRe>> 1, inertia (G.00)0) will be more important.
The Reynolds number is thus of particular importance asntgiee a rough indi-
cation of the relative magnitude of two key terms in the Ne@itokes equation[1].
The case of steady 'very viscous’ flow with very small Reysaldmber Re< 1),
involves the omission of the inertial terms compared toatscterms resulting in
the so-called creeping motion equations or Stokes equation

D-ozDzu—%Dp = —f
O-u =0 (22)

wheref denotes the force applied on the fluid. As there is no longgdaterm in
the equation, the force is proportional to the velocity antdu/dt. The absence
of inertia means the fluid particles have no 'memory’. The flswolely governed
by the current boundary conditions and applied forces aspbrds to changes in-
stantaneously. If all the forces were abruptly removedflthié would stop flowing
outright. The Stokes equations are linear too, so solufrs given geometry can
be superimposed. Stokes flow is also said to be reversihbtesdtwell ordered that
if all forces are reversed then the particles will retracgrtpaths exactly. For ex-
ample, this is the reason why particles sedimenting undeStflowcannotmove
relative to each other. If the spheres were flowing toward$ ether for instance
then all the forces were suddenly reversed, the spheresiwediment away from
each other, not describing the same motion.



2.3 Extension to Flow Between Plates : Plane Poiseuille Flow

In real systems, the flow is often surrounded by boundaries ¢an affect the
motion. It is thus useful to have solution for such cases. dimplest example of
bounded flow is flow between parallel plates. If we assume fiothéx direction
only, the velocity is independent mfand the Stokes equations reduce to the scalar
form P2
u_pg

oW n (22)
We have written the pressure differencedggdx = pg wherep is the fluid density
andg the applied field. A flow with this velocity distribution is kw as a plane
Poiseuille flow.

It has been observed that viscous fluids have no-slip (sbiokindary condi-
tions. The components of the velocity field of the fluid mustiac¢hose of the
boundary. If the boundary is at rest thea- 0 at the boundary. For parallel plates
separated by a distanbe= 2a,, the boundary conditions atg0) = u(h) = 0. In-
tegrating the Stokes equations in two dimensions and ingimg the boundary
conditions yields

u=5vh-y) (23)
The average velocity across the plates is given by

_ 1 /%

u= 27@ /0 udy (24)
and can be rearranged in termsagfandu such that

u=§u_<1—a%>. (25)

3 Particles in a Fluid Under Gravity: Sedimentation

If an isolated hard sphere of radiasis dropped in a fluid, it accelerates under
gravity until the drag forcé described by Stokes’ law balances the gravitational
force Fy and it attains terminal velocitys, known as the Stokes velocity. dfis

the strength of the gravitational field and the spheres’ itkediffers from that of
the liquid by Ap. Us is found by balancing the forces acting on the sphere

Fs = 6rmaUs 2a°/Apg
4 3 US == .

Fg=3ma°Apg 9N
Note that in two dimensions, balancing the forces acting dislayields
Fs = 6rmaUs Ue — aApg
Fo=ma%Apg [ ° 6n °
The sedimenting sphere sets up a velocity fieid the fluid. The derivation of

consists of two steps. First we show an example of generafisolto the Stokes’
equation and then an application of that solution to a sphere
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3.1 Example of a General Solution to Stokes Equation

Papkovic & Neuber[4] derived an exact solution to the Stdkgsations. Here is a
brief outline of their proof.

By rewriting the pressur@ = 021 in terms of a scalall and substituting into
the Stokes equation we obtalif(nu — OM)= 0. For reasons that will become
apparent later, we further introduce the harmonic ve@tsuch thatyu = 00N —.
Substituting this expression for the velocity into the imgessibility equation, we
further obtaind?M= O-®. Integrating yieldg1= 3(x- ®+X) with 0% = 0.

Thus in the absence of body forces, any Stokes flow can beswiittterms of
a harmonic vectof® and a harmonic scalgr

2nu=0(x+x-9)—2Pandp=0-P.

It is sometimes possible to find a harmonic scalauch thaty = u.Ogp— 2¢. If so,
we can dispense witk in the above equation by replacidygby ®'= ® + O (we
can do so becaus¥ is harmonié). Any Stokes flow can thus be written in terms
of a harmonic vecto® and a harmonic scalar

2nu=0(X+xP)-2d and p=0-d.

3.2 Solution for a Sphere Under Stokes flow

Oseen then extended the problem to a sphere in a Stokes flowWf8 field is
modelled by a point force acting on its centre. The problemriten as

0.0 = nl%u—0Op=—f3(x) (26)
Ou = O 27)

His derivation is as follows: We now assume the solution sidlat a harmonic
function of the form®= af /r. By substituting® into the expression derived by
Papkovic & Neuber, we arrive &t

2nu=_Taf<l+%>. (28)

Utilising (14) we also obtain the following expression foetstress

xX(x.f)

=315 (29)

On the surface of a hard sphere immersed in a viscous fleidR, n = x/R and

—oN ndon = 30200

nR R2

2proof of this can be found in the appendix.

®RecallOx =1, Or = ¥ andOf(r) = f'(r)Or = f/(r)%. HenceO(}) = —% and00 (1) =
_ Ll axx

r3 +‘?’r5'

u-n=

(30)




The force acting on the surface of the sphere is

dS 4m
f:—/ 0-ndS= —3af- n— = —1 31
r=R ( RR 3 > D)
such thatr must satisfy the condition = —1/47t

Using (28), the velocity field set up in the fluid by the seditivemnsphere now
reads 1
XX
=f h =—(I1+= 2
u = fJ(x) whereJ(x) s ( + rz) (32)
whereJ(x) is known as the Oseen tensor. When all the forces are balghgcedr
the velocity field set up by the sphere reads

_3a

u=F(x) = 5 Us +T—)2() 33)

and decays as/t.

3.3 Effect of a Second Particle

We now wish to study the effect of a second sphere. We assuengpditiicles
are close enough to interact hydrodynamically and that #reysedimenting in
an unbounded fluid. To find a solution to this two particle peahy we use the
method of reflections. The method decomposes the velociypaessure into a
sum of linear terms and uses successive iterations whegathyterm must satisfy
the boundary conditions associated with the particles.

The method of reflections was first introduced by Smoluchd@8k1) and
was treated at length by Happel & Brenner for the case of sadtimyg spheres|[3].
The method is presented below.

The appropriate boundary conditions for any sphere &#anslating through
an unbounded fluid which is at rest at infinity are

U = ugona (34)
u — Oasr—ow (35)

and the local fluid motion is assumed to satisfy the Stokeatemms. Given that
the equations of motion and boundary conditions are lirtarlocal velocity and
pressure fields may be decomposed into a sum a fields, namely

— u(1)+u(2)+u(3)—|-u(4)—|-... (36)
p = pW4p@4p@®pp@ @37

each term of which separately satisfies the equations ofomatnd vanishes at
infinity. Again because of linearity we may further subde&idach of these into
a finite sum of terms also satisfying the the governing eqnatand vanishing at
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infinity. Focusing on particle, we define the fieldi such that it satisfies the
boundary conditions oaand decays as/t away fromai.e.

uY =ugona. (38)

At the boundary of any other sphere in the system Bathe boundary condition
is then defined as
ut +u@ =uy onb, (39)

termed as the 'reflection’ of the field¥) from particleb, whereu andu(® are
the local values of the velocity fields. Naw? will in turn decay as 1r away from
b such that

u® = —ul® ona, (40)

termed as the 'reflection’ of the field? from particlea. In order to complete
the approximation for the entire fluid field it is necessanestablishu(® in the
vicinity of b also. An approximation of the field is now available for a systof
two spheres in an unbounded fluid, and is giveruby u®) +u(®. This reflection
process may be continued as many times as necessary to sétiafaction of all
boundary conditions to the desired accuracy. The fés@axerted on the particle
by the fluid is then obtained by summing the drag contribiohthe individual
fields such that

fa="fa +1 +15 +... (41)

Wherefg) is the force ora associated with thgth reflection. It is convenient to

choose an axis (theaxis say) of the reference system of coordinates along a line
connecting the centres of the two particles, and we will esthey only move in

a plane(zX). We denotd the distance separating the centre of the two spheres of
radii. We recall that the boundary conditions to be satisdiexi

ud = ugona (42)
u? = —u®4uyonb (43)
u® = —u@ona (44)
u¥ = —u®onb, etc (45)

The force exerted by the fluid anis

fa) = —HKaua = —pKa (iUax+ kUa2) (46)

which correctly indicates that it is anti parallel to theagity vector. Note thak; =
6ruais the resistance coefficient for a hard sphere. We competé&dhslational
effect froma by assuming it generates the same field as would be produced by
point force situated at the centre of the particle and so f{8&) we can express

u® as
KaU X KaU X
(1 _ RaVax (i X aVaz X
u 8T (|+rr2>+ v <k+rr2) 47

11



wherer is the distance measured from the centrea.ofThe centre ob has the
coordinatesc= 0,y = 0, z= | such that the value afl!) at this point is

]y = 8KT|1 (iUax+ 2kUaz) . (48)

From which we can compute the force exertecbon
fie) = —HKy(Up—[u@]p) (49)
, KaUax KaUaz
(U ) g (7

Similarly we can compute the velocity field generated(@/acting onb. Note that
in this case the coordinate system will be at the centiesafch that

K KaU K KaU
271. i b _KaVax\ | Kp _ KaVaz
e =gy (be 8l > " (sz ari ) 0)
Using this result we can compultg) and find that
R = HKalu?a (51)
p.KbKa Une — KaUax UKbKa Uno— KaUaz
g\ PX" e 47 2" )
Similarly,
2
5 _ . Ka (Kp _ KaUax
@ = wea(gy) (a8) (o 2

2
Kp _ KaUaz
- wa () () (0 5):
Thus, upon summation we obtain

fa = fa +1g +fg +
— . Kp KaUax Ka\ [/ Kp Ka\? [ Kp )2
= — IMM(Uax_ﬁ(be_ 81 )X[l+(8m> <8Td>+(ﬁ> anl +...
Kp KaUaz Ka Kp Ka 2 K, 2
_ ku@(Uaz_H(sz_ 8n )xll+(4m> (4T[|>+<H> e +...
Expressing the geometric series as a fraction and combiamgs, we find
fa _Uax— (KpUpy/8m) | Uaz— (KpUp,/4m)
HKa 1- (KaKp)/(8m)? 1— (KaKp)/(4m)2 "

Note thatf,, can be obtained by interchanging the subscrpasndb in the above
equation.

)
)

(53)
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Spheres of a radius a

Figure 1: Coordinate system for the two particle interactio
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In the case of equal-size spheres, as shown in Figl, (53tesdo

I S S
6rua 1+ (3/4)(a/l) | 1+ (3/2)(a/l)’

wherea is the radius of the sphere. The fluid exerts the same forcetindpheres
such that their motion is parallel with the same velocity. a\sesult they will
always maintain the same distance between each other.

If o is the angle gravity makes with the line of centres, and tisolale value
of the gravitational field- is defined, we can find expressions for the velocity in
the direction of gravityg and for the velocity of drift in the horizontal direction.
We begin by recalling that

(54)

Ur = Uxcosa + Uzsina (55)
where Esi 3 . 3
—Fsina a —Fcosa a
Ux = 1+—) ,Uz=—— 1+ = |. 56
X 6T[ua(+4l>’ 2= Tomia (+2|> (°6)
By combining these relationships we obtain
3a
Ur =Us (1+ 1+ co§a)> . (57)
Similarly
3a .
Uy = USE sina cosa (58)

and the fall velocity satisfied = /U2 +UZ.

Drift will thus only occur when the angle # 0 or 9, that is, when the spheres
are not falling one behind each other along their line of mentor side by side
perpendicular to their line of centres. The fall velocityllvide at its minimum
in the latter case. when they are closer together (Fig.2).m&stioned earlier
sedimenting spheres have no relative motion. Consequdtrttigy fall with a drift
they will appear to be chasing each other.

As it is assumed all hydrodynamic interactions are instaadas, the Schmidt
numberSc= n/pDs, 4 which represents the relative velocity with which momen-
tum diffuses across, is assumed to be infinite also.

3.4 Brownian Motion

So far, we have seen that two particles fall faster whemfaliilose to each other,
and along their line of centres. However, all the analysisoupw has been carried
out ignoring Brownian effects. When examining dilute susiens of colloidal

spheres in water or some liquid, one notices that each fgantioves about with a
continuous but random jiggling motion. We can think of thpseticles as being

4Ds denotes the diffusion constant of the solvent particles.

14
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a=Aall=1/19 |

coall=1/5
I o<all=3/10 |
clTTTTTT - all=2/5

— all=1/2

/ 2 2
Figure 2: Normalised fall velocit)& = (ﬂ—g) + (Ld—';) for different values of

the angle gravity makes with their line of centreg,(and the relative distance be-
tween their centresa(1). The fall velocity is normalised bys, the Stokes velocity
for an isolated particle sedimenting in an unbounded fluid.
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constantly bombarded by random impacts of the moleculeseofiquid. The re-
sulting motion of the colloids is known as Brownian motiojp[®hich sees them
diffuse relative to one another. In order to interpret thifudive spreading, it can
be useful to model their behaviour using random walks. Timslives allowing
each patrticle to take a stefx(say) in any (equally probable) direction along each
axis every time-ste@t. The motions in each of these directions are statistically
independent as the colloids upon colliding with the watetetiaes will ’lose’
memory of their initial velocity. The particles will thus me independently from
one another such that the walk will not be biased. We expecb#haviour of
the colloids to be different in the case of sedimentationmBrwnian effects are
taken into consideration. In contrast to pure Stokes floe,thrticles now move
relative to each other such tHas no longer fixed.

The patrticles’ positions are updated as

( X (1) >%( ((ttj:gtt)): .(())iiAA;(())- >

The spreading of a particle undergoing a random walk can kesuned by the
mean squared distance traversed in a time

<X >=< 7 >=2Dt (59)

whereD denotes the diffusion constant of each particle. For pgegidiffusing

relative to each other, we expect the relative diffusionstamt to be twice the
standard diffusion constant as each particle is undergiténgwn random walk.
The particles’ relative mean squared displacement alamg-#xis is thus given by

<Ky >=< (% —Xj)?>=< K>+ <X > —2 < XX > = 2Dgt (60)
N—_———’
0

whereD,e = 2D is the relative diffusion constant. We can relate this nedadlis-
placement td anda by

. X
=& +2,, cosa= —22 _ sing=——e__
\/ X + Zh) \/ X + Zhe)
such that

E B 2
Us
zr2el > + 3a Xr2e| el

1+
4 Xrel+zr2el< Xl + el 4/ Xl + Zhe Ko+ Z

= f(Xel, Zel) (62)

(61)
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The probability that the particles have diffused a distaned from each other at
any given time is
1

P(r) = P(Xrel)P(Zel) = 4T[Drelte*(xr2el+zr2e|)/4Dre|t (63)

from which we can see that larger diffusion constants wiltier flatter distribution
functions. The average fall velocity, which takes into astoBrownian effects

now reads U
<G - / / P(xel)P(Zeel) f (Xl Zel). (64)

3.4.1 Simulation and Results

We performed a simple simulation to see the evolution of .(6B)is was done
using the inbuilt Gaussian distribution function in MatlaResults are shown in
Fig.3.

As expected the inclusion of diffusion causes a temporaugen in the rel-
ative fall velocity. The normalised fall velocity decaystte Stokes velocity with
time. This means the velocity of each particle tends to thecity of an isolated
particle implying the particles are diffusing away from aareother and gradually
no longer feel each others’ presence.

As the particles now move relative to each other, the anglie ine of centres
makes with gravity now changes randomly. While they reméase enough to
influence each other they will be seen to still follow eacheothind the 'direction’
along which they fall will keep changing randomly.

The results are scaled with the Stokes tine:- a/Us and the diffusion time
t, = a?/D. They indicate the time a particle takes to sediment or skffa distance
equal to its own radius. These timescales are significaritegsdive an indication
of how the particles are behaving relative to each other.nbmedimensional Peclet
number is given by their ratio

Pe= t—d. (65)

ts

For examplePe= 5 impliesty = 5ts which indicates that by the time a particle has
sedimented a distance equal to five times its radius, it Hasdd a distance equal
to once its radius. The Peclet number thus indicates the anwuiffusion; the
higher its value, the slower the diffusion. Their relativetian is therefore reduced
and we would expect their relative fall velocity to decayhe Stokes velocity less
rapidly.

Fig.3(top) shows the decay of a particles normalised vglaeith Pe= 5. For
larger Peclet numbers, the decay would be slower while fallemPeclet numbers
the normalised velocity would decay much faster. Fig.3¢m) shows that when
time is normalised by the diffusion timi, all curves eventually collapse to a
master curve. This illustrates the fact that the normalifsdidvelocity evolves
on the same timescale as diffusion. AftentglGhere is still a correction to the

17
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- - - xrel=0,zrel=1

xrel=1,zrel=1

161 NN N —xrel=1,zrel=0

10

5
tith

Figure 3: Temporal evolution of the normalised average Valbcity < u% >=

[ [ P(Xel)P(zel) f (Xrel, Zel) plotted for different initial startup positionge; and
Zel- The new expression for the fall velocity now incorporatifsats of Brownian
motion and is plotted as a function of time normalised by ttak&s timets and the
diffusion timety.

Stokes velocity of around 10%. The decay gets increasingly with time as
diffusion scales as v/t. Note that Fig.3(top) is Peclet number dependent, whereas
Fig.3(bottom) is Peclet number independent.

The relative fall velocity also gives a measure of the effeica secondary
particle and therefore gives an indication as to level ofalation in the particles’
motion. The time their motion will be correlated therefoepdnds on the amount
of diffusion the particles will undergo as they are sedirmentand thus on the
Peclet numbePe

Note that we have assumed Brownian motion only occurred o dimnen-
sion. In three dimensions, we would also include the y-camepo of the rela-

tive distance between the spheygs, such that = /X2, +y2, + z2, andP(r) =

P(Xrel)P(Yrel)P(zel). We do not expect to see qualitatively significant changes bu
further work will include analysis in three dimensions.
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4 Stochastic Rotation Dynamics

As we have seen, Brownian forces should not be neglected {gb&img at sedi-
mentation. To study the effect of diffusion on more complgstems, we make use
of Stochastic Rotation Dynamics (SRD). The SRD model, whigls first intro-
duced by Malenavets & Kapral [5], is in the spirit of latticaggmodels. It has the
advantage of easily being coupled to a solute, such as payonesolloids which
can subsequently be treated using molecular dynamicsithiga: SRD provides
a novel way of treating hydrodynamics problems with Browrgdfects.

The solvent is modelled by an ensemble of particles whoséqus (i (t)) are
updated by successive streaming and collision procedibasng the streaming
step, the particles are allowed to propagate for a given &iyeafter which their
positions are updated via

it Bte) = ri(t) + Vi (t) Bt (66)

wherev(t) is the velocity of the particles. The collision step (whidtors every
otc) involves splitting the particles into small cells and tledocity of each particle
within a cell (/cenr) is rotated relative to the centre of mass velocity of thé cel

Vi (t =+ Ote) = Veenl (t) + . (Vi(t) — Vee (1)) 7

wherew denotes a rotation matrix which rotates the particles byrageata with
equal probability. The collision procedure transfers motam between the fluid
particles while conserving the total momentum of each cell.

The fluid particles only interact with one another througa tlollision proce-
dure. Direct interactions between the solvent particlesnat taken into account.
This coarse graining step is the main cause of the efficiehsjmulations using
SRD. This carefully constructed rotation procedure ersarergy and momentum
are conserved locally, thus capturing the properties oNtder-Stokes equations.
The Brownian behaviour of the fluid particles is included bygigning each particle
with a random velocity drawn from a Maxwell type distributio

The system is coupled to a thermostat to prevent any signifibactuations
in the average temperature. This can arise when an exteet@ligi applied for
example. The thermostat acts by rescaling the relativecitide (i.e. the velocity
of a fluid particle relative to the centre of mass velocity)antthe local temperature
deviates from the desired temperature.

Kikuchiet.al[6] calculated analytical expressions for the viscosity Nin +
Ncol, resulting from contributions of the streaming and cadlissteps respectively
in 2 dimensions

o YkeTA % 1

Mhin = g ((y—l—l—ev)(l—cosa) 2> (68)

m(1— cosa)
63tc

Neol (y—1+e) (69)
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wherey is the number of solvent particles per cetithe mass of a fluid particle.

Colloids of masdvl can be embedded in the solvent if we wish to simulate the
behaviour of spherical colloids in a fluid. They are propaddhrough the Velocity
Verlet algorithm with the molecular dynamic time siltp

Ri(t)

R(t+dt) = Ri(t)+\/i(t)6t+vét2 (70)
Vi(t+8) = w(t)+W& (71)

whereR; andV; are the position and velocity of the colloid, aRdthe total force
exerted on the colloid.
They interact with each other through a repulsive potential

ooty = | ()= ()P +1) (r=2%on
0 (r> 21/ 240cc)

while the interaction between the colloid and the solverttdscribed by the less
precipitous potential:

bes(r) = { de ((0765)12_ (GTCS)6+ %) (r< 21/60'CS)

0 (r> 21/60cs)

where the L-J repulsive strength is chosen usually chosée to= 2.5kgT. We
choose smaller exponents to describe the latter potesttadth the mass and range
of the colloid-fluid interaction are less than that of thelaidtcolloid interaction.
The colloid-colloid potential enables colloids to be maeidlas hard spheres while
allowing accurate integration of the Verlet equations fdatively large timesteps
ot. Although exponents in the potential are chosen such tliebi large as possi-
ble, dc(r) is constrained by the fact thét is limited by the colloid-fluid interac-
tion, and not the colloid-colloid interaction.

When the density of the solvent particlegs much higher than that of the col-
loids, even small overlaps between two colloids can leadngel attractive forces.
Louiset.al[7] showed that for low enough colloid densities, the edpiilim deple-
tion interaction between two colloids is given by

q)depl(d) =nskgT [Vexcl(d) _Vexcl(w)} ) (72)

whereVeyc(d) is the free volume excluded to the solvent by the overlap. ahted
depletion forces can be counterbalanced by introducingoemsating interactions

q)compz _q)depl-

4.1 Simulation Parameters

We now explain the motivation behind our choice of SRD patanse
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Simulation units for mass and unit cell size were seahasms=1,a, = 1 and
ksT = 1. The program units for time and velocity are be related &b uaits via

keT] =) i
and
[vel]:ﬁ: k';mT. (73)

In order to eliminate depletion, it can prove useful to siatelcolloids with a
slightly smaller hydrodynamic core. Accordingly, we set ttolloid-solvent inter-
action range to be slightly less the colloid half diametgy. We further we chose
€ such that the colloid-colloid potentia(d) = € at distancesl = 20.s, and that at
that distancel, depletion interactions have just become zero. This ertbere are
never too few solvent particles between two colloids thusidimg any depletion
forces.

As mentioned earlier, the molecular dynamic timesdeps limited by the
colloid-solvent interaction. We do not want the potentigl to ever become too
large and consequently wish to construct a fairly consevdimestep. The for-
mer is achieved by preventing any individual solvent maiedtom approaching
too close toogs. It will only interact with the colloid particle beyond theuoff
range 2/6a.s so we would like for an SRD particle to travel a distance edoal
1/5 of the distance.s(21/® — 1) for a given timestep at most. SRD particles each

have an average velocity = ,/k';mT and hence an appropriate valueddfshould
satisfy
0cs(21/6 — 1)
CF =
55t

This leads to values in the order &if= 0.1a0(ms/kBT)1/2 whenaogs = 2ay. Using

the same arguments, we can compare this timestep with theeoneuld construct
if we were simulating standard Brownian motion. Browniantiomis scale invari-
ant; the random walk does not depend on the size mean free Pa¢ghBrownian
timestep is henceforth constrained by the colloid-collimiteraction only. Like-
wise, we desire colloids to trave)/5 of the distance..(2'/%* — 1) at each Brow-
nian timestep such that

= 3t = 0cs(2Y/6 — 1) /5¢k. (74)

(ccc(zl/24 - 1))2 = Bty = (Gcc(21/24 - 1))2_

2
< X5 > oty 5 5

(75)

Using analytical expressions such as that derived by Kilaici[6] we can calcu-
late the self diffusion constant D of the fluid and predict tifee ratio of the SRD
to Brownian timesteps &t /6t ~ 0.12.

To ensure the motion is liquid like, care must be taken inipgkhe SRD
collision intervaldt; such that the Schmidt numb8c= v/Ds = ¥TV% 5. 1, where

21



V = ns/pPs is the kinematic viscosity of the solvent. We choose a nedhtismall
collision interval pt. = 40t) leading toSc~ 5.

The current version of the SRD code does not yet implemeck &tbund-
ary conditions on the colloids such that it experiences dioage with coefficient
& = 4rva (instead of 6). In real suspension the value is much closérand so
changing the boundary condition should give slightly moteusate results, al-
though we do not expect the changes to be qualitatively fiigni.

Under plane Poiseuille flow, between parallel plates seépalay a distanch =
2a, the fluid and the colloids usually travel with mean vel@sty = %vmaxi Av.
Vmax IS the velocity at the midpoint between the plates and canrédiqied by in-

tegrating the Stokes equations and utilising the boundangitions for Poiseuille
_ pg

flow Vimax = S The field applied on the solvegtis usually chosen such that
Vmax < Cr = 1/2kgT /m;, wherece denotes the speed of sound in the fluid. Typi-
cally, we choosg such that the Mach number is boundedNbg = v/ce ~ 0.1.

To avoid inertial effects, the Reynolds number must be kelptively. Drawing
attention to the fact that for small collision intervals tbellisional part of the
viscoscity term dominates)(~ Neol), and that ~ y, the Reynolds number for the
flow can be shown to scale as
va_ psg
v 2n
This quantity therefore only depends on the field appliedhensplvent and the
width of the channel only.

The density of colloids is chosen to more or less match thahefsolvent
(pc =) in order to avoid any sedimentation. We define the Pecletbrurof a
colloid Pe; = Pe(occ/2a). Given that the colloid self diffusion constant scales as
Deol ~ N1, Pe: can also be shown to scale as

VOcc Pg0cc
P& 2DcoI 4”
i.e. the colloid Peclet number depends on the average nuohlleid particles per
unit cell, the gravitational field, the size of the colloiddathe width of the channel.

These approximations are very useful as they enable us tieetfiy tune the
properties of the system from the outset.

a ~ gdt2a’. (76)

a_2

n-~ ngCCaZ, (77)

5 Diffusion in a Pipe without Flow

5.1 Diffusion and the Velocity Autocorrelation Function

As stated earlier, a hard sphere of radiysedimenting with velocity in an un-
bounded fluid experiences a drag fofee- 6rmacU. If the sphere also undergoes
Brownian diffusion, the characteristic diffusion coeféiot for the motion is given
by the Stokes-Einstein relation[8]
_ keT
6mac

(78)
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According to Newton’s law, a particle’'s masg multiplied by its acceleration
dv/dt, wherev is its velocity, equals the sum of all forces acting upon itorf
these principles, we can write the equation of motion for diga undergoing
Brownian motion as[8] g

%
mdt = f(t) —&v (79)
known as thed_angevin equation In this model representation, two forces act on
the particle; friction described by Stokes’ law with the gimefficienté = 6mmac,
and a random force due to the Brownian motigh).

The Langevin model can further be used to illustrate the aldhe time cor-
relation function[9]. Here are the main arguments:

The velocity autocorrelation function reveals how quiclparticle forgets its
initially velocity due to Brownian fluctuations and is congtted by first multiply-
ing the velocity of a particle at time= 0 with its subsequent velocity at timend
then averaging the product over many collisions to get the tiorrelation function
C(t) = (v(O)v(t)).

An expression for the velocity autocorrelation functioroistained by manip-
ulating the Langevin equation appropriately. We first pant that the direc-
tion of the Brownian force is uncorrelated to the particléocity, we may write
(v(0)f(t)) = (v(0))(f(t)). Also, as the Brownian force is random, it will on aver-
age by equal to zero over many realisatiofig() = 0)).

By multiplying both sides of the equation by0), taking the ensemble average
and utilising the statements above, it is shown that

(V(O)V(t)) = (V*(0))e /™. (80)
Since(v?(0)) = (k,T/m), the above equation can be rewritten as
(D) = €T em (81

i.e. the function decays exponentially with time. This idyanue for short times
however. At longer times the correlation function has been shown[10] to follow
the well known algebraic long time tai(t) ~ t9/2 whered is the dimensionality of
the system. Ignoring the tail and integrating the velocityoaorrelation function

gives
ke T

= kB—T e_zt/mdt = T - D, (82)

m Jo

| o)
0

becausefy’ e &/Mdt = m/&. In the two dimensional geometry, the longtime tail
of the correlation function goes agtlso that the integral diverges logarithmically,
suggesting that the self diffusion coefficient remains talependent even at long
times. This is not the case in three dimensions.

The study of correlation functions is thus useful as tha&gnals are related to
transport coefficients.

SHere we mean long on the hydrodynamic timescale
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5.2 Wall effects

In this section, we turn our attentions to the motion of aaidhl particle in a
confined geometry. It is well documented that a sphere sdggem a fluid at
rest next to a flat wall is subject to hydrodynamic effects tuéhe sphere-wall
interaction.

Happel & Brenner[3] showed that the effect of containinglsvalas in many
ways analogous to the effect of a secondary particle, anldl dmuaccurately pre-
dicted by an extension of the method of reflections describegction 3.3. They
demonstrated that when a sphere got closer to a wall, theSthiag force acting
on it increased, and that its diffusion coefficient was tfmesmaller than in the
bulk. For this reason, the effect of a tube wall is to slow ddwa motion of a
particle travelling in its vicinity.

In three dimensions, the drag force acting on a sphere cappgmated into
independent components due to the linearity of the Stokeatms, for motion
parallel and perpendicular to the wall

Fi = FQ (84)
and consequently, the diffusion constants for motion pelrahd perpendicular to
the wall are

D) ={;'D (85)

D, =7'D, (86)
where((| 1) is the appropriate correction factor due to the presencaeofvall.
Furthermore, even in the low Reynolds number limit, the exatutions for the
effective wall drag force do not have a closed analyticamnfoApproximate rep-

resentations fo | ) can be obtained using the method of reflections and to first
order are given by [3]

D 9 3
1_Zl Y& o
G=p~1 16x+o(x> (87)
. D 9ac ac)3
1 1
e O P &
=D 8x+o<x)’ (88)

wherex is the distance from the centre of the sphere to the wall.

The method of reflections nonetheless fails to provide antex@alytical solu-
tion for the drag force acting on a sphere when a second wpleisent. In their
simplest form, approximate analyses based on the lineafithie Stokes’ equa-
tions, have assumed the effects of the drag from each walll tmuindependently
superimposed[3].

Due the friction exerted by the walls, the long time tail of trelocity correla-
tion will also be lost as expected. In their theoretical gtafla particle suspended
in a fluid between two parallel plates, Bocquet and Barrathbwed that this was
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indeed the case. In the two dimensional case, the integtiaéafelocity correlation
function in a bounded fluid will no longer diverge as the algébtail sinks at long
times. The sink in the algebraic tail occurs at a timalependent on the width of
the channeh. The diffusion constant thus evolves@s- fOT 1/t ~log(h).

5.3 Simulation and Results

Simulations were performed in SRD to illustrate wall effecll simulations were
performed in two dimensions. Colloidal particles were esgnted as disks of the
same radius in a fluid bounded by infinitely thin parallel @taénd in the bulk. No
external field was applied and the particle was allowed tiishf freely.

Fig.4 shows the evolution of the self diffusion coefficiefasthe motion of a
disk like patrticle in a quiescent fluid. Only the case of motiarallel with respect
to the boundary was considered. We see that, as expecteatiffttston coefficient
does not converge in the bulk. In the case of diffusion in aavarchannel, the
diffusion constant reached a maximum, before eventuatiyrating at a slightly
lower value. The velocity autocorrelation function is pat in the inset. In an
unbounded fluid, the function is always positive. We see ithdlhe presence of
walls it becomes negative but a longtime tail is recoveretbrg times. These
features have also been observed in other computatiordiésfi2].

In Fig.5, we show the particle diffusion constant for chdsré different sizes.
We see that within the error bars, the evolution is consistgth D ~ log(h).
We observe rapid fluctuations for narrower channels. Theease becomes less
important as the duct becomes larger. No study of the draffideats has been
reported in two dimensions. We will in future studies cany simulations in three
dimensions to determine the correction factor for the drag t the wall, and
check whether we can get good agreement with the theorgttias predicted by
Happel & Brenner.

Fig.6 shows that, at first glance, collisions with the wallldled) seem to cause
areversal in the diffusion to a certain extent. This cotieha(if any)may be down
to hydrodynamic effects due to the particle being very cltosthe wall. The low
density of fluid particles between the colloid and the wallynaéso render mea-
surements difficult. We will address these points in mordtdapfuture studies.

6 Flow in a Pipe with Diffusion: Taylor Diffusion

Taylor diffusion is the result of convection due to a flow andlecular disper-

sion, as first studied by G.I Taylor [13]. When a coloured sols injected into a

channel of liquid flowing under a Poiseuille flow, it initiplgets stretched out into
a paraboloid type slug by the velocity distribution. Coniat alone contributes
to this early axial spreading. Radial diffusion subsedyecduses the deformed
concentration profile to even out, as particles at the froth@ paraboloid migrate
onto streamlines closer to the edges, and particles at énaliffuse inwards onto
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Figure 4: Parallel (x) component of the self diffusion caeéint of a disk like
particle D¢q) of radiusa = 2.15a9 relative to the orientation of the channel, in a
bounded and unbounded fluid respectively. The particleitigliy located at the
midpoint between two walls separated by a distameel2ay. The fluid is at rest
and is simulated witly =5 SRD particles per unit cell. The inset shows a plot of
the particle’s velocity autocorrelation function and #tcates the recovery of the
long time tail.
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Figure 5: x-component of the self diffusion coefficient of iakdlike colloidal
particle of radiusa= 2.15ag in channels of increasing width= 2a,. The evolution
of the solvent diffusion coefficienD)s) is also shown.

700 ‘

Figure 6: Parallel component of the displacement. Thesioiis with the wall are
circled.
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Figure 7: Taylor dispersion between parallel plates. N#glg radial diffusion,
the initial solute gets stretched to a paraboloid shaped. piffusion, indicated
by the vertical arrows, evens out the concentration pragéeling to a wider plug.

the faster velocity streamlines. This in effect slows dotva front of the slug and
causes the rear to speed up, resulting in a more elongatiet @fghe solute with
a Gaussian like concentration profile.

6.1 Taylor Dispersion of Small Solutes

To get a better physical understanding of Taylor diffusiets assume that convec-
tion and diffusion can occur successively[14]. Conveciiutially stretches the
solute into a parabola. The solute at front end of the pagalealds the solute at
the edges by a distancigt after a timet. Hereug = %u_denotes the velocity in the
centre of the pipe. Diffusion across the channel then sntbarparabola into a
plug, as shown in Fig.7. This occurs at timgs~ a%/D it takes the solute to reach
the the edges. On such timescales, the plug has a Wigth- uptp = uoa%/D.
Seeing that diffusion scale as+/t, after Nty 'times’, the plug is stretched by a
factor ofN¥/2. The plugs thus grows diffusively and its width scales as

T AT AN
(WAY2 ~ NYANp ~ | =EPt] (89)

Accordingly, in addition to molecular diffusivit) ,the solute can be seen to diffuse
along the channel with an effective dispersion coefficient

uga3
D* ~ —.
D (90)

Note that the effective dispersion coefficient is inversatgportional to the
molecular diffusion coefficient, which may seem counteuiinte at first glance.
However, solute molecules with higher molecular diffusdgs spend more time
diffusing across the pipe and less time sampling partiordéocity streamline thus
reducing theieffectivespreading. Probstein[15] presents detailed analysisdor fl
in a three dimensional pipe of radiag that yields the prefactor

1242
uap

D* ~ —.
48D

(91)
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We shall carry out analysis in a two dimensions. Simulatiams faster in that
geometry so arguments are easier to test. Once sufficieerstadding has been
gained at that level, we shall continue to three dimensions.

6.1.1 Taylors’ Derivation in two Dimensions

We now present the derivation for obtaining the correctgmiefr in two dimen-
sions. Our analysis follows closely the arguments of Pesbdbut is adapted to
take into account the two dimensional geometry.

The Convection-Diffusion Equation

The dispersion process is an example of combined conveatidndiffusion ob-
served when a solute of concentraticiy, t) is allowed to flow between two plates
under a plane Poiseuille flow.
The convection-diffusion equation describing the evolutof the concentra-
tion is given by
dc+ u(y)dxc = D (dZc+ dic) , (92)
whereD is the diffusion constant as would be observed under difusione.

We scale the convection-diffusion equation by introdudimeg following non-
dimensional constants

lo, —
X=X, y=apy, t= Ugt, u=ud (93)

wherelg anda, represent the characteristic lengths over which condgmtrahanges
along the x-axis and the y-axis respectively. We shall trassime they represent
the dimensions of the channel. The dimensionless equation dropping the
tildes has the form

2
%

a
Pedic+ Pel—gu(y)axc = d5c + |20>2<C : (94)
~~ 0
axial convection radial diffusion axial diffusion

For high Peclet nhumbers, the terms on the left-hand sidedwithinate, and we
will be in the convection dominated regime. Conversely,lfov Peclet number,
the terms on the right-hand side will become important afidision will domi-
nate. Note that because of tbé/ |g term, radial diffusion will set in at different
conditions than axial diffusion. In the case where only aadiffusion is promi-
nent, these coefficients will scale as

lo Gt ua lo

l« —=—=—==PeandPe« — (95)
ap a ab ap

where the characteristic time for radial diffusiort is tp = a%/D.
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The Solution

The only change in the concentration in the axial directiat fallow from con-
vection and, we assume so axial diffusion can be neglectes. thus useful to
switch to a coordinate system in which the x-axis moves withrhean speed of
the flow. We will usex' andu' to denote the moving axis and the velocity with
respect to the moving axis,

x’:x—LTtandu’:g 1—3y—2 (96)
2 a3 |’
Under this coordinate transformation, the convectiofidibn equation becomes
u
oic+ > (1— 3{%) 0xC= Dagc. 97)

whered; now denotes differentiation with respect to time at poitd® g the mov-
ing axis. We also assume that the plates are impermeabléanthere is no flux
at the boundaries such thiic = 0 ony = a,,.

Taylor then made the assumption that in the moving framefltve was quasi-
steady after long times & a% /D), and that concentration only varies in the radial
direction such thad;c ~ 0. He then extended this assumption to say that if
were independent of with larget, thendc/0x' would be independent af. In
other words, as we move with the fluid, we would expect tharaftiong time the
axial concentration gradient will become independent efrddial position. Con-
sequentlygyc ~ dyC wherec s the average concentration across the plates.
The equation we wish to solve for is now reduced to

u 2
de= oo <1— 32—%) dyC (98)
which can be readily integrated to give the solution
uag y 1yt
C=C+ Eaxrc (a_%_ﬁa_‘é) (99)

wherecy is the concentration at= 0. The average concentration over the plate
separation is given by

— 1 r&
C=— pcdy (100)
Upon integration, we find
_ 7 Ua&g
C=Cy+ Eﬁaxrc (101)
such that we can express the concentration in ternss of
_ug 7 Y 1y
C=C+— | ——=+=—== | ogC. 102
"D ( 10+a% Zag)ax (102)
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According to Taylordy ¢ ~ 0y C and so, upon differentiating the above expression
for c the following condition must be satisfied

uas 1 4|
" w1 = pe 0

The average mass flux across the plates is
— 1 (% ly [a
Jz—/ dymcli=m / —d(—p>cd 104
a0 Jo ydy % | a2y (104)

with mthe unit mass across the plates. By repladpg by dyc andp = mc and
integrating we obtain

J=—-D*0yp (Fick's law) (105)

where
* Za%u% 106
109D (106)

is referred to as the Taylor dispersion coefficient.

This result is somewhat significant as it states that theageesolute gets dispersed
relative to a plane moving with mean velocityas though it were being dispersed
by a molecular diffusion process with a dispersion coeffici = D*.

From the conservation of mass principle we obtain

pdc=—0yJ = 0,C=D*d3C. (107)
In the original rest frame, the diffusion equation is writte
0C+ U0yC = D*02C (108)

and is often termed th&aylor dispersion equatian
These equation are valid provided the effect of axial mderadiffusion is negli-
gible compared with the Taylor dispersion,

D*>D = Pe> /1052~ 7. (109)

Combining this result with the previous constrainsRmwe find that Taylor dis-
persion only occurs in the range

4
7 < Pe< a—o (110)
p

If the initial quantity of the substance is know, say, then it can easily be
shown that the dispersion relation has solution

_  (x=up)?
c= nD*teXp( Dt ) (111)

31



Measurement of the width of the concentration profile carvgnaseful as it pro-
vides a way of determining self diffusion constants of ddioby experiment[16].
So far, we have assumed molecular diffusion in the axialkctive to be neg-
ligible. Aris[17] showed that when this was not the caBé £ D) the effective
diffusion could be written as the sum of the molecular andTiégor dispersion

coefficients
Dta=D*+D. (112)

Drais termed the Taylor-Aris dispersion coefficient.

7 Taylor Diffusion of Colloids

The dispersion of colloids incurs some corrections to thgiral analysis by Tay-
lor. The modifications arise when these are comparable étsiplate separation
[18], namely wherh = % becomes appreciable. The colloids sample smaller por-
tions of the Poiseuille velocity distribution as the distamheir centre can approach
the walls is limited by their own radius. This excluded regemsures that, on aver-
age, colloids travel through the capillary faster than thiieent. Colloids of smaller
sizes are also expected to travel slower than larger onbgwasan get closer to the
boundaries and sample the lower velocities. This size siariuphenomenon can
used to analyse the size of colloidal particles (hydrodyinatnromatography[19]).

Here, we follow the argument of Brenner & Edwards in threeatisions, and
we assume that the colloids have the same velocity as the Tihigh, their average
velocity is given by

3 u [ y? 3_/2 2. 1,
. 1- L Jdy=20( 2+ 50— 2A2). 113
te 2ap—ac/o ( a,%) y 2”<3+3 3 ) (113)

For infinitely small colloidal particles\ = 0 andu; = uwhile for particles the size
of the channel) = 1 andu, = 30.

If we redo the derivation of the previous section (6.2.1)rtgknto account the
new boundary conditions then, we find

2330
109D

The radial dispersion of the colloids is how effectivelyuedd as they are unable to
sample the higher velocity gradients near the edges, edcreducing the radial
dispersivity, thus leading to a lower value of the Taylopdision coefficient.

Through their moment analysis, Brenner & Gaydos[20] foumat,tin three
dimensions, the presence of walls introduced correctionthe first order inA.
The extra terms reduced all the numerical coefficients iménthree dimensional
expression of the dispersivity obtained when consideraxgluded region’ effects
alone. Boundaries therefore reduce the dispersity further

D*

(1-25A+0.7502+ 0(A%)). (114)
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No study of this problem has been reported in two dimensibmiuture simu-
lations, we will try to measure the effect of the wall in thdimensions in order to
approximate this contribution.

7.1 Simulation and Preliminary Results

To test Taylor diffusion, and the corrections due to the edet regions and the
wall effects, we performed preliminary simulations of oddlal particles undergo-
ing Taylor diffusion. The simulations were performed in tdimensions, for SRD
particles with number density= 5 between parallel plates bounded separated by
a distanceh = 32. The colloids were assumed to be disk like particles oiusad

a; = 2.15ag, such thaf ~ 0.13.

Simulations of Taylor diffusion were run for 24 closely padkcolloidal par-
ticles at pipe Peclet numb&e~ 17. The runs were carried out in channel of
width h=32 (A = 0.13). The solvent particles were subjected to an externd fiel
g = 0.0004 along the length of the channel. We measured the mguitean ve-
locity of the colloids as %+ 10-2. The mean square displacement with respect to
the frame moving at the mean speed along the x-directionveasdalculated from

N
{6 (1) = Xeom(®)])?), (115)

Z|H

wherex; denotes the x-coordinate of each particles, &g the position of the

centre of mass of the particles at timeWe for simplicity, we shall now refer to
this relative average mean square displacement as the Mitedesults are shown
in Fig.7.

From the m.s.d of the colloids simulated in SRD, we calcdldte effective
dispersion coefficient of the particles in the channel anohébit to beD ~ 0.22.
The Taylor diffusion coefficient calculated using his onigfi arguments was found
to beD ~ 0.87 and implementing the 'excluded region’ corrections mag8ren-
ner & Edwards yielded a valug = 0.57 for the dispersion coefficient.

As expected, for finite size particles the Brenner correctiives a slightly
better estimate of the motion of the particles althoughehiemains a significant
discrepancy between the value given by the correction aadtie obtained by
simulation. We believe the discrepancy to be due to sevacabffs. Firstly, we
have not included any correction termshion account of the walls, which would
yield a lower value ofD. Furthermore, we have not taken density effects into
consideration. As the colloids are closely packed togetairodynamic effects
will ensue leading to further deviations. Finally, the heéghorder contributions
more important in two dimensions, as we have seen in the dae aliverging
diffusion constant in the bulk. We will duly address all théssues in prospective
studies.
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Figure 8: m.s.d of colloidal disk like particles undergoifngylor diffusion with

A =~ 0.13 for pipe Peclet numbé&e~ 17. The solid curve shows the m.s.d averaged
over 24 colloidal particles obtained using SRD. The dasimeddorresponds to the
theoretical m.s.d of a solute particle as originally presticoy Taylor. The dotted
line shows the m.s.d with the 'excluded region’ correctiasdorecast by Brenner
& Edwards.
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7.2 Outlook

As previously stated, colloids of different sizes flowingveeen plates are expected
to separate because they sample different ranges of theuRlgiglistribution. For
the separation to become apparanshould be large enough so that the 'excluded
region’ correction becomes relevant. If the colloids are frge however, they
might have trouble getting past each other, which might mell igad to other
corrections.

The derivation of the corrections induced by the channeéteeen carried out
to evaluate the perturbation of the boundaries on the difusf colloids. The
analysis does not include however the perturbations theidadlself would induce
on the flow. In other words, we have somewhat naively assso#tht fluid passes
through the colloid particle freely. For large enough doléo or large enough
density of colloids, we would expect their contribution ®cbme more apparent.
Will the profile still maintain a Poiseuille distribution Buch cases?

The 'excluded region’ property of colloid dynamics can atsoextended to
polymers flowing in narrow channels. The analysis would Iss teivial however
as polymers can change their shape with the flow.

8 The Limit of 1-D Diffusion: Single File diffusion

In this section, we turn our attention to the motion of calkin the limitA ~ 1, i.e
to the limit of one dimensional or single file diffusion.

Single file diffusion (SFD) refers to the-one dimensionaltiow of particles
in channels that are so narrow that mutual passage is extluiibe sequence
of the particles remains unchanged and diffusion of anyigarttepends on the
collective motion of neighbouring particles in the samediion. This dependence
leads to anomalous (non-Fickian) diffusion in the long tlimét for over damped
systems. In such systems, particles no longer diffuse imdnsal sense but with
a(x®) ~ t1/2 dependence of the mean square displacement upon time.

Moreover, if the channel is filled with fluid, the motion of tiparticles be-
comes correlated on even more rapidly. As they move throbghiquid, they
create a flow field that affects the velocities of the parsidtethe vicinity. Con-
sequently, the motion becomes correlated on a timescaleshban the direct
collision between neighboring particles. On that accowetdefine the following
time scales; the direct interaction tirgavhich is time it takes adjacent particles to
interact via collisions and the hydrodynamic interactiometty which refers to the
time it takes a particle to feel its nearest neighbour viarbgighamic coupling.

The long time behaviourt ¢> t;) induced by the correlated motion has been
predicted for infinitely long systems to be[21, 22]

() =Fvi (116)

whereF is the SFD mobility.
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Figure 10: Comparison of the dependent trajectox{esfor neighbouring spheres
for n = 0.09,0.38 and 071 respectively. Experimental results[26] are plotted in
the top graph, and the simulation runs in the bottom plots
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8.1 Experimental Review

Several experimental studies have been carried out totigeés hydrodynamic
coupling in SFD. Lutet.al]28] performed an experiment which covered both regimes
in order to compare the particle mobility obtained by shianetmeasurements with
the long time approximation predicted by theory. The experits were performed
with colloidal particles, and, in contrast to previous SKidées, the particles were
confined to a 1 dimensional geometry by using scanned opivesizers in order to
avoid any hydrodynamic wall effects. Their experimentaélipeonsisted of a silica
glass cuvette with 2@n spacing filled with a highly diluted agueous suspension
of sulphate-terminated polystyrene particles of diam2i@gum

The particle trajectories were recorded for several hondsthe mean square
displacement was calculated frasft) = %ZN([X& (t) =% (0)])%). Z(t) was then
plotted as a function df/2 and by fitting the data with (116), the mobility was ob-
tained. This was only carried out however for large timesnetiee diffusion was
no longer linear. They found good agreement between theathatéhe theoretical
predictions.

The particle displacement distribution function is defiresdthe conditional
probability of finding a particle at positioxafter timet and is given by

P(x,t) = 1 e, (117)
ATFt1/2
Measurements were taken at different times, all greatdrttrend the data was
found to be in good agreement with (117). Rescaling the dat&'balso led to all
the curves collapsing to a single master curve.

Lin et.al[26] studied the diffusive behaviour of silica colloidgireres sus-
pended in waterg, ~ 1.58um p = 2g/cm®) and confined in long narrow grooves
2 mm long and @mwide and deep. The colloids were slightly charged resuiting
slightly attractive pair potential and the system was dopaited for 6 hours before
any measurements were taken. Tat 24C). Using video microscopy they were
able to locate the centre of the spheres along the groovehantiajectories were
extracted from a sequence of digitised images. Measurasnregre made at five
different packing fractiom = Na./L whereL is the length of the groove in the
field of view (L = 106um).

They found that in the time regime shorter than the hydrodhioanteraction
time, the system underwent normal diffusion. For largeresistill smaller than
the direct interaction time, the motion of the spheres wetsitéd by hydrodynamic
interactions. At high enough packing fraction 0.39) the spheres separated into
clusters and moved in synchrony within each cluster. Thebmurof spheres in a
cluster also increased as a function of packing fractioreyThrther constructed
a same time pair correlation function (for the four nearesgimbours only). The
correlation increased at higher packing fractions as @rpe@t low packing frac-
tions the correlation to the furthest neighbour was negligivhile the was not the
case at highem(= 0.71).
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8.2 Preliminary Results and Further Work

Simulations were performed in two dimensions for colloiflediusa. = 2.15ag in
a channel of widtla, = 8ag (such thai = 0.5375) for several packing fractions, as
observed in experiments[26]. Preliminary results shoveagrent with the results
found by Liret.al Fig.8 shows that SRD captures the long time diffusive bisheayv
of the particles for the different packing fractions. Figl®ows the correlation
between neighboring particles that becomes more prondweidgigher densities.
Further simulations will be carried out to calculated tha@SFD mobilities
and the values will be compared to those predicted by th2biygnd found in
experiment[28].The precise nature of the correlation biel@ can be better un-
derstood by constructing more thorough temporal and dpatiacity correlation
functions for the motion of the spheres. This would providerther test of the ap-
parent density dependence on the size of the particle cdustported by Liet.al
We can also add flow in the channel and study the system to teedblloids will
behave differently.

9 Laning at High Reynolds Number: Experimental Re-
view

Particles flowing in pipes at finite Reynolds number have tmegerved to form
trains (groups of three or more particles) aligned in thedlion of the flow. The
trains (sometimes of up to 40 particles) are usually locatate Segré-Silberberg
equilibrium position, typically located at a distance: 0.6R from the centre of the
pipe, and move closer to the walls at higher Reynolds numiBsiew is a detailed
account of an experiment carried out by Magasl. [29].

Two sets of polystyrene spheres with mean diamedess 425+ 25um and
d = 825+ 25um were added to a mixture of water (around 78%) and glycerol
(around 22%) such that the density formed by the flpjdmatched that of the
particles p, = 1.05g/cn). The solutions were kept at temperatdre= 25°C
such that their viscosity remained betweaer- 1.45— 1.55cP. They were then
allowed to flow through two horizontal glass tubes of lerigth 26mand diameters
D = 8mmandD = 14mmsuch that measurements could be madeDipd = 33
and 17 in the larger tube ardl/d = 19 with the smaller particles in the smaller
tube. Measurements were made at a distance8oh from the tube entrance to
ensure a fully developed Poiseuille flow had been attainedaddrements were
made for values of the pipe-scale Reynolds nuntdes p;UD/v ranging from
100 < Re< 2400, withU the mean axial velocity. All experiments were carried
out at particle packing fractions gf= 0.17%, Q06% and ®4% forD/d = 33,
17 and 19 respectively. Any correlation between packingfretion and laning
of particles was not investigated as visualisation becarmeeasingly difficult at
higher concentrations.

Particles began to form visible trains aligned in the dimectof the flow at
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Figure 11: Photograph reproduced from[29]. The picturenshibains trains in the
pipe from two perspectives for D/d=19. sad Re=600 (in thistpgraph, the trains
are located on the top of the tube and preferentially in tlekhdb) Re=1120 (in
this photograph, one observes a very long train having ateaetative to flow).

The arrows indicate the walls of the tube from the two pertpes.
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Re> 100. Some trains were also observed to be at an angle to tkis gfdhe pipe.
The number of particles observed in trains was normalisethdpacking fraction
and the results showed that Rebecame larger the amount of particles in trains
increased to a maximum before decreasing. Maxima were eddionD/d = 17
and 19 aRe~ 700 and aRe~ 950 forD/d = 33. A higher percentage of small
particles were found to be in trains (14% ford = 19 and 8% foD/d = 17 at
Re~ 700) than larger ones (4% Bt~ 950). It was also found that the percentage
of particles in a given train generally decreased with tke sf the train. In other
words longer size trains were less probable that shortes.one

The mean surface separation, normalised by the particleratgn| /d was
found to depend on the particle Reynolds nunfRey = Re(d/D)?. R, describes
how fluid flows around a given particle. Results showed tlidtdecreased for
increasingRebut always remained significantly larger foyd = 33. On the other
hand, when results were plotted fBi, the data was found to collapse to a sin-
gle curve, suggesting that interactions between partigidsn trains are indeed
controlled byRe,, and particles gathered closer together for increaBiag

Numerical solutions of the flow equations have revealed tiatregions of
closed streamlines around the particles, predicte®&e= 0 rapidly collapse with
increasingRe,. The collapsing streamlines give birth to a region of resdrow,
with fluid approaching and receding on each side along thephaide of the par-
ticle. The fluid is prevented from returning towards the igétby the pipe walls.
Furthermore, laning only occurs along the mid-plane, seénss that flow reversal
entices this phenomenon. Solutions Rg, = 10 compares with the higheBlg,
studied by Matast al.. Further analysis revealed that the boundary of the rengrsi
streamline grew closer to the particle with increasRegy. This relates to particles
gathering closer together for highRe, as observed by Matazt al. Zones of re-
versed flow were also seen to extend out of the shear plane idiraction of the
vorticity, resulting in the formation of angles trains. $hwvas also observed by
Mataset al. The process of train formation is very much similar to draftin sus-
pensions except that in the latter case, the particles vg#l, kumble and separate
thereafter. Some experiments have revealed however thiaihifiuidised beds at
22 < Re< 43 particles were seen to form steady arrangements of thrémuo
where each sphere would settle in the shear field of the next.

When the Reynolds number is increasedR&> 600, the particles are seen to
migrate from the Segré-Silberberg annulus to a new anmwuhish forms closer to
the centre of the pipe. No trains are formed on the new annphssibly due to
the fact that it is broader and thus particles remain toofarta This accounts for
the maxima attained by the amount of particles in trainedtagarlier.

In summary, Matagt al. have investigated the dependence of lane formation
of particles upon the Reynolds number in pipe flow. They haenghat particles
will form trains along the Segré-Silberberg annulus, wardeifts towards the wall
of the pipe for increasingRe The arrangement of the particles however depends
on Re, which determines the nature of the flow around the partiotené&of these
results could be useful for colloids flowing in a pipe. It miginovide a convenient
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way of aggregating colloids, or at least ordering them in fléwljusting the flow
properties helps determine the arrangement and positiparti€le trains. As fluid
flows faster in the centre of the tube, the flow properties eadjusted in order to
control the position of the train within the tube, slowingldwn or speeding it up.

We would like to try and reproduce these experiments with SR&wever, at
present, we have not yet been able to reach the desired Risymainbers while
maintaining a low enough Mach number.
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A Appendix

A.1 Proof that @' is harmonic
We wish to prove the following relation

20" = O?(d+ Og) = 0i.e. D?Oe= O00%p=0 (118)
for a harmonic scalap(r) in spherical coordinates. From the definition

2o L9 (rza_(p> _ 209 ¢

=eal\"a) v Tz (119)
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and so

0 [(20p 0% 200 0% 0%
2._ .9 __ %Y L,o% Y
HH =" (r ar " ar2> ror Jr2(‘9r2 o =0 (120)
From the definition it also follows that
20 L0 (29 (09 _ 200 0% 3
H"He= r2or rc‘)r rar rc‘9r+46r2+ or (121)
and 0 92 0 02
20 (r2n_ 499 070 (209 ¢
D?0p-O0%p= -0 +255=2( S5 +55 ) =0 (122)
N————

0

thusO20¢@= 00%, i.e. the operators commute for a harmonic sogiarspherical
coordinates.
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