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The effect of varying wall-particle and particle-particle interactions on the density profiles near a
single wall and the solvation forces between two walls immersed in a fluid of particles is
investigated by grand canonical Monte Carlo simulations. Attractive and repulsive particle-particle
and particle-wall interactions are modeled by a versatile hard-core Yukawa form. These simulation
results are compared to theoretical calculations using the hypernetted chain integral equation
technique, as well as with fundamental measure density functional theory !DFT", where
particle-particle interactions are either treated as a first order perturbation using the radial
distribution function or else with a DFT based on the direct-correlation function. All three
theoretical approaches reproduce the main trends fairly well, but exhibit inconsistent accuracy,
particularly for attractive particle-particle interactions. We show that the wall-particle and
particle-particle attractions can couple together to induce a nonlinear enhancement of the adsorption
and a related “repulsion through attraction” effect for the effective wall-wall forces. We also
investigate the phenomenon of bridging, where an attractive wall-particle interaction induces
strongly attractive solvation forces. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2921134$

I. INTRODUCTION

The interaction between two surfaces in solution can be
qualitatively modified by the presence of smaller suspended
particles.1–7 For example, charged co- and counterions will
screen any charged groups, and the addition of nonadsorbing
polymer can lead to attractive depletion interactions, as first
explained over 50 years ago by Asakura and Oosawa.8 In this
paper, we study the effective solvation force between two
planar walls in a slit pore geometry, induced by a bath of
monodisperse spherical particles that are in osmotic equilib-
rium with a reservoir of spherical particles at the same
chemical potential. Although this model is much simpler
than a typical physical system, where the surfaces are het-
erogeneous and many different particle species are simulta-
neously in solution, it nevertheless exhibits some remarkably
complex behavior, and has therefore been extensively
studied.9–25

The potentials induced for the two plate geometry can
also be related to the force induced between two spheres
through the Derjaguin approximation,1,26 which increasingly
becomes accurate for larger size asymmetries. Just as for the
case of two plates, most early work on the effective interac-
tions between spheres, induced by the addition of smaller
particles, focused on hard-core interactions27,28 which gener-
ally lead to attractive solvation forces, although repulsive
oscillations occur with increasing packing fraction of the

smaller particles.29,30 More recently, an increasing number of
studies have gone beyond these simpler hard-core depletion
models, see, e.g., Refs. 31–35 and references therein. Adding
attractive or repulsive interactions leads to considerably
more complex behavior, including repulsive solvation forces
that can stabilize colloidal suspensions through a nanopar-
ticle halo mechanism, as suggested by the experiments of
Lewis et al.36,37 and later explained by computer
simulations38 and hypernetted chain !HNC" integral
equations.39

One difficulty in understanding the effects of adding
these more sophisticated interactions is that the number of
different parameters to vary, e.g., the magnitude and range of
the attractions/repulsions, etc., becomes quite large, making
an analysis of the problem complex. An advantage of the two
wall geometry over the two-colloid geometry is that the size
ratio between the big and small particles is no longer a vari-
able, simplifying the analysis.

Another advantage of the two plate geometry is that den-
sity functional theory !DFT" is easier to apply to this one-
dimensional problem than to the more complex cylindrical
symmetry of the two-colloid geometry. By using the clever
method of Roth et al.,40 the two-colloid problem can be re-
duced to much simpler one-dimensional integrals, but for
this one needs a good two-component DFT. While the fun-
damental measure theory !FMT" provides such a functional
for hard-core interactions41,42 and can be extended to nonad-
ditive HS mixtures43,44 and soft-core repulsions,45 no two-a"Electronic mail: ard.louis@physics.ox.ac.uk.

THE JOURNAL OF CHEMICAL PHYSICS 128, 204704 !2008"

0021-9606/2008/128"20!/204704/10/$23.00 © 2008 American Institute of Physics128, 204704-1

Downloaded 20 Mar 2009 to 163.1.247.121. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2921134
http://dx.doi.org/10.1063/1.2921134


component theory of comparable accuracy exists for more
general interactions.

In this paper, we perform grand canonical Monte Carlo
!GCMC" computer simulations for the two-plate geometry,
using the same set of interactions as in an earlier systematic
study of effective forces induced by smaller colloids of di-
ameter ! between two larger colloids of diameter 5!.35

These simulations are then compared to HNC integral equa-
tions, which are easy and fast to use, but for which the reli-
ability in this geometry is not always known a priori. We
also compare the simulations to two different methods to
extend FMT-DFT when the particle-particle interactions in-
clude additional Yukawa attractions or repulsions: !1" a per-
turbative method based on the radial distribution function
!RDF" that reduces to thermodynamic perturbation theory in
the homogeneous limit,46 and !2" a recent proposal by Tang
and Wu,47 that expands in the direct-correlation function
!DCF", and which is based on an earlier proposal by
Rosenfeld.48 In general, we find that the Wu–Tang DFT is an
improvement over the RDF perturbation method in the re-
gime we investigate, but all three theoretical methods—
integral equations and the two DFTs—still have some diffi-
culty for systems with attractive interparticle interactions.

The simplified geometry also allows us to study in more
detail the two different effects described earlier for colloidal
mixtures:35,39 First, strong enough wall-particle attractions
can lead to very large attractive forces between the plates
when both walls interact with the same set of particles. This
phenomenon is known as bridging,1,2 and we show how it
can be qualitatively understood from a very simple ideal par-
ticle model. Second, we study in more detail the “repulsion
through attraction” effect first described in Ref. 35, where
the combined effect of wall-particle and particle-particle at-
tractions can lead to an enhancement of the adsorption at a
single wall and a concomitant repulsion between the two
plates.

We proceed as follows: In Sec. II, we describe our model
parameters in more details; in Sec. III, we explain how we
performed our GCMC simulations, describe our approach to
solving the HNC integral equations as well as the two DFT
methods we employ. In Sec. IV, we present our results for the
density profiles near a single wall as well as the effective
induced forces between the two plates, comparing them to
HNC and DFT calculations. In Sec. V, we provide some
examples of the nonlinear enhancement effect and the related
repulsion through attraction behavior of the forces. Finally,
in Sec. VI, we demonstrate some examples of bridging at-
traction, and in the Appendix provide a simple analytical
model that helps explain the basic physics behind bridging.

II. MODEL

The interactions between the spherical particles are mod-
eled as hard-core Yukawa potentials, as in Ref. 35:

upp!r" = % " , r # !

$pp!r" , r % ! ,
& !1"

where r denotes the distance between the centers of the par-
ticles, and $pp!r" is

$pp!r" =
&pp!

r
exp#− 'pp!r − !"$ . !2"

Similarly, the wall-particle interaction is given by

uwp!z" = ' " , z #
!

2

$wp!z" , z %
!

2
( !3"

where

$wp!z" = &wp exp)− 'wp*z −
!

2
+, , !4"

and z is the distance of the center of the particle from the
wall. This is equivalent to the hard-core Yukawa big-small
interaction from Ref. 35, but in the limit of infinite size ratio.

Even with the fairly simple and flexible Yukawa model,
there are many different parameters to vary. To simplify our
analysis, we keep the following fixed to the same values as
in Ref. 35: The packing fraction of the small particles is set
to (=)*b!pp

3 /6=0.1, with *b being the bulk density, while
the ranges are given by 'wp=1.2 /! and 'pp=3.0 /!. The
range of the wall-particle interaction is of the order of the
particle size, while the range of the particle interaction is less
than the particle size.

In total, we studied nine different interactions by varying
+&pp and +&wp such that each is either positive, negative, or
zero. The detailed values are the same as those in Ref. 35 and
are given in Table I.

III. METHODS

A. Computer simulations

To investigate the effective forces induced by the par-
ticles on the two walls, we performed GCMC simulations49

at different wall separations L to determine the particle den-
sity profile. The bulk packing fraction !for L="" was set to
(=0.1, by first performed an NVT simulation on a bulk sys-
tem of N=500 particles with periodic boundary conditions in
all directions. The Widom particle insertions method49 was
used to determine the chemical potential , for (=0.1.

The production GCMC runs were then performed for a
geometry with two parallel walls at a given separation L
along the z axis. In the x and y directions, periodic boundary
conditions were used, and the size of the plates Lx=Ly was

TABLE I. Parameter combination.

Run +&wp +&pp

1 0 0
2 0 2.99
3 0 −0.996
4 0.82 0
5 0.82 2.99
6 0.82 −0.996
7 −0.82 0
8 −0.82 2.99
9 −0.82 −0.996
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determined by the condition of having at least 200 particles
in the simulation box at equilibrium, so as to minimize finite
size effects. These two plate sizes are usually found after a
few trial runs and are a bit harder to find when L=1.05!, the
smallest separation that we simulate. They also vary with the
system, i.e., the chemical potential, the wall-particle interac-
tion, and L. On average, we performed on the order of 10
-106 MC trial moves per particle to equilibrate and gather
statistics. For each separation L, we calculated the density
profile of the particles between the two walls, *L!z", from
which the effective induced force per unit area can be calcu-
lated:

+Feff!L"
!2 = *L*!

2
+ + -

!/2

L−!/2
*L!z"*−

d+$wp!z"
dz

+dz , !5"

where the first term arises from the discontinuity in the de-
rivative of the hard-core wall-particle interaction.

B. Integral equations

In order to calculate the density profile of an inhomoge-
neous fluid with integral equations, we use the singlet
Ornstein–Zernike equation46

h!z" = c!z" + *b- dr!!h!z!"cb!.r! − r!!." , !6"

where cb!r" is the DCF of the bulk fluid, h!z" the wall-
particle total correlation function, and c!z" is the wall-
particle direct-correlation function. A number of different
closures could be used to complete the equations above. In
this paper, we use the HNC approximation because we found
it to be the most consistently accurate closure for highly
asymmetric binary colloid mixtures.50 For the wall-particle
geometry, the HNC approximation reads

h!z" − c!z" = ln#h!z" + 1$ + +uwp!z" , !7"

where the only spatial coordinate is z, the distance from the
wall. The former two relations bring us to

h!z" = exp)− +uwp!z" + *b- dr!!h!z!"cb!.r! − r!!.", − 1,

!8"

which is iteratively solved to find h!z". Here, the direct-
correlation function of the bulk cb!r" is also found in the
HNC approximation !but it could also come from a different
approach".

A further HNC approximation can be made,51 such that
the solvent mediated excess interaction free energy per unit
area !effective potential per unit area" between two walls at
distance z is given by

+Veff!z"
!2 = − *b-

−"

"

h!s"c!z − s"ds , !9"

where h!s" and c!s" are the total and direct wall-particle cor-
relation functions, respectively. The solvation force follows
from the equation above as

+Feff!z" = −
d+Veff!z"

dz
. !10"

In the analysis above, the wall-wall bridge function in
Eq. !9", the wall-particle bridge function in Eq. !7", and the
particle-particle bridge function in calculating the bulk DCF
cb!r", are all omitted, so that this is equivalent to a HNC
approximation in all three steps.

C. Density functional theory

FMT-DFT !Ref. 41" has emerged as one of the most
powerful theoretical techniques to study HS fluids in con-
fined geometries. We adopt the very accurate “White Bear”
version42 which can be written as

F#*!r!"$ = Fid#*!r!"$ + FFMT#*!r!"$ + Fw#*!r!"$ + Fpert#*!r!"$ ,

!11"

where the ideal contribution is exactly given by

Fid#*!r!"$ = kBT- dr!*!r!"#ln!.s
3!r!"" − 1$ !12"

and .s is a particle length scale. The FMT HS contribution is
of the “weighted density” type, namely,

+FFMT#*b$ =- dr!#/1!/nj!r!"0" + /2!/nj!r!"0"

+ /3!/nj!r!"0"$ , !13"

where the nj!r!" are weighted densities of the form

nj!r!" =- 0!j"!r! − r!!"*!r!!"dr!!. !14"

Further details of the functions /i and weight functions
w!j"!r!" can be found in Refs. 41 and 42. The fluid-wall inter-
action is taken into account by the external field term:

Fw#!r!"$ = -
0

L

!*!r"#$wp!z" + $wp!L − z"$" . !15"

Moreover, in the case where &pp#0, i.e., for non-HS inter-
actions, the final term, Fpert, in Eq. !11" can be treated in two
ways:

!1" The effect of additional non-HS interaction can be ap-
proximated by a perturbation theory in the RDF which
takes the following form:

Fpert#*!r!"$ =- dr!*!r!"11!r!" , !16"

where the interactions are taken into account through

11!r!" =
1
2 - dr!!*!r!!"$pp!.r − r!."gHS!.r − r!., *̄!r!,r!!"" .

!17"

Here gHS!r" is the RDF for homogeneous reference sys-
tem. It is evaluated at an intermediate density between
the two points r! and r!!:
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*̄ =
*̄2!r!" + *̄2!r!!"

2
, !18"

with

*̄2!r!" =
3

4)R2
3-

.r−r!.#R2

*!r!!"dr!!. !19"

*̄2!r!" is a smoothed density profile around r!; the radius
R2 is of the order of ! /2, and results are not expected
to be very sensitive to the precise value of R2. Here, we
follow Ref. 52 and choose R2=0.8!.

!2" In a recent paper,47 Tang and Wu proposed a new DFT
!based on an earlier suggestion by the late Yasha
Rosenfeld48" to perturb around the FMT solution by
expanding in the attractive component of the DCF that
follows from the Yukawa terms, an approach in the
spirit of the mean-spherical approximation.46 In this
case, the perturbative contribution of the free energy
functional is given by

Fpert#*!r!"$ = Fpert!*b" + ,pert- 3*!r!"dr!

−
1
2 - c1!r! − r!!"3*!r!"3*!r!!"dr!dr!!, !20"

where 3*!r!"=*!r!"−*b, Fpert!*b", and ,pert are, respec-
tively, the perturbative parts of the bulk free energy and
the excess chemical potential, and c1!r!" is the first-
order contribution of the Yukawa DCF, which can be
analytically calculated using the first-order mean-
spherical approximation.47

IV. RESULTS

A. Density profiles

Before studying the solvation force between two plates,
we first examine the trends that the density profile *!z"
=*b!h!z"+1" of particles at a single wall follows as the wall-
particle and particle-particle interactions are changed.

In Fig. 1!a", the density profiles for runs 1–3 are shown.
In these runs, there is only a hard wall-particle interaction,
i.e., +&wp=0. Adding an additional repulsive particle-particle

interaction results in increased accumulation near the wall,
whereas the addition of an attractive interaction has the op-
posite effect.

In Fig. 1!b", the density profiles for runs 4–6 are shown.
In these runs there is a repulsive wall-particle interaction
with +&wp=0.82. As expected, this repulsion results in a re-
duction of the density near the wall, when compared to the
case with only a hard wall-particle interaction. Again, the
particle-particle repulsion enhances the contact density,
whereas the attraction leads to its further depletion.

In Fig. 1!c", the density profiles for runs 7–9 are shown.
In these runs there is an attractive wall-particle interaction
with +&wp=−0.82, leading to an enhancement of the contact
density. As in the previous cases, adding an extra particle-
particle repulsion increases the contact density. However, in
contrast to the other cases where the mutual attraction of the
particles leads to an overall depleted density profile with
respect to hard particle case, here we observe significant re-
gions where there is an enhanced accumulation of particles
next to the wall. Although the contact density is smaller than
in run 7, there is a larger secondary maximum further out,
which denotes a second layer of particles. Thus, the relative
adsorption of particles to the wall is larger than in the case
where there is no mutual particle attraction. The reasons for
this nonlinear enhancement of the particle densities will be
discussed further in Sec. V.

For the runs above, the interaction between the wall and
the particles plays the dominant role in determining the
shape of the density profile. Adding mutual repulsion be-
tween the particles enhances the contact density, and this can
be qualitatively understood by mapping the repulsive par-
ticles to effective HS particles with a larger effective diam-
eter and hence larger effective packing fraction. The effect of
the mutual attraction of the particles can be understood by
the fact that the particles prefer the bulk over the wall. The
exception is Run 9, where the wall-particle attraction en-
hances the density near the wall, which now attracts a second
layer of particles. The trends found here for the *!z" are
qualitatively similar to those found in an earlier study for the
density profiles of small particles around bigger ones for a
binary sphere mixture of moderate asymmetry q=0.2.35

In Fig. 2, we compare the density profiles from simula-
tion with integral equation !HNC" and the two versions of

FIG. 1. #!a"–!c"$ Density profiles of
the centers of the particles as a func-
tion of the distance z from the surface
of a single wall. Results are from
simulations and +&wp and +&pp are var-
ied. The values of +&ij can be found in
Table I.
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DFT. DFT-g represents the perturbation in g!r" and DFT-c
represents the Tang-Wu47 DFT with a perturbation in c!r".
For runs 1, 4, and 7, with pure HS particle-particle interac-
tions, the DFTs both reduce to HS FMT which is quantita-
tively accurate, as expected.42 Their performance is also ex-
cellent for repulsive particle-particle interactions. The worst
performance is for attractive particle-particle interactions.
Overall, no one method is clearly superior to the others, al-
though we do expect the DFTs to be better than HNC at
higher packing fractions.

B. Effective solvation forces

In Fig. 3, we compare the effective solvation forces for
all nine runs detailed in Table I. They are only depicted in the

regime L%!, since for 04L#! no particles fit between the
plates and the pressure !or solvation force per unit area" is
simply +P!L"=+Feff!L" /!2=−+Pbulk !there will typically be
a discontinuous jump at L=!".

The main trends can be rationalized as follows: When
the density profile shows an accumulation of particles near
the wall, we expect to find repulsive forces because of the
work needed to squeeze the layer of the particles out when
the two walls approach one another. On the other hand, when
the region next to a wall is depleted of particles, we expect to
find attractive forces. Thus run 4, with +&wp50, results in a
more attractive interaction than run 1, where there are only
HS repulsions. Similarly run 7, with +&wp#0, generates a
more repulsive effective force. The addition of repulsion be-

FIG. 2. Density profiles near a single
plate for the parameters from Table I.
Simulations are compared to HNC in-
tegral equation and two versions of
DFT. DFT-g represents the perturba-
tion in g!r" and DFT-c a perturbation
in c!r".

FIG. 3. Effective solvation force per
unit area between two plates in the
range L%!, for the parameters from
Table I. Simulations are compared to
HNC integral equation and two ver-
sions of DFT. DFT-g represents the
perturbation in g!r" and DFT-c a per-
turbation in c!r". !Note that the scales
are not the same in each graph, but
rather are adjusted to enhance com-
parison between simulation and the
theoretical techniques."
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tween the particles !+&pp50" is equivalent to an effective
enhancement of the packing fraction which in turn accounts
for the more pronounced oscillations. On the other hand,
when the particles are attractive !+&pp#0", the picture is
slightly more complex due to the possibility of nonlinear
couplings which are discussed further in Sec. V.

In Fig. 3, we compare the performance of HNC integral
equations as well as our two versions of DFT for the solva-
tion force per unit area between the two plates !or equiva-
lently the solvation force". The trends are similar to those
found for the density profiles in Fig. 2: For pure HS particles
the DFT and simulation are the same to within simulation
errors; for an additional repulsive particle-particle interac-
tion, the DFT-c, based on the direct-correlation function,
slightly performs better than the DFT-g based on the RDF.
All three methods show the worst performance for attractive
particle-particle interactions, although here again the DFT-c
is slightly better than the other methods. Overall, the perfor-
mance of all three methods is encouraging. We expect dete-
rioration of the performance for all three theoretical methods
when the system is close to a fluid-fluid spinodal line.46 We
also expect the HNC integral equation technique to perform
less well at higher packing fractions. A measure of this can
be seen in Fig. 4 where HNC is compared to FMT DFT,
which is expected to be quantitatively accurate at these
densities.42 How the two DFTs work at higher packing frac-
tions when attractive or repulsive interactions are added re-
mains to be more fully investigated.

V. REPULSION THROUGH ATTRACTION

Figures 2 and 3 both showed, particularly for run 9, that
adding an attractive particle-particle interaction could result
in an enhanced density profile or a more repulsive solvation
force when combined with an attractive wall-particle inter-
action. This nonlinear coupling effect was also noted in Ref.
35, and for cases where it led to enhanced effective repulsive
forces, it was named a repulsion through attraction effect.

To investigate this phenomenon further, we performed
simulations varying both +&wp and +&wp, and show the re-
sults for the density profile in Fig. 5, and for the pressure or

solvation force in Fig. 6. For +&wp=−0.82, making the
particle-particle attraction stronger enhances the secondary
maximum in the density profile, while it decreases the con-
tact value. This means that it is more favorable for the par-
ticles to be in the second layer than in the first next to the
wall or in the bulk. The effective solvation forces per unit
area follow similar trends as the density. For a higher wall-
particle attraction, +&wp=−2.00, the enhancement of the sec-
ondary maximum of the density profile is more dramatic and
the contact value remains almost the same. The solvation
force is also enhanced due to the attractive particle-particle
interactions. The wall-particle attraction enhances the
particle-particle attraction effect through a nonlinear cou-
pling, resulting in the repulsion through attraction effect also
signaled in Ref. 35

Another measure for the nonlinear coupling between
wall-particle and particle-particle interactions is the reduced
adsorption defined as

6̂ =
6

*b
=

1
*b
-

0

"

!*!z" − *b"dz , !21"

where *!z" is the particle density at a single wall. In Fig. 7,
we plot the reduced adsorption as a function of the intensity

FIG. 4. Solvation force per unit area !or equivalently the solvation pressure"
between two plates in the range L%!, for pure HS systems: A comparison
between FMT-DFT !Ref. 41", which is expected to be virtually indistin-
guishable from simulations in this regime !Ref. 42", and HNC, which shows
deviations for increasing packing fractions.

FIG. 5. GCMC simulations of density profiles for two different wall-particle
attractions. With increasing particle-particle attraction, the secondary maxi-
mum is enhanced when the wall-particle attraction is stronger.

FIG. 6. GCMC simulations of effective solvation forces per unit area for
two different wall-particle attractions. With increasing particle-particle at-
traction, the secondary maximum is enhanced when wall-particle attraction
is stronger, an effect called repulsion through attraction.
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of the particle-particle interaction. These lines were calcu-
lated with HNC, which we expect to be accurate enough to
faithfully reproduce the right trends for these parameters.

When &pp50 #Fig. 7!b"$, the reduced adsorption is gen-
erally an increasing function of &pp, although there may be a
local minimum at small &pp. The reason for this is that in-
creasing &pp increases the pressure from the bulk onto the
interfacial region, which generally increases the adsorption.

When, on the other hand, &pp#0 #Fig. 7!a"$ and the
wall-particle attraction is relatively weak, then the reduced
adsorption decreases with increasing particle-particle attrac-
tion, the reason being that the particles now prefer to be in
the bulk fluid rather than at the interface. For stronger wall-
particle attractions, however, a different effect occurs, and
we observe a strong increase in the reduced adsorption 6̂
above a certain threshold value of &pp. This is caused by a
nonlinear coupling: the strong wall-particle attraction en-
hances the number of particles near the wall, and this in turn
attracts increasing numbers of other particles. Although we
only plot results for one density !(=0.1", we find that in
general, the higher the density of the system, the stronger the
wall-particle attraction should be in order to see this transi-
tion in the slope. While it can be proved that $6 /$&wp#0,
irrespective of the particle-particle interactions,53 from the
graphs it is clear that $6 /$&pp can be either negative or posi-
tive.

VI. BRIDGING

When two surfaces are attracted to the same set of small
particles, a large attractive effective interaction between the
surfaces can result. This effect is sometimes called bridging
attraction. It commonly occurs, for example, with polymers
that are attracted to surfaces. In a previous study, we also
observed this effect for binary colloidal mixtures.39 Here we
study bridging for the two wall geometry.

In Fig. 8, we plot the effective potential calculated with
the wall-HNC method for different intensities of wall-
particle attraction +&wp. The bulk system is that of run 2. For
small attraction, the effective solvation force becomes more
repulsive, but as +&wp becomes increasingly attractive, we
observe the appearance of a new minimum that rapidly in-
creases with larger wall-particle attractions. This attractive
minimum asymptotically moves toward a separation of one
particle diameter L=1!, signaling that the two plates are
attracted by the same set of particles.

The qualitative features observed in Fig. 8 can be repro-
duced by considering the simpler ideal fluid limit, for which
the particle-particle interactions are set to zero.54 If the ideal
fluid is confined between two walls in separation L then the
external potential is given by

uext!z" = uwp!z" + uwp!L − z" , !22"

and the normalized density profile is

*!z"
*b

= exp#− +uext!z"$ . !23"

In this limit, the effective potential can then be written as9

+Veff!z"
!2 = 6!"" − 6!z" , !24"

where

6!z" = -
0

z

!*!s" − *b"ds !25"

is the adsorption of particles between the two walls. !If there
is no particle-wall interaction, then for these ideal particles
6!z"=0." In Fig. 9, we plot the effective potential !divided by
the density—because this scales out", for various intensities
of the same wall-particle attraction used in Fig. 8. The same
nonmonotonic behavior is qualitatively reproduced by an
ideal fluid. The two walls mainly repel for weak wall-particle
attraction, and this repulsion is initially enhanced as the in-
tensity of +&wp grows, but then eventually an attractive mini-
mum begins developing and rapidly grows. In the Appendix,
we present two exactly solvable models that further explain
the bridging features seen in Figs. 8 and 9, and suggest that
the minimum eventually scales like exp#−+n&wp$, where the
n depends on details of the model.

Finally, the calculations in Fig. 8 were for repulsive
particle-particle interactions. For attractive particle-particle
interactions, the overall picture is more complicated, as the
repulsion through attraction effect can also kick in. We find
that for strong enough wall-particle attractions, eventually
bridging sets in, but, for example, there may be several lay-
ers attracted to each other, creating more complex effective
wall-wall interactions.50

VII. CONCLUSIONS

By performing GCMC computer simulations, we have
studied the density profiles of spherical particles near single
walls, as well as the effective forces induced between two
plates by a sea of particles. The parameters were systemati-
cally varied away from the better-studied HS model to ex-
amine both attractive and repulsive wall-particle and
particle-particle interactions.

The dominant effect of wall-particle and particle-particle
interactions is fairly straightforward to rationalize in most
cases. !1" Adding wall-particle repulsion increases the deple-
tion layer near the wall and results in more attractive solva-

FIG. 7. Reduced adsorption 6̂ for !a" attractive particle-particle interactions
and !b" repulsive particle-particle interactions.
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tion forces. !2" Adding wall-particle attractions decreases
the depletion layer near the wall and leads to more repulsive
solvation forces. Similarly, for a fixed wall-particle interac-
tion, !3" adding additional particle-particle repulsion can be
rationalized in terms of an effective HS model with a larger
diameter and packing fraction. !4" Adding additional
particle-particle attractions tends to deplete particles from
the wall as it is more favorable for them to reside in the bulk.
In general, the effects of changing wall-particle and particle-
particle interactions are, to first order, independent of each
other.

For strong wall-particle interactions, however, the above
simpler generalizations can break down. One subtle effect
occurs when both interactions are sufficiently attractive. In-
stead of the bulk being more favorable for the particles, the
added attraction near the wall leads to an accumulation of
particles, which in turn attract more particles from the bulk.
The resulting nonlinear coupling effect increases the density
near the wall, and may also lead to more repulsive solvation
forces, an effect called repulsion through attraction.35

Strong wall-particle attraction can also induce bridging
forces,1,2 where both surfaces are attracted to the same set of
particles. This behavior can quite easily be rationalized by
studying the simpler ideal particle limit. These attractions

can become very strong, as observed in Refs. 38 and 39. In
the Appendix, we show that in the ideal limit the attractive
minimum of the potential can asymptotically grow as a
power of exp#−+&wp$, where &wp is a measure of the wall-
particle interactions.

Computer simulations, while very accurate, are still
rather expensive to perform, and it would be desirable to
have accurate theoretical techniques to more rapidly explore
the very large parameter space available when both particle
density and interactions are varied. We compared the perfor-
mance of two version of DFT, and the HNC integral equation
technique. All three methods performed fairly well, espe-
cially for repulsive particle-particle interactions. Perfor-
mance was slightly less good for attractive particle-particle
interactions, with no single method clearly better than the
others. We note that we investigated these methods at a pack-
ing fraction (=0.1, which is relevant for colloidal disper-
sions and biological systems, but is lower than the packing
fractions for simple liquids46 for which these methods were
originally devised.

There are many physical situations where the two sur-
face geometry we employ here is relevant.1–7 Direct connec-
tions to the effective interactions induced between two
spheres by a sea of smaller particles can also be obtained
through the Derjaguin approximation.26 The advantage of
this geometry over the two sphere geometry is that it is gen-
erally easier to simulate and also easier to apply theoretical
techniques. In the future we hope to study plates with more
complex interactions, including heterogeneous surfaces,
which are physically relevant, and have been shown to in-
duce complex behavior.55–57
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wall-particle attractions, the phenomenon of bridging is observed.

FIG. 10. The quantity +Veff / !*b!2" is plotted for the ideal fluid at various
intensities of the wall-particle triangle-form interaction. The walls repel
when the attraction is weak but start to attract for higher attraction, denoting
the phenomenon of bridging.
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APPENDIX: EXACTLY SOLVABLE MODELS FOR
BRIDGING IN THE IDEAL FLUID LIMIT

Square well potential

We consider an ideal fluid and assume a wall-particle
interaction of the form uwp!z"=& for 04z4! and uwp!z"
=0 otherwise !square well potential", where &#0 is the in-
tensity of the attraction and ! is the length scale. This model
is easy to analytically solve, and Eq. !24" gives

+Veff!L"
*b!2 = '2!!e−+& − 1" − L!e−2+& − 1" , 0 4 L 4 !

!L − 2!"!e−+& − 1"2, ! 4 L 4 2!

0, L % 2! .
(

!A1"

This potential has a positive value at contact and a nega-
tive minimum of −!!e−+&−1"2 at L=!, which both mono-
tonically grow increasing wall-particle attraction. The nega-
tive well is typical of bridging behavior. For large attraction
the minimum scales as +Veff!!" /!21−*b!e−+2&. Its simple
Boltzmann factor form can be qualitatively understood as the
free-energy gain emerging from a number density *b of par-
ticles interacting with both walls.

Triangle potential

We now move up one step further in complexity and
consider a wall-particle interaction of the form uwp!z"=&
− !& /!"z for 04z4! and uwp!z"=0 otherwise !triangle po-
tential", where &#0 is the intensity of the attraction and ! is
the length scale. This model is also easy to analytically solve,
and Eq. !24" gives

+Veff!L"
*b!2 ='

2!

+&
!1 − e−+& − +&" − L!e−2+&++&/!L − 1" , 0 4 L 4 !

2e−+& !

+&
!e+& − e+&/!!L−!"" − !2! − L"!e−2+&++&/!L + 1" , ! 4 L 4 2!

0, L % 2! .
( !A2"

In Fig. 10, we plot the dimensionless effective potential
for various +&. For small wall-particle attraction the walls
mainly repel, but when the attraction becomes stronger a
minimum begins to grow in the first branch L4!, which
becomes deeper with larger values of .+&. eventually scaling
as −e−2+& /+& in the limit +&→−". The similarities between
Fig. 10 and Figs. 8 and 9 suggests that the basic physics of
bridging is already captured by this very simple triangle
model.
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