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The use of an effective intermolecular potential often involves a compromise between more
accurate, complex functional forms and more tractable simple representations. To study this choice
in detail, we systematically derive coarse-grained isotropic pair potentials that accurately reproduce
the oxygen-oxygen radial distribution function of the TIP4P-Ew water model at state points over
density ranges from 0.88 to 1.30 g/cm3 and temperature ranges from 235 to 310 K. Although by
construction these effective potentials correctly represent the isothermal compressibility of
TIP4P-Ew water, they do not accurately resolve other thermodynamic properties such as the virial
pressure, the internal energy, or thermodynamic anomalies. Because at a given state point the pair
potential that reproduces the pair structure is unique, we have therefore explicitly demonstrated that
it is impossible to simultaneously represent the pair structure and several key equilibrium
thermodynamic properties of water with state-point dependent radially symmetric pair potentials.
We argue that such representability problems are related to, but different from, more widely
acknowledged transferability problems and discuss in detail the implications this has for the
modeling of water and other liquids by coarse-grained potentials. Nevertheless, regardless of
thermodynamic inconsistencies, the state-point dependent effective potentials for water do generate
structural and dynamical anomalies. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2715953�

I. INTRODUCTION

The properties of a molecular fluid are fundamentally
determined by the Schrödinger equation for the nuclei and
the electrons, but for most practical applications such formu-
lations are far too onerous to solve. To make progress, a
series of coarse-graining approximations must be made, with
each step leading to a less complete, but more tractable rep-
resentation of the fluid. One popular route integrates out the
quantal degrees of freedom to represent the interactions be-
tween molecular species by classical effective potentials.
These can in turn be determined by analytic considerations1

or be extracted by fitting to thermodynamic and structural
properties of experiment or high quality calculations on
model systems. Making a judicious choice between the ac-
curacy of more complex representations versus the practical
utility of simpler models comprises the art of asking the right
questions of a scientific problem.

At their best, coarse-graining strategies facilitate insight
into the basic underlying physics, stripped of all nonessen-
tials. For example, a fully quantum mechanical calculation of
the properties of simple liquids such as argon could obscure
the important observation that their structure is dominated by

the hard repulsions of the effective interatomic
interactions.2,3 Nevertheless, it also seems intuitively obvious
that the simpler the representation of a molecular fluid, the
less faithful the resolution of the complete suite of underly-
ing physical properties. In other words, we expect that in
science, as in life, there is no such thing as a free lunch.

In the present paper we carefully examine the coarse
graining of the multisite TIP4P-Ew water model4 to a series
of simpler isotropic single-site potentials5,6 by an inversion
of the oxygen-oxygen radial distribution function at each
characterized state point in temperature and density.2,7,8 We
focus on water because many of its well-characterized
structural9 and thermodynamic6 anomalies are postulated to
be related to its strong orientational order.9 One might there-
fore expect that integrating out these orientational degrees of
freedom to derive an isotropic pair potential would be a
worst-case scenario and a useful foil to highlight coarse-
graining pitfalls.

It was first shown by Henderson that, under fairly gen-
eral conditions, an isotropic potential derived to reproduce
the pair structure of a fluid is unique up to a constant.10–12

Although at any given state point, the pair correlations gen-
erated through this route are, by construction, correctly re-
produced, we find that for our water model, higher ordera�Authors to whom correspondence should be addressed.
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structural correlations, as well as thermodynamic properties
such as the virial pressure and the internal energy, are poorly
rendered. The Henderson uniqueness proof therefore implies
a representability problem as a general feature of effective
potentials, i.e., they cannot simultaneously resolve all the
properties of the more complex reference system at a given
state point. In fact, we have suggested that these represent-
ability problems are a more general feature of effective
potentials.13

In this work we also pose a different question. Are rep-
resentability problems as severe when, rather than comparing
quantitative properties, we study qualitative trends for a fam-
ily of effective potentials derived from many T ,� state
points? Can they reproduce the subtle anomalous water
trends in structure, thermodynamics, and dynamics exhibited
by the more complicated potential? We find that the family
of effective potentials does generate anomalous trends in
structure �decreasing order with compression� when consid-
ered under a general orientational order metric and anoma-
lous transport properties �exhibiting minima and maxima in
the self-diffusion coefficient� as a function of density at sev-
eral low temperature isotherms. By contrast, we do not find
thermodynamic anomalies �density maxima� when compar-
ing results across state points.

We proceed as follows: Section II defines and contrasts
the concepts of transferability and representability for effec-
tive potentials, following the analysis of Louis,13 where this
was done for soft-matter systems. We also work out under
what conditions an effective potential is unique. Section III
describes reference molecular dynamics �MD� calculations
for the TIP4P-Ew water model4 and shows how, for a given
state point, the oxygen-oxygen radial distribution function
gOO�r� of TIP4P-Ew water can be reliably inverted through
an empirical potential structural refinement �EPSR�
procedure8 to obtain a unique effective isotropic pair poten-
tial vg�r�. Section IV compares the resultant thermodynamic,
structural, and diffusive behaviors produced by the reference
and coarse-grained models. Finally, in Sec. V, we conclude,
making several recommendations for the coarse graining of
substances like water to isotropic pair potentials.

II. TRANSFERABILITY, REPRESENTABILITY, AND
UNIQUENESS

A. Hamiltonians with pair and triplet interactions

Consider a one-component reference fluid interacting
with a three-body Hamiltonian14,15 of the form

H = K + �
i�j

w�2��rij� + �
i�j�k

w�3��rij,rik,rki� , �1�

where ri denotes the position of particle i and rij =ri−r j and
rij = �ri−rj�. K is the kinetic energy operator, w�2��r� is an
isotropic pairwise additive potential, and w�3��rij ,r jk ,rki� is a
triplet or three-body potential. A common example of the
latter would be the Axilrod-Teller triple dipole form.16 Three-
body potentials are expensive and cumbersome to simulate,
and so it is often desirable to coarse grain them to a simpler
isotropic representation.

Transferability problems. One way to derive a simpler

pairwise potential would be to calculate the excess internal
energy U at a state point �N ,V ,T�, which for a homogeneous
fluid is given by

U�N,V,T� =
1

2
�2� dr1dr2g�r12�w�2��r12�

+
1

6
�3� dr1dr2dr3g�3��r12,r23,r31�

�w�3��r12,r23,r31� , �2�

where g�r� and g�3��r12,r23,r31� are the homogeneous pair
and triplet radial distribution functions at the density �. For a
given state point, a new isotropic effective pair potential
vU

eff�r� can be defined such that the excess internal energy of
the reference fluid, given by Eq. �2�, is exactly reproduced by
the standard formula for a two-body Hamiltonian,

U�N,V,T� =
1

2
�2� dr1dr2g�r12�vU

eff�r12� . �3�

Comparing Eqs. �2� and �3� and rewriting the potential as

vU
eff�r� = w�2��r� + �vU�r� �4�

results in

�vU�r� =
1

3
�� dr3

g�3��r12,r23,r31�
g�r12�

w�3��r12,r23,r31� , �5�

where it has been assumed that the two-body radial distribu-
tion function g�r� is unchanged from the original reference
system. The procedure above only fixes a single number,
U�N ,V ,T�, and so there is some flexibility in the exact form
of the potential since any function which integrates to zero in
Eq. �3� could be always be added to vU

eff�r�. Nevertheless, Eq.
�5� is useful for illustrative purposes because it can be writ-
ten in a simple closed form. Note that this derivation, which
we will call the energy coarse-graining route, can easily be
generalized to higher order many-body terms in Eq. �1�. It is
similar in spirit to routes often used in other contexts.

Since g�r� and g�3��r12,r23,r31� depend on the intensive
state variables � and T, �vU�r� will itself also vary with state
point. This property leads to what are often called transfer-
ability problems, where an effective potential derived in one
context does not perform well in a different context �i.e.,
another state point�. Such problems are very well recognized
in the literature. For example, protein force fields are derived
�in part� from fitting to the conformational energies of small
peptide fragments that hopefully are transferable to the
longer protein chain. In the case of water, nonpolarizable
force fields attempt to reproduce many ambient state-point
properties, and, more recently, the temperature of maximum
density at 1 atm, but require validation over other state
points for which they are not explicitly parametrized.

It is clear from Eq. �5� that the larger the three-body
interaction, the more important the correction �vU�r�. More-
over,
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lim
p→0

�vU�r� = 0, �6�

reflecting the fact that the relative influence of three-body
�and if present, higher order many-body� interactions be-
comes less important with decreasing density. This argument
can, however, be subtle. For example, at small, but finite
density, water reaches a limit of tensile strength, below
which it is mechanically unstable.17

Representability problems. Instead of fixing the potential
to reproduce the internal energy, one could instead require it
to reproduce the pair structure. We will call this the pair
structure coarse-graining route. There is no known exact
closed form expression like Eq. �5�, but an expansion in
density yields15,18,19

vg
eff�r� = w�2��r� + �vg�r� , �7�

with

��vg�r� = �� dr3g�r23�g�r31�

��1 − exp�− �w�3��r12,r23,r31��� �8�

and �= �kBT�−1, where kB is Boltzmann’s constant. Clearly
this correction does not have the same form as Eq. �5� �al-
though it has the same �→0 limit�. To lowest order in � and
w�3�, the ratio between the two corrections is

�vU�r�
�vg�r�

=
1

3
+ O��w�3��2;�2� . �9�

In other words the energy and pair structure coarse-graining
routes yield corrections to the bare pair potential which may
differ by as much as a factor of 3. As the density is increased,
this difference might decrease or increase, but clearly correc-
tions to the bare pair potential w�2��r� that take into account
the effect of a three-body potential depend on which physical
property one is attempting to reproduce. In an important
study of liquid argon, van der Hoef and Madden20 used a
similar analysis to that above, showing that if in addition one
fits a potential to reproduce the virial pressure, then the en-
suing correction to the bare pair potential is different from
both �vg

eff�r� and �vU�r�. Problems of this type have been
called representability problems.13 For a given state point, it
is not possible to simultaneously represent multiple physical
properties of a system with a single coarse-grained potential.
This contrasts with transferability problems that relate poten-
tials at different state points.

B. Uniqueness of effective potential

One might argue that the representability problems de-
scribed above simply reflect the particular choices of coarse-
graining method—a lack of imagination as it were—and that
there still exists a hypothetical effective isotropic pair poten-
tial veff�r� that will simultaneously represent the pair struc-
ture g�r� and a thermodynamic property such as the excess
internal energy. As shown above, it is indeed true that vU�r�
is not unique, since there may be a whole family of poten-

tials that all reproduce U�N ,V ,T� at a given state point. By
contrast, we will argue that for any given state point, vg

eff�r�
is unique.

Henderson10 first showed, using arguments very similar
to those used by Hohenberg and Kohn21 in their famous
proof relating the one-body potential to the one-body density
�which laid the foundation for density functional theory�, that
“the pair potential v�r� which gives rise to a radial distribu-
tion function g�r� is unique up to a constant.” An extended
proof for orientational correlations can be found in a book by
Gray and Gubbins,11 while a more rigorous mathematical
discussion is provided by Chayes and Chayes.12

While these studies do not prove that, given a g�r�, there
always exists a pairwise v�r� that can generate the same pair
correlations, they do show that if such a potential can be
found, then it will be unique, up to a trivial constant. The
argument goes as follows: if a pairwise potential vg

eff�r� can
be found that reproduces a given g�r� at a given state point,
then, irrespective of what Hamiltonian originally generated
g�r�, this potential can be used to define a new �fictitious�
pairwise Hamiltonian which generates g�r� at that state point
and which moreover satisfies the conditions under which the
uniqueness theorem was derived.10–12 Note that there will be
a separate fictitious Hamiltonian at each state point, but this
does not affect the uniqueness proof.

This theorem does not imply that higher order correla-
tion functions such as g�3��r12,r23,r31� are correctly
reproduced.22 Of course if g�r� is initially generated by a
Hamiltonian with only an isotropic pairwise potential energy
term, then a correct inversion to vg

eff�r� will exactly repro-
duce this potential due to the uniqueness theorem and there-
fore also correctly generate the higher order correlation func-
tions. But if g�r� is produced by a Hamiltonian with
anisotropic potential terms, e.g., Eq. �1�, then vg

eff�r� is ex-
pected to generate different three-body and higher order cor-
relations. For an example from soft matter where this differ-
ence is demonstrated explicitly, see Ref. 23.

Plugging the unique vg
eff�r� into the two-body formula,

Eq. �3� in order to extract the excess internal energy
U�N ,V ,T� will generally not reproduce the correct internal
energy of the underlying reference system.13,20 So even
though vU�r� itself can have several different forms, these are
not expected to be the same as vg

eff�r�, ensuring that the rep-
resentability problems cannot be easily evaded.

Another point to keep in mind is that Eq. �3� assumes
that g�r� is identical to that of the reference system. What is
normally done in practice is that vU�r� is also used to gener-
ate the radial distribution function, which we shall call gU�r�.
By the uniqueness theorem, gU�r��g�r�. Nevertheless, the
fact that vU�r� itself is only specified up to a function that
integrates to zero in Eq. �3� suggests that although the exact
g�r� may not be attainable, if one chooses to exactly repro-
duce U�N ,V ,T�, the best strategy may be to exploit the
nonuniqueness of vU�r� to simultaneously minimize the dif-
ference between gU�r� and g�r�.

An advantage of the unique vg
eff�r� is that, since by con-

struction it generates the correct pair correlations, thermody-
namic properties can be extracted through the compressibil-
ity route,
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�kBT�T = 1 + 4��� r2�g�r� − 1�dr , �10�

where �T is the isothermal compressibility at temperature T
and density �. This relationship can be derived in the grand
canonical ensemble and is independent of the form of the
underlying Hamiltonian.2 However, its practical use is lim-
ited because one needs g�r� to derive vg

eff�r� in the first place,
and moreover many thermodynamic properties of interest
�such as the pressure� are related to the compressibility by an
integral over density, which means deriving a new potential
at each new state point. �See, however, Ref. 24 for an ex-
ample where this strategy leads to important speedups for a
two-component system.�

C. Hamiltonians with pairwise multisite interactions

In this paper we are focusing on the coarse graining of a
multisite pairwise representation of water to an effective de-
scription based on a one-site isotropic potential. There are
many similarities, but also some differences with the analysis
carried out above for three-body Hamiltonians like Eq. �1�.

The internal energy of a one-component fluid of particles
interacting with a pairwise, but multisite potential, can be
written as2

U�N,V,T� = 2�
N2

V �
�,�

� v���r�g���r�r2dr , �11�

where the g���r� are the intersite radial distribution functions
and the v���r� are the site-site potentials for sites � ,� on
different molecules. An effective representation based on iso-
tropic potentials could be derived through the energy coarse-
graining route by picking a particular site-site radial distri-
bution function, which we shall call gAB�r�, and insisting that
the internal energy is reproduced by the simple two-body
formula

U�N,V,T� = 2�
N2

V
�

0

	

gAB�r�vU
eff�r�r2dr , �12�

which, in direct analogy with Eq. �3�, defines an effective
potential vU

eff�r�. An analytic form for vU
eff�r� is easily ob-

tained by comparing Eq. �11� with Eq. �12�,

vU
eff = vAB�r� + �vU�r� , �13�

where

�vU�r� =
��,�� g���r�v���r�

gAB�r�
, �14�

and the “ �” on the sum means that the term with ��=AB is
left out.

Just as was found for the many-body Hamiltonians, this
energy coarse-graining route yields an effective potential that
is state dependent, since it is mediated by the correlation
functions g���r�. But in contrast to the case for a many-body
Hamiltonian described by Eq. �6�, the low-density limit is
not normally zero because it includes an implicit average
over geometrical constraints. In this limit, the analytic form
can be calculated from Mayer cluster functions f���r�

=exp�−�v���r��−1, although in practice, such procedures
may be highly nontrivial,26 depending on which correlation
function one chooses as well as on the complexity of the
site-site potential.

Given a pair correlation function gAB�r�, one could also
derive a description based on isotropic pairwise potentials by
attempting an inversion to find the effective potential vg

eff�r�
that reproduces gAB�r�. If such a pairwise potential exists,
then it will be unique,10–12 following arguments similar to
that employed for the many-body Hamiltonians.

In the limit of zero density, vg
eff�r� takes the form

lim
�→0

�vg
eff�r� = − log�gAB�r�� , �15�

but in contrast to the case for a many-body Hamiltonian, this
does not reduce to the bare pair potential vAB�r� because
gAB�r� has a more complex dependence on the Mayer cluster
integrals. It is not hard to show that, in this low-density limit,
vg

eff�r� and vU
eff�r� do not generally have the same analytical

forms and so suffer from similar representability problems to
those we described for many-body potentials. Figure 1 fore-
shadows the outcome of coarse graining the TIP4P-Ew mul-

FIG. 1. The effective potential through the internal energy �stars� and pair
correlation function �circles� coarse-graining procedures for �a� T=310 K
and �=0.9 g/cm3 and �b� T=310 K and �=1.29 g/cm3, illustrating the dif-
ference between the unique potential vg�r� generated through the pair cor-
relation function route and vU�r� generated through the internal energy
route. Clearly the former potential will not reproduce the internal energy
through standard formula �3�.
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tisite potential using the vg
eff�r� and vU

eff�r� routes, which we
see generate very different functional forms.

The isothermal compressibility of a system described by
a multisite potential follows from the correlation functions2

�kBT�T = 1 + 4��� r2�gAB�r� − 1�dr , �16�

where the gAB�r� could be any one of the site-site pair cor-
relation functions. This expression can be used to extract
thermodynamics from vg

eff�r�. There is also clearly some free-
dom in choosing which correlation function is used to coarse
grain the multisite representation to an isotropic single-site
potential.

The correct statistical mechanical interpretation of a
state-dependent potential like vg

eff�r� is highly
nontrivial.13,18,20 There is a temptation to treat such coarse-
grained objects as if they really are potentials in the Hamil-
tonian sense and thus exploit intuitive, but possibly mislead-
ing, analogies to physical systems described by a true
pairwise potential. Although we have shown that it is
straightforward to prove that representability problems are
expected when multisite potentials are coarse grained to
single site forms, it is not clear how important these prob-
lems are in practice. Coarse-graining procedures can deceive,
sometimes in surprising ways,13 and yet a judicious choice of
coarse graining can often lead to meaningful physical in-
sight, even to the underlying interpretations of consistency
between virial and compressibility routes to thermodynam-
ics. To examine this dilemma in more detail, we now turn to
an explicit example where we coarse grain a multisite water
model to a single isotropic potential.

III. MODELS AND METHODS

A. TIP4P-Ew simulations of water

The classical nonpolarizable TIP4P-Ew model of water
is based on the following potential energy description:

Utot = UCoulomb + ULJ. �17�

The first term in Eq. �17� is due to Coulomb interactions

UCoulomb = �
a�I,b�J

I�J

qaqbe2

rab
, �18�

the sum being over all charged sites a ,b on different mol-
ecules I ,J, with charges given by qa ,qb. The electron charge
is e and rab is the distance between sites. The TIP4P-Ew
model has three charge sites per water molecule that are
placed on the two hydrogen centers and an additional site
along the HOH bisector and invokes Ewald summation to
account for long-ranged electrostatics. The charges and ge-
ometries of the water molecule are given by Horn et al.4

The second term in Eq. �17� is the Lennard-Jones term,

ULJ = �
O�I,O�J

I�J

vLJ�rOO�S�rOO� + ULJ,tail, �19�

where the Lennard-Jones interaction energy vLJ,

vLJ�r� = 4
���/r�12 − ��/r�6� , �20�

acts between oxygens only, S is a switching function used to
avoid discontinuities due to truncation of the intermolecular
potential, ULJ,tail is a long-range correction for the Lennard
Jones interaction, and � and 
 have been optimized to the
values 3.164 35 Å and 0.162 75 kcal/mol.4 For the
TIP4P-Ew model, S is defined by a polynomial in Z�r�=r2

−Rlower
2 that describes a function in the range from Z=0�r

=Rlower� to Z=Rupper
2 −Rlower

2 ,

S�Z�r�� = �I if r � Rlower

1 + AZ3 + BZ4 + CZ5 if Rlower � Rupper

0 if r  Rupper,
	 �21�

with A=−10/D3, B=15/D4, C=−6/D5, and D=Rupper
2

−Rlower
2 . This function is continuous and has continuous first

and second derivatives at r=Rlower and r=Rupper, where
Rlower=9.0 Å and Rupper=9.5 Å.

A cubic box with edge length of 
40 Å was filled with
1728 water molecules. MD simulations in the canonical
�NVT� ensemble were performed using an in-house simula-
tion program. The equations of motion were integrated using
the velocity Verlet algorithm and a time step size of 1 fs. The
velocity update was done using only forces on real sites after
forces on fictitious sites have been projected onto the real
sites. The intramolecular geometry �rOH and �HOH� was con-
strained by applying the M�SHAKE and M�RATTLE algorithms
using an absolute geometric tolerance of 10−10 Å. Tempera-
ture was controlled using Nose-Hoover thermostats as de-
scribed in Ref. 27. The mass variable of the thermostats was
defined by a frequency of �0.5 ps�−1, except for in the diffu-
sion runs, where the coupling was weakened to �10.0 ps�−1.
Coulomb interactions for the TIP4P-Ew model were com-
puted using Ewald summation. For the computation of the
reciprocal space sum, ten reciprocal space vectors in each
direction were used, with a spherical cutoff for the reciprocal
space sum of nx

2+ny
2+nz

2��105. The width of the screening
Gaussian was 0.35 Å. The switching function in Eq. �21�
�using the same settings for the switching parameters Rlower

and Rupper as above� is also used as a molecule-based taper-
ing function for the real-space Coulomb interaction energy in
the Ewald summation.

The duration of equilibration runs was 300 ps �T
273 K� and 500 ps �T�260 K�, using a previous high
temperature production run as the start configuration at the
next lower temperature. Typical production runs were be-
tween 0.6 and 2.0 ns depending on temperature. For mea-
surement of the self-diffusion constant, five independent tra-
jectories were run at each state point for 0.6 ns each. Using
the Einstein relation 6Dt=�R2�t�, the �R2�t�= ��r1�t�
−r1�0��2 was fit using least squares at intervals between t
=60 and 200 ps to extract the self-diffusion coefficient D.

B. Inversion of pair correlation functions

At each state point, the isotropic interaction potential
vg

iso�r� is constructed to have the same two-body radial dis-
tribution function as the oxygen-oxygen radial distribution
function gOO�r� of TIP4P-Ew water. In previous work we
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solved for the interaction potential using the Ornstein-
Zernike �OZ� integral equation with the hypernetted chain
�HNC� closure, given an experimental or simulated gOO�r� as
input.5 When the resulting isotropic OZ/HNC potential is
simulated with molecular dynamics, it yields a reasonable
estimate of gOO�r�, but there are differences with the target
TIP4P-Ew structure due to approximations introduced by the
HNC closure. The potential can be made more accurate by a
numerical procedure which starts with the OZ/HNC solution
as input to an EPSR procedure8 in which the isotropic poten-
tial is perturbed by a constraint on the allowed giso�r�,

vi
iso�r� = vi−1

iso �r� + kBT log� gi−1
iso �r�

gOO
TIP4P-Ew�r�� , �22�

and then iterated to self-consistency. We note that to achieve
accurate results the large r portion of vg

iso�r� must be handled
with care. The resulting numerical pair potentials are shown
in Fig. 2 for a number of different state points. It can be seen
that this potential has two length scales, which has been
shown to be a necessary, but not sufficient, condition to give
anomalous properties similar to those of water.6,28 The two
length scales become more energetically distinct as tempera-

ture is lowered �Fig. 2�a��, but they collapse into one length
scale at higher density �Fig. 2�b��.

C. Isotropic simulations

The derived numerical isotropic pair potentials were fit
using a spline interpolation and simulated using molecular
dynamics in the canonical ensemble. The potentials were
truncated using the switching function S described above,
where the cutoffs were chosen as Rlower=15 Å and Rupper

=16 Å for all ��1.7 g/cm3. For higher � they were set as
Rlower=10–12 Å to maintain the highest fidelity to the
gOO

TIP4P-Ew�r� out to the full box size. A time step of 3 fs was
used with equilibration times as per the TIP4P-Ew simula-
tions and using the positions of the TIP4P-Ew oxygens from
the corresponding state point as the start configurations.
Nose-Hoover thermostats were again used to control tem-
perature with the same frequencies as for the TIP4P-Ew
simulations.

IV. RESULTS

A. Thermodynamic properties

Thermodynamic properties can be extracted in several
ways from the coarse-grained potentials we derive. One
could, for example, choose the potential from a single repre-
sentative state point and use it to calculate thermodynamic
properties at other state points. Such an approach would be
similar in spirit to other studies where an isotropic pair po-
tential is used to mimic certain aspects of water.5,6,28,29 How-
ever, one could also derive a separate potential at each state
point of interest and calculate thermodynamic properties
with this family of potentials.24,30 Although this does require
a separate simulation with the more complex interaction at
each state point in order to derive the simpler isotropic po-
tentials, we choose to follow this route because it helps high-
light the issue of representability.

By construction both models should have the same iso-
thermal compressibility, �T through Eq. �10�, which we con-
firmed through direct comparisons. The pressure can be ac-
cessed through an integral of the compressibility over the
density, and we confirm that the coarse-grained model agrees
with the reference TIP4P-Ew system, as it should be con-
struction �Fig. 3�a��, but noting that to achieve good agree-
ment special care should be taken to correctly sample the
large r limit of g�r�.31 Numerical simulation and their ex-
trapolations to large r �Ref. 32� still introduce some uncer-
tainty in the large r limit of the pair correlation function.
Although it is then possible to construct the entire PV dia-
gram through this route to generate the correct thermody-
namics, this is less instructive as it involves an inversion at
each state point and thus cannot be measured independently
of the reference system.

We have also measured the virial pressure for our isotro-
pic potential through the standard equations derived for a
pairwise potential system,2

FIG. 2. �Color� Isotropic potentials derived through the pair correlation
route. �a� The family of isotropic potentials derived from the TIP4P-Ew
gOO�r� at P=1 atm and for temperatures of 235.5, 248, 260.5, 273, 285.5,
298, and 310.5 K. �b� The family of isotropic potentials derived from
TIP4P-Ew gOO�r� at T=235.5 K and for densities of 0.9, . . . ,1.29 g/cm3.
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P = �kBT −
2��2

3
� r3drg�r�

dv�r�
dr

, �23�

and find that it does indeed deviate significantly from the
TIP4P-Ew model �Fig. 3�a��. The internal energy exhibits
similar inaccuracies �Fig. 3�b��, as expected from Fig. 1,
where we note that the ULJ,tail addition to the internal energy
of the TIP4P-Ew model was removed so as to only compare
contributions from the N particle system. These differences
in virial pressure and internal energy are considerably more
pronounced than those found for a similar study of a coarse-
grained polymer model,13,31 reflecting the strongly aniso-
tropic nature of the TIP4P-Ew reference potential.

By comparing TIP4P-Ew and the family of coarse-
grained potentials across the entire PV diagram it is clear
that these differences in magnitude between the two virial
measurements are more than just a scaling factor or a con-
stant �Fig. 4�. In fact, because the pair potentials change from
state point to state point, they are no longer constrained by
thermodynamic stability criteria. For some regions of the

phase diagram the change in the coarse-grained potential
vg�r� corresponding to a higher number density generates an
unphysical decrease in pressure. As in the case of the com-
pressibility, the virial pressure can also be derived to explic-
itly account for the density dependence of our family of
potential.33 We note that the Ascarelli-Harrison correction in
the expression for the virial pressure, which arises for
density-dependent pair potentials,33 worsens the agreement
with the TIP4P-Ew results. This echoes similar findings for
coarse graining of polymers as soft colloids �see, e.g., Ref.
13, where the use of the Ascarelli-Harrison correction was
strongly criticized�. A more promising avenue may be to in-
clude explicit one-body potentials, as suggested by Stillinger
et al.34 The advantage for the current coarse-graining strat-
egy is that while these one-body terms do not change the
structure, they do change the thermodynamics. At present it
is not clear what form they should take, but this may be a
fruitful way forward that is worth exploring further.

Taking the global density dependence of the potential
explicitly into account can also introduce correction terms in
other quantities. For example, the expression for the com-
pressibility can be shown to pick up extra terms.25 For the
coarse-graining strategy we follow here, the basic compress-
ibility equation �Eq. �10�� is by construction correct, so that

FIG. 3. �a� The dimensionless compressibility factor Z=�P /� vs T along
the P=1 atm isobar for TIP4P-Ew and the family of isotropic potentials.
The pressure for the isotropic potentials is measured through both the com-
pressibility route, which correctly reproduces the TIP4P-Ew result by con-
struction, and through the virial route, which does not. Z=1 represents the
ideal gas. Inset demonstrates that agreement is not perfect due to errors
introduced by numerical integration of compressibility equation and ex-
trapolation of g�r� to large r. �b� The internal energy �U /N for the
TIP4P-Ew and the family of isotropic potentials. The simulated values are
shown with the LJ tail correction removed from the TIP4P-Ew values.

FIG. 4. Pressure-volume phase diagram for TIP4P-Ew and the family of
isotropic potentials along four isotherms 310.5 �stars�, 285.5 �triangles�,
260.5 �squares�, and 235.5 �circles�. �a� TIP4P-Ew: The density anomaly
occurs in regions where lower isotherms cross above a higher T isotherm.
�b� Isotropic potentials: The pressure is the average virial pressure from each
simulated point, and the lines act only as a guide.
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extra terms will lead to deviations from the underlying
TIP4P-Ew model. However, it may turn out that taking these
terms into account leads to a better agreement between the
compressibility and virial routes. This will be explored fur-
ther in another communication.

B. Structure

By construction, our coarse-graining procedure gener-
ates a family of unique state-dependent single site potentials
that reproduce the oxygen-oxygen pair correlations exactly.
To compare the three-body correlations of the TIP4P-Ew and
family of coarse-grained models, we measure the bond angle
distribution as an integral over the full three-body correlation
function and measure the distribution of angles generated by
the neighbors of each molecule within a specified radius, Rc.

b��� = 8�2�2Z�
0

RC

dr12�
0

RC

dr13g
�3��r12,r13,��r12

2 r13
2 sin � ,

�24�

where the triplet correlation of Eq. �2� for a spherically sym-
metric potential is now dependent only on the magnitude of
the vectors connecting two nearest neighbors to a central
particle, and the angle � between the two vectors and Z nor-
malizes b��� to a probability distribution. In Fig. 5 we com-
pare the bond angle distributions for TIP4P-Ew �Fig. 5�a��

and for the isotropic family �Fig. 5�b��. While the isotropic
potentials do generate a peak at the tetrahedral angle, they
show a marked increase in close-packed configurations at
60° corresponding to a defective network structure. Even
though the absolute three-body correlations are very different
between the isotropic family and TIP4P-Ew due to this de-
fect structure, both models show the same trends with den-
sity, namely, a loss of structural order under compression.
Thus it is evident that in contrast to the virial pressure which,
besides having the incorrect value at a given state point, also
showed physically incorrect trends when comparing state
points, the family of isotropic potentials does exhibit a struc-
turally anomalous region, if the appropriate potential is taken
at each state point. By contrast, if a single isotropic potential
is taken and used at different state points, it typically does
not reproduce these structural anomalies �transferability
problems�. We will discuss these differences in a future pa-
per.

C. Diffusion

While the coarse-grained particles’ translation diffusion
is an order of magnitude faster than the TIP4P-Ew water
molecules, both models display an anomalous increase in
diffusivity with compression at several isotherms. In Fig. 6
we show that the TIP4P-Ew �Fig. 6�a�� and isotropic poten-

FIG. 5. Bond angle distributions at T=235.5 K as a function of density for
�a� TIP4P-Ew and �b� isotropic potentials. RC was chosen as 3.4 Å.

FIG. 6. Translational diffusion constants vs density along four isotherms
310.5 �stars�, 285.5 �triangles�, 260.5 �squares�, and 235.5 �circles�. Lines
are fifth order polynomial fits to data points �a� TIP4P-Ew and �b� isotropic
potentials.
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tials �Fig. 6�b�� reach both diffusion maxima and diffusion
minima at nearly the same density along each isotherm. After
the failure of these isotropic potentials to represent the cor-
rect thermodynamic and structural orientational properties of
the TIP4P-Ew model, the reproduction of the dynamical
anomaly is a remarkable, and perhaps unanticipated, success.
Interestingly, if any of these potentials is taken separately
and treated like a Hamiltonian system on the same density
and temperature range as Fig. 6, then no diffusive anomaly is
seen, so that the fact that we used a different potential at each
density is crucial to reproduce the correct trend.

V. CONCLUSIONS

In this paper we studied the coarse graining of the mul-
tisite TIP4P-Ew model of water4 to a representation based on
a simpler isotropic pair potential. The advantage of this ap-
proach is that the properties of both the reference system and
the coarse-grained system can be accurately calculated by
MD simulations. By studying a series of potentials that are
unique for their ability to reproduce the pair correlation func-
tion at each state point, knowing that other properties such as
internal energy or virial pressure cannot be reproduced accu-
rately, allows us to understand the relevance of this particular
coarse-graining strategy.

Such careful comparisons are important because the cor-
rect interpretation of coarse-grained potentials is
subtle.13,18,20 Here we argue that their use inevitably involves
some compromise.13,20 Since it is not possible to simulta-
neously reproduce all the underlying properties with a single
simple potential form, consumers of effective potentials need
to decide which properties to focus on. For example, fitting
with high accuracy to one physical property could lead to a
less accurate rendering of other properties. Making an opti-
mal choice for coarse graining a potential may necessitate
loosening some constraints in such a way that the correct
physics that one is attempting to study is properly included.

Although we have shown that representability problems
can be severe for the rendering of some physical properties,
we do not advocate the wholesale jettisoning of isotropic pair
potentials as coarse-graining strategies for substances such as
water. In fact, a burgeoning community of researchers is fol-
lowing such strategies by developing isotropic “ramp” poten-
tials that, notwithstanding the caveats above, nevertheless
successfully mimic certain key properties of water.5,6,28,29

These developments are important because they may help
elucidate the underlying physics of water’s many puzzling
anomalies in terms of a competition between two length
scales. In this regard, the systematic coarse-graining proce-
dure we have developed here does reproduce with surprising
accuracy of water’s dynamic anomalies. We note that the
evolution of translational order is exactly captured by these
coarse-grained potentials by construction and that structural
anomalies are clearly present when examined under an alter-
native structural metric to pure tetrahedral order. The lack of
thermodynamic coherence is particularly pronounced for this
coarse-graining procedure for water, making the observation
of dynamic and structural anomalies within this procedure an
intriguing outcome.

Representability problems are expected to apply to a
much wider set of potentials than those that we describe
here. For example, there are many different multisite models
for water in the literature, often designed to reproduce certain
properties with more fidelity than others. See, e.g., Ref. 35
for an overview of such potentials as applied to the freezing
of water or Ref. 36 for a review of simpler potentials that
focus on global physical properties. It is likely that some of
these potentials can be improved within the constraints of
their given functional forms by a more careful fitting proce-
dure, but nevertheless they are all expected to suffer from
representability problems, although these are expected to be
much less severe than what we found for the thermodynam-
ics of isotropic representations of water. It may also be useful
to apply more general fitting procedures such as a Bayesian
ensemble approach,37 self-organizing maps,38 or adaptive
resolution schemes,39 especially for complex representations
with many parameters.

The work in this paper clearly shows that there is an art
in knowing what needs to be preserved in the coarse-graining
procedure in order to correctly render the key underlying
physical processes one is trying to emulate. In the case of
water’s thermodynamic anomalies, higher order structural
correlations may be critical, or possibly an energy scale or
distribution that is not captured correctly with a coarse-
graining procedure constrained to reproduce state-dependent
pair correlations.
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APPENDIX: UNIQUENESS THEOREM FOR MULTISITE
MODELS

While it has previously been demonstrated10,11 that a
unique pair potential will produce a unique pair distribution
function, in this appendix we explicitly present the corre-
sponding proof for an interaction-site potential describing a
molecular system. Therefore we will show that a unique set
of interaction-site pair potentials, �v���, will produce a
unique set of site-site pair distribution functions, �g���,
where �, � are the sites on a molecule.

We begin by defining an initial intermolecular potential,
V0, which can be represented as a sum of interaction-site
potentials v��,

V0 = �
�,�

�
i�j

v��
0 ��ri� − ri��� , �A1�

which only depends on the intermolecular separations, r��

=ri�−r j�, between sites �, � on different molecules i, j. We
can then define a new potential V1 as a perturbation to V0

with11

V� = V0 + ��V1 − V0� , �A2�

where � varies between 0 and 1 and V1 is defined analo-
gously to Eq. �A1�. To demonstrate that these two sets of
interaction-site potentials �v��

1 � and �v��
0 � will have unique
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sets of �g���, we then define the ensemble average for a
multisite potential,

�V1 − V0� =
� dr��

N e−�V1
�V1 − V0�

� dr��
N e−�V� , �A3�

where dr��
N represents dr1�dr1�¯drN�drN�. Differentiating

Eq. �A3� with respect to � gives

d�V1 − V0�

d�
= − ����V1 − V0� − �V1 − V0��2�, �A4�

such that

d�V1 − V0�

d�
� 0. �A5�

Integrating the derivative between �=0 and �=1 gives

�V1 − V01 = �V1 − V00 + �
0

1

d�
d

d�
�V1 − V0�, �A6�

and combining Eqs. �A5� and �A6� provides the relevant in-
equality

�V1 − V01 � �V1 − V00. �A7�

The equality holds only for V1−V0=constant. We now re-
write Eq. �A7� substituting interaction-site form �A1� giving

�dr��
N e−�V1�r��

N ��
��

�v��
1 �r��� − v��

0 �r����

�dr��
N e−�V1�r��

N �

�

�dr��
N e−�V0�r��

N ��
��

�v��
1 �r��� − v��

0 �r����

�dr��
N e−�V0�r��

N �
. �A8�

Using the site-site pair distribution function,

�2g��
1 �r1�,r2��

=
N�N − 1� � dr1�dr2�dr3�� ¯ drN��e−�V1�r��

N �

� dr��
N e−�V1�r��

N �
, �A9�

and noting these distributions again depend only on the sepa-
ration, r��=ri�−r j�, the inequality becomes

�
�,�

� dr���v��
1 �r��� − v��

0 �r�����g��
1 �r��� − g��

0 �r���� � 0.

�A10�

By choosing �v��
1 � to be unique from �v��

0 �, i.e., they differ
by more than a constant, then requires the left hand side of
Eq. �A9� to be nonzero and that therefore the set of �g��

1 �
must differ from the set of �g��

0 �.
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