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We propose a systematic coarse-grained representation of block copolymers, whereby each
block is reduced to a single ‘soft blob’ and effective intra- as well as intermolecular interactions
act between centres of mass of the blocks. The coarse-graining approach is applied to
simple athermal lattice models of symmetric AB diblock copolymers, in particular to a
Widom–Rowlinson-like model where blocks of the same species behave as ideal polymers
(i.e. freely interpenetrate), while blocks of opposite species are mutually avoiding walks. This
incompatibility drives microphase separation for copolymer solutions in the semi-dilute
regime. An appropriate, consistent inversion procedure is used to extract effective inter- and
intramolecular potentials from Monte Carlo results for the pair distribution functions of the
block centres of mass in the infinite dilution limit.

1. Introduction

Recent years have witnessed considerable theoretical
interest in statistical mechanics of multicomponent
systems involving multiple length and time scales. To
be tractable, statistical descriptions of such multi-scale
systems must resort to controlled coarse-graining
methods. One widely used coarse-graining strategy for
complex fluids is to determine effective interactions
between large (‘dressed’) particles (e.g. macromolecules
or colloidal particles) by systematically tracing out the
degrees of freedom of small particles (e.g. counter-ions
or solvent molecules [1–3]). A particularly successful
application has been to dilute and semi-dilute polymer
solutions: effective interactions between polymer centres
of mass (CM) are determined by taking appropriate
averages over monomer conformations for fixed dis-
tances r between the CMs of interacting linear [4–7]
or star polymers [1, 8]. In the case of linear polymers,
to which the subsequent discussion will be restricted,
the resulting CM–CM pair potential for polymers in
good solvent, modelled by self-avoiding walks (SAW)
on a cubic lattice, is very soft, repulsive and finite at all
separations r, with a range of the order of the radius
of gyration Rg of the polymer coils. The general
shape is reasonably well represented by a Gaussian of

amplitude on the order of kBT, reflecting the essentially
entropic nature of the effective interaction. While
the overall form of the effective pair potential is not
very sensitive to polymer concentration under good
solvent or high temperature conditions, it turns out
to be very sensitive to concentration and temperature
when the latter is lowered toward the � solvent
regime [6, 9].

Replacing a full monomer level representation of
polymer coils by a ‘soft particle’ description based
solely on effective pair potentials between CMs
represents a considerable reduction in the number of
degrees of freedom, and hence leads to a concomitant
reduction in computational effort in simulations of
large-scale phenomena involving many polymers.
Moreover, use of spherically symmetric effective pair
potentials allows a direct exploitation of the theoret-
ical arsenal developed over the years for the study of
the bulk [10] and interfacial [11] properties of simple
fluids. Last, but not least, inspection of the effective
pair potentials leads to new insights into the phase
behaviour [2] and stability [6] of macromolecular
solutions.

In this paper we extend the above coarse-graining
strategy to the case of solutions of block copolymers
and more specifically to symmetric diblock copolymers
made up of two strands A and B of equal length.
AB copolymers will be reduced to ‘soft diatomics’, with
inter- and intra-molecular interactions between sites*Corresponding author. Email: jph32@cus.cam.ac.uk
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associated with the CMs of A and B strands. The nature
of A–A, A–B and B–B effective pair interactions
depends on solvent conditions. Most of the results
presented in this paper will be based on a simplified
model inspired by the celebrated Widom–Rowlinson
(WR) model for fluid–fluid phase separation [12].
In the macromolecular extension of the WR model,
A and B strands are mutually avoiding (i.e. monomers
of opposite species cannot overlap) while A and B
strands will separately behave like ideal (Gaussian)
chains, i.e. they will freely interpenetrate same species
strands on different copolymers.

2. Model and coarse-graining strategy

We consider lattice models of polymers, where mono-
mers occupy the sites of a periodically repeated simple
cubic lattice of size L3; the bond vectors connecting
successive monomers point along the x, y or z directions
only. Each polymer comprisesM monomers and hence
L ¼M� 1 bonds (or segments), such that the length of
the polymer is Lb, if b is the segment length. A diblock
copolymer AB is made up of two strands comprising
MA and MB monomers respectively, with the MAth
monomer of strand A connected to the first monomer
of strand B. The total length is ðLA þ LB þ 1Þb ¼
ðMA þMB � 1Þb. Restriction will be made here to
symmetric copolymers, such that MA ¼MB ¼M and
LA ¼ LB ¼ L. We will consider N such copolymers on
a L3 lattice, such that the A and B monomer
concentrations are cA ¼ cB ¼MN=L3 and the overall
monomer concentration is c ¼ cA þ cB. Individual
copolymer chains are characterized by three radii of
gyration RgA, RgB and Rg, defined as usual by

R2
gA ¼

1

MA

XMA

i¼1

ðrAi � RAÞ
2

� �
, ð1Þ

where rAi is the position of the ith monomer of species
A on the lattice, while RA ¼

PMA

i¼1 r
A
i =MA is the position

of the centre of mass (CM) of strand A. The statistical
average h�i is taken over properly weighed chain con-
formations. Similar definitions hold for RgB and for the
overall radius of gyration Rg; the overall CM
is R ¼ ðRA þ RBÞ=2. Another important length is the
root mean square distance between the CMs of the
two strands of a copolymer:

RAB ¼ jRA � RBj
2

� �� �1=2
: ð2Þ

An elementary calculation shows that:

R2
g ¼

1

2
R2

gA þ
1

2
R2

gB þ
1

4
R2

AB: ð3Þ

The A–A, A–B and B–B interactions between non-
adjacent monomers of the same or opposite species
determine the structure and phase behaviour of indi-
vidual copolymers and of many-copolymer systems.
A number of models have been examined in the polymer
literature: the more interesting are those which account
for some degree of incompatibility between A and B
monomers, which leads to microphase separation
[13, 14]. In this paper we focus on the simplest, athermal
models combining ideal (or random walk, with back-
ward overlapping steps allowed) strands (I) and excluded
volume (self or mutually avoiding walks) strands (S).
The eight possible combinations of monomer interac-
tions will be labelled by three indices JKL, with each
index either I or S. The first index refers to the inter-
action between A monomers (on the same or different
polymers), the second index refers to the A–B
cross-interaction, while the last index refers to the
B–B interaction. Of the eight possible combinations, two
(III and SSS) reduce to homopolymers of molecular
weight 2M, while IIS and SII as well as ISS and
SSI are degenerate for the symmetric (MA ¼MB)
copolymers considered here, leaving four distinct, non-
trivial copolymer models, namely IIS, ISI, ISS and SIS.
Among these, the ISI model may be regarded as the
macromolecular equivalent of the WR model [12]. The
macroscopic phase separation occurring in the latter
is prevented here because A and B strands are tethered,
but microphase separation into a lamellar structure may
be expected. Most of the subsequent discussion is hence
devoted to the ISI model.

Physically, self-avoiding walks and random walks
(ideal polymers) reflect solvent conditions. The former
model corresponds to good solvent conditions asso-
ciated with swollen chains, while random walk polymers
are generally considered as approximating �-solvent
conditions, at least for low polymer concentrations [15].
Thus in the ISI model, A and B strands behave
individually as if they were in a �-solvent, where
monomer excluded volume effects are compensated
by nearest-neighbour, solvent-induced attraction, while
A–B interactions are purely of excluded volume nature
(mutually avoiding walks). A more general model than
those considered here contains both excluded volume
interactions (single occupancy constraint) and nearest
neighbour interactions ��� (�,� ¼A or B), thus intro-
ducing an explicit temperature dependence. This
standard model has been extensively studied both in
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the low concentration (single copolymer) limit [16] and
in the melt [14]. The present investigation covers special
cases of the generic model for finite copolymer
concentrations, in the dilute and semi-dilute regimes.
The key characteristic of these models, and in particular
of the ISI model, is their extreme non-additivity, as in
the WR model.
The range of concentrations which will be considered

is best characterized by the ratio of the copolymer
density, � ¼ N=ðLbÞ3 over the overlap density �* ¼
3=ð4pRg

3Þ, where Rg is the radius of gyration at
zero density. Dilute solutions correspond to �=�*� 1,
while the semi-dilute regime is for �=�* � 1.
The coarse-graining strategy which we shall pursue

generalizes that developed earlier for linear homopoly-
mers [4–6]. An AB block copolymer will be represented
by two spherical ‘blobs’ centred on the CMs RA

and RB, and tethered by an anharmonic entropic spring
deriving from an intramolecular potential �ABðrÞ,
where r ¼ jRA � RBj. The A and B blobs on different
copolymers will interact via effective pair potentials
vAAðrÞ, vABðrÞ and vBBðrÞ acting between the CMs. As in
the earlier work on homopolymers, these four effective
potentials are determined by an inversion procedure
based on the CM–CM pair distribution functions sABðrÞ
(intramolecular) and gAAðrÞ, gABðrÞ and gBBðrÞ (inter-
molecular). The latter are determined by Monte Carlo
(MC) simulations of the initial, monomer-level model.
In this paper these pair distribution functions and

resulting effective pair potentials will be determined only
in the low concentration limit, by simulating copolymer
pairs. While the inversion procedure is trivial in that
limit in the case of homopolymers (represented by single
blobs), it turns out to be much more involved in the
copolymer case, since four effective blobs are involved,
as will be discussed in more detail in section 4.

3. Monte Carlo results

With the above coarse-graining objective in mind, we
have carried out extensive MC simulations of symmetric
AB diblock copolymers on a cubic lattice. Most simu-
lations were for the ISI model, but some preliminary
results have also been obtained for the IIS, ISS and SIS
models; test runs were carried out for the SSS model to
compare with previous results of the equivalent SAW
homopolymers.
MC runs were carried out on periodic lattices of size

at least L ¼ 100. The numbers of copolymers were
adjusted to achieve any given polymer density �=�*;
thus N was taken to be 1 to determine infinite dilution,
single polymer properties, N¼ 2 if effective pair inter-
actions were to be determined in that limit, while for

�=�* � 1, N varied between a few hundred and over
a thousand. The number of monomers 2M in each
strand of a copolymer was varied between 60 and 1000.
Configuration space was sampled by using pivot and
translation moves [17, 18], polymers were subjected
to between 5� 105 and 108 MC moves, depending on
the total number of polymers in the system.

Results for the three radii of gyration and the mean
CM–CM distance RAB are collected in table 1, for the
four copolymer models as well as for the SSS model,
which serves as a check against the well-documented
SAW homopolymer model, for which Rg ’ 0:44L� with
� ’ 0:587 in the scaling limit [19]. The trends in the
various quantities in table 1 for the various models agree
qualitatively with expectation. The internal CM–CM
pair distribution function sAB and the resulting ‘entropic
spring’ potential, i.e. the effective bonding potential
between the CMs of the A and B strands of a single
copolymer

�ABðrÞ ¼ �kBT ln sABðrÞ, ð4Þ

are plotted in figure 1. While the distribution functions
sABðrÞ for the IIS and SIS models peak at the origin,
as one might expect since both strands can freely
interpenetrate in both cases, the sABðrÞ have peaks at
r > Rgm, where Rgm ¼ ðRgA þ RgBÞ=2, in the ISI, ISS
and SSS models, because of the single occupancy

Table 1. Radii of gyration Rg, mean intramolecular distance
RAB and second virial coefficient B2 in units of Rg

(2M¼ 500 only) for ideal/SAW systems.

Type Rg RgA RgB RAB B2

2M¼ 320

ISI 8.19 5.27 5.28 14.11
IIS 9.99 5.16 8.53 12.47
ISS 10.85 5.27 8.69 16.08

SIS 12.13 8.55 8.50 17.11
SSS 12.96 8.70 8.64 19.14

2M¼ 500
ISI 10.228 6.588 6.586 18.23 4.84

IIS 12.902 6.455 11.146 15.60 3.76
ISS 13.872 6.560 11.279 20.66 5.71
SIS 15.798 11.148 11.146 22.34 3.87
SSS 16.831 11.273 11.271 24.96 5.70

2M¼ 2000
ISI 20.47 13.20 13.18 40.32
IIS 28.94 13.13 25.54 31.28
ISS 30.33 13.13 25.59 45.23

SIS 35.95 25.38 25.36 50.44
SSS 38.39 26.06 26.04 56.23
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constraint on monomers of opposite species in all three
cases. Hence these three copolymer models behave like
macromolecular diatomics, i.e. they are, on average,
elongated, as confirmed by inspection of the eigen-
values of their tensor of inertia (not shown here). The
corresponding intramolecular potentials �AB exhibit a
maximum at full overlap (r¼ 0) and a minimum for
r ’ 1:5Rgm. Beyond that minimum, all potentials
increase rapidly, illustrating the ‘entropic spring’ char-
acter of the effective interaction between the CMs of the
two strands. Because the two strands are tethered,
�AB must diverge when r! L� b, corresponding to
the highly improbably fully stretched conformation
of the AB copolymers. Note that relative to the r¼ 0
value, the potential minimum is considerably deeper for
the ISI model, compared with the ISS and SSS models.
In other words elongated conformations have higher
probability for the ISI model. This is because the two
ideal strands in the latter model are more compact
than self-avoiding strands, as reflected in their shorter
radii of gyration. The potential barrier to interpenetra-
tion of mutually avoiding strands is thus larger when
the strands are individually ideal, since the prob-
ability of the forbidden overlap of monomers of oppo-
site species is larger. The results discussed so far are for
isolated copolymers. We henceforth restrict all further
considerations of many polymer systems to the ISI
model.
We first investigate the influence of polymer concen-

tration on the intramolecular CM distribution function
sABðrÞ. Figure 2 shows the MC data for the ISI model at

four different concentrations, as well as the correspond-
ing RAB, which is related to the properly normalized
sABðrÞ by:

R2
AB ¼ 4p

Z Lb

0

sABðrÞr
4 dr: ð5Þ

sABðrÞ is seen to be rather insensitive to concentration
in the dilute regime as one might intuitively expect and
RAB contracts slightly as �=�* increases before expand-
ing at higher densities where microphase separation
sets in. In terms of the coarse-grained diatomic analogy,
this means that the two-blob ‘molecule’ hardly contracts
upon compression and that this coarse-grained entity
remains a valid concept in the semi-dilute regime. Note
however that the ‘entropic spring’ potential �AB is no
longer given by equation (4) at finite concentration,
because the problem ceases to be a purely two-body one.
A more complex inversion procedure is required, to
which we return in section 4.

In order to gain more insight into the physical
significance of the ISI model, we have determined the
osmotic equation of state of the model in the dilute
and semi-dilute regimes. The equation of state can be
efficiently and accurately determined in a single MC run,
by subjecting the copolymers to a gravitational field
until sedimentation equilibrium is reached, deter-
mining the resulting inhomogeneous monomer or CM
concentration profile �(z) (where z is the altitude) and
extracting the osmotic pressure P from the measured
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Figure 1. Left: zero density limit of the intramolecular CM-pair distribution function sABðrÞ for different models, versus r=Rgm,
where Rgm ¼ ðRgA þ RgBÞ=2 is the mean radius of gyration of the A and B strands. Right: the corresponding intramolecular pair
potentials �ABðrÞ, in units of kBT, defined in equation (4).
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profile by invoking hydrostatic equilibrium [20, 21]

dPðzÞ

dz
¼ �mg�ðzÞ, ð6Þ

where m is a fictitious buoyant mass and g is the
acceleration due to gravity; these parameters may be
adjusted in the simulation, such that the resulting
sedimentation length � ¼ kBT=mg is larger than the
polymer radius of gyration Rg, thus ensuring the validity
of the macroscopic equation (6) on the mesoscopic scale
set by Rg. A snapshot of a typical configuration in
the sedimentation column is shown in figure 3, while the
concentration profile �(z) averaged over millions of such
configurations generated in the MC run is plotted
adjacent in the figure. The configuration in figure 3
clearly hints at the existence of microphase separation
of the ISI model for copolymer concentrations �=�* � 2.
Horizontal cuts through the sedimentation column,
shown in figure 4, exhibit alternating stripes of A and
B strands, characteristic of the lamellar phase observed
in many symmetric block copolymer melts [13, 14].
However, while the control parameter in melts is the
temperature, the control parameter for the athermal
ISI model is the polymer concentration.
Further evidence for the microphase separation

comes from the osmotic equation of state, extracted
from the concentration profile as explained above. The
dimensionless equation of state Z ¼ P=�kBT, computed
for copolymers with total number of monomers
2M¼120, 250, 500 and 2000, are plotted versus �=�*

in figure 5; no significant size dependence of Z is seen.
Z increases from its infinite dilution limit 1 up to
�=�* � 2:5, where it reaches a maximum, before
decreasing slowly to what appears to be an asymptotic
value for �=�*>10. With increasing density the system
moves from a disordered region to one where the
lamellar order increases, and there are fewer interactions
between A and B strands. The excess pressure (com-
pared to ideal polymers) decreases in this region, as a
consequence of the lamellar ordering which minimizes
the number of A–B overlaps. The initial slope of Z(�)
agrees well with the second virial coefficient reported
in table 1, while at high concentrations, the osmotic
pressure increases sub-linearly with �=�*. In future work
the anisotropic pair structure will be calculated
to characterize the onset of microphase separation in
more detail.

4. Solving the inverse problem

We now return to the main objective of the present
paper, namely to determine the effective pair potentials
vAAðrÞ, vABðrÞ and vBBðrÞ between the CMs of A and B
strands on different copolymers. In the case of the
symmetric ISI model, vAAðrÞ ¼ vBBðrÞ. From earlier
work on homopolymers [5], which have coarse-grained
interaction characterized by a single effective pair
potential, we expect the effective pair potentials to be
state dependent, i.e. to depend on polymer concentra-
tion. The subsequent discussion will be restricted to the
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Figure 2. Intramolecular CM pair distribution function sABðrÞ of the ISI model as a function of r=RgA at four densities �=�*.
The inset shows RAB (defined in equation (5)) versus �=�*.
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limit of vanishing concentration, i.e. to an isolated pair
of copolymers. To this end the intermolecular pair
distribution functions gAAðrÞ ¼ gBBðrÞ and gABðrÞ have
been computed by MC simulations of a pair of AB
copolymers. The procedure is similar to that used
previously for homopolymers [5, 6], whereby conforma-
tions of the two isolated polymer coils are generated,
and the CMs of the two coils are moved toward each

other, while histograms are collected of the allowed
configurations as a function of the CM–CM distance.
In the case of diblock copolymers, care must be taken
to correctly generate the partial g��ðrÞ. The simulation
must be adjusted to move polymers such that the
relevant CM�–CM� distance is changed. The MC results
for the three low density pair distribution functions
of the ISI model are shown in figure 6 together with

Figure 3. Top: typical configuration of N¼ 1600 ISI copolymers under gravity (� ¼ kBT=mg ¼ 1:66Rg). The copolymers are
confined to a vertical box, open-ended in the z direction (z>0), and periodically repeated in the horizontal x and y directions, the
horizontal base is 100� 100 lattice units. A and B strands are pictured as black and grey spheres of radius R ¼ RgA. Microphase
separation into a striped pattern in clearly visible at lower altitudes. Bottom: monomer density profile �(z) for the same system.

Figure 4. Two horizontal cuts of width �z ¼ RgA of the configuration in figure 3, at altitudes z ¼ 5:5Rg (left) and z ¼ 9:5Rg

(right). A and B strands are again pictured as black and grey spheres of radius Rg. The lamellar structure is starting to break up at
z ¼ 9:5Rg.
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the pair distribution functions of the overall CMs of
the copolymers, gCCðrÞ. These results, together with the
previously determined intramolecular pair distribution
function sABðrÞ, are then inverted to yield effective,
monomer-averaged pair potentials vAAðrÞ ¼ vBBðrÞ,

vABðrÞ and vCCðrÞ. While the inversion of gCCðrÞ to
yield vCCðrÞ is trivial;

vCCðrÞ ¼ �kBT ln gCCðrÞ ð7Þ
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2

2 4 6 8 10

3

Z
=

P
/r

k B
T

2M=120

2M=250

2M=500

2M=2000

Figure 5. Osmotic equation of state Z ¼ P=ð�kBT Þ of the ISI model as a function of �=�* as extracted from equation (6).
The results are for copolymers of different lengths 2M ¼ 120, 250, 500 and 2000.
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Figure 6. Zero density limit of the CM pair distribution functions gAAðrÞ, gABðrÞ, gBBðrÞ and gCCðrÞ versus r=Rg. The results are
from MC simulations of 2M ¼ 500 copolymers.
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the inversion of gAAðrÞ and gABðrÞ to yield vAAðrÞ, vABðrÞ,
given sABðrÞ is considerably more complicated, since one
is in effect facing a four-body problem. For site–site
interaction models of ‘diatomics’, the exact relation
between g��ðrÞ and v��ðrÞ, for a given sABðrÞ, is in the low
density limit [22]:

lim
�!0

hAAðrÞ

¼ fAAðrÞ þ 1þ fAAðrÞ½ �

�

(Z
dx fABðxÞ sBAðx� rÞ þ sABðxÞ fBAðx� rÞ½ �

þ

Z
dx

Z
dysABðxÞ sBAðy� rÞ ½ fBBðx� yÞ

þ fABðyÞ fBBðx� yÞ þ fBAðx� rÞ fBBðx� yÞ

þ fABðyÞ fBAðx� rÞ

þ fABðyÞ fBAðx� rÞ fBBðx� yÞ�

)
, ð8Þ

lim
�!0

hABðrÞ

¼ fABðrÞ þ 1þ fABðrÞ½ �

�

Z
dx fAAðxÞ sABðx� rÞ þ sABðxÞ fBBðx� rÞ½ �

�

þ

Z
dx

Z
dy sABðxÞ sABðy� rÞ fBAðx� yÞ½

þ fAAðyÞ fBAðx� yÞ þ fBBðx� rÞ fBAðx� yÞ

þ fAAðyÞ fBBðx� rÞ þ fAAðyÞ fBBðx� rÞ fBAðx� yÞ�

)
:

ð9Þ

where h��ðrÞ ¼ g��ðrÞ � 1 and the f��ðrÞ are the Mayer
functions

f��ðrÞ ¼ f��ðrÞ ¼ exp ��v��ðrÞ
� �

� 1: ð10Þ

The inversion procedure now amounts to solving the
coupled integral equations (8) and (9) for the f��ðrÞ,
using the h��ðrÞ and s��ðrÞ from the MC simulations
as input. Once the f��ðrÞ have been calculated by an
appropriate iterative solution of the two coupled
integral equations, the effective intermolecular poten-
tials v��ðrÞ follow from equation (10). The numerical
solution of equations (8) and (9) is facilitated by the
fact that all integrals on the right-hand side are convolu-
tion integrals, and hence easily evaluated by Fourier

transformation, except the last term of the double
integrals, which involves five factors and corresponds
to a fully connected ‘bridge’ diagram, which cannot be
resolved by Fourier transformation. If the bridge term
is left out, in the spirit of the familiar hyper-netted
chain (HNC) approximation [10], major difficulties are
encountered when attempting a numerical solution,
because of the inconsistency introduced by neglecting
the bridge term, which is a violation of the connectivity
constraints. However the task of including the bridge
term may be achieved by noting that all integrals in
equations (8) and (9) may be calculated analytically,
if sABðrÞ, fAAðrÞ, fABðrÞ are sums of Gaussian functions
centred on r¼ 0. We have hence fitted the MC data for
sABðrÞ, shown in figure 2, by a sum of four Gaussian
functions. The (two) unknownMayer functions fAAðrÞ ¼
fBBðrÞ, fABðrÞ are represented by a sum of 10 Gaussian
functions, and the amplitudes and widths are varied
until the resulting pair correlation functions 4pr2h��ðrÞ
yield the best fits to the MC data as illustrated
in figure 7. The corresponding optimal Mayer functions
fAAðrÞ, fABðrÞ and the resulting effective pair potentials
vAAðrÞ and vABðrÞ are plotted in figure 8. As expected,
vAAðrÞ ¼ vBBðrÞ is small compared to kBT for all
site–site distances, while vABðrÞ is roughly Gaussian in
shape, with an overlap (vABðr ¼ 0Þ) value of 3.2kBT.
The effective pair potential vCCðrÞ between the overall
copolymer CMs, calculated from equation (7) and
the MC data for gCCðrÞ, is also shown in figure 8.
Its amplitude at full overlap, vCCðr ¼ 0Þ � 1:25kBT is
almost three times smaller than vABðr ¼ 0Þ but its range
is significantly wider, as one may expect, since the
effective potential vCCðrÞ involves an implicit averaging
over relative orientations of the elongated diblock
copolymers. It is interesting to note that the entropic
barrier of 3.2kBT for complete overlap of the mutually
avoiding strands A and B of the two copolymers is
substantially higher than found for homopolymers,
where vðr ¼ 0Þ � 1:8kBT for sufficiently long polymers
[4, 5, 9]. This is a consequence of the fact that monomers
of the same strand can overlap (ideal polymers), and
that the strands are hence more compact than the
swollen self-avoiding walk polymers. Interestingly, the
effective potential vABðrÞ for two copolymers is rather
close to that found for binary mixtures of untethered
A and B polymers [23].

5. Conclusion

We have introduced and investigated a highly simplified
model of a symmetric diblock copolymer which leads
to microphase separation, the ISI model. The binary
mixture counterpart of ISI, where A and B strands are
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untethered is the macromolecular equivalent of the
Widom–Rowlinson model [12], and like the latter
leads to macroscopic phase separation [23]. Despite the
simplicity of the ISI model, a fully quantitative investiga-
tion of its structure, thermodynamics and phase behav-
iour would still be a daunting task, and only partial
results have been reported in the present paper. In order
to go further we propose a coarse-graining strategy,
whereby an AB block copolymer is schematized by two

‘blobs’ tethered by an entropic spring, deriving from an
effective intramolecular pair potential �ABðrÞ between the
CMs of the two strands. We were able to extract �ABðrÞ
and the intermolecular potentials vAAðrÞ and vABðrÞ from
the site–site pair distribution functions sABðrÞ, gAAðrÞ,
gABðrÞ in the zero density limit, as generated by
MC simulations for an isolated pair of interacting
copolymers with 2M monomers (1029M9103). The
simulation of the resulting coarse-grained ‘soft diatomic’
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the text and in figure 7. Right: resulting effective pair potentials, vAAðrÞ ¼ vBBðrÞ, vABðrÞ and vCCðrÞ, versus r=Rgm; the effective
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representation of the ISI model is orders of magnitude
faster, since the number of degrees of freedom is reduced
by a factor M. Preliminary investigations show that the
coarse-grained model indeed leads to phase behaviour
very similar to that of the original ISI model. Note that,
by construction, the ‘soft diatomic’ model will lead back
to the exact pair distribution functions of the ISI, at least
at zero density. From our earlier experience with effective
pair potentials between the CMs of homopolymers, we
expect some concentration dependence of the effective
potentials for AB copolymers. In the case of the former,
the inversion of the single pair distribution function at
finite polymer concentration is straightforward, via the
HNC closure which is extremely accurate for soft
potentials [5, 6]. A similar inversion scheme for diblock
copolymers could in principle be based on the ‘reference
interaction site model’ (RISM) formalism [24], with
HNC closure, but the inconsistencies of this formalism
are well documented, and will require careful attention
for its implementation in an inversion procedure. Since
no dramatic density dependence of the effective poten-
tials is expected, at least for the athermal ISI model, an
excellent first approximation will be to use the zero
density potentials derived in the present paper to
investigate the behaviour of dilute and semi-dilute
copolymer solutions. A severe check will be provided
by a direct comparison of the pair distribution func-
tions obtained at finite densities with the effective
‘soft diatomic’ model, and from the full underlying
ISI model. Work along these lines is in progress. The
extension of the present work to asymmetric (MA 6¼MB)
diblock, triblock and more complex copolymer systems
is, at least in principle, straightforward.
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