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Interfacial properties of colloid-polymer mixtures are examined within an effective one-component
representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles
interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective
potentials, and a free energy functional is used that treats colloid excluded volume correlations within
Rosenfeld’s fundamental measure theory, and depletion-induced attraction within first-order perturbation theory.
This functional allows a consistent treatment of both ideal and interacting polymers. The theory is applied to
surface properties near a hard wall, to the depletion interaction between two walls, and to the fluid-fluid
interface of demixed colloid-polymer mixtures. The results of the present theory compare well with predictions
of a fully two-component representation of mixtures of colloids and ideal polymers (the Asakura-Oosawa
model) and allow a systematic investigation of the effects of polymer-polymer interactions on interfacial
properties. In particular, the wall surface tension is found to be significantly larger for interacting than for
ideal polymers, whereas the opposite trend is predicted for the fluid-fluid interfacial tension.

I. Introduction

Mixtures of colloidal particles and nonadsorbing polymers
dispersed in a solvent provide experimentalists and theoreticians
with a very flexible model system to explore the statics and
dynamics of phase transitions, including fluid-fluid demixing,
crystallization, gelation, or glass transitions,1 as well as the
interfacial properties associated with phase coexistence. The
flexibility of this model system stems from the fact that its
properties can be easily tuned by varying, among others, the
size ratio of the two components (e.g., by controlling the degree
of polymerization), their concentrations, or the quality of the
solvent that determines whether the polymer coils behave
essentially like interacting self-avoiding walks (SAW), or more
like ideal noninteracting polymers (underθ-solvent conditions).

More specifically, if, as will be done in this paper, one adopts
an effective one-component representation (by tracing out the
polymer degrees of freedom), the resulting effective interactions
between the colloidal particles, obtained from the well-known
depletion mechanism,2 are easily tuned by varying the above
physical parameters: the depth of the effective attraction
between colloids is essentially controlled by the polymer
concentration, whereas the range depends on the polymer size
(radius of gyration). The resulting phase diagrams are very
sensitive to changes in the depletion-induced pair potential
between colloids.3 Recent experimental4 and theoretical5,6 efforts
have focused on interfacial and wetting properties of colloid-
polymer mixtures, either near solid substrates (hard walls) or
at fluid-fluid phase coexistence. The density profiles near a
glass wall and the surface tension at fluid-fluid phase coexist-
ence were measured4 and very recently the first direct observa-
tion of capillary fluctuations at the fluid-fluid interface was

reported.7 Various versions of density functional theory (DFT)
of inhomogeneous fluids have been used to determine the
density profiles, adsorption, and surface tension of colloid-
polymer mixtures near a hard wall, either in the one-component8

or two-component9,10 representations or at the phase-separated
fluid-fluid interface.11,12 Most of the theoretical work so far
focused on mixtures of hard sphere colloids and ideal (nonin-
teracting) polymers within the classic model of Asakura and
Oosawa13 and of Vrij14 (the AO model), although some attempts
have been made to extend the DFT calculations to the case of
nonideal (interacting) polymer coils,10,12 pointing to very
significant differences between the two situations.

This paper presents a unified DFT description of wall-fluid
and fluid-fluid interfaces within an effective one-component
representation. The DFT theory is a perturbative one with respect
to the polymer-induced depletion attraction between hard sphere
colloids and applies to mixtures of colloids and noninteracting,
as well as interacting, polymer coils. Apart from a systematic
comparison of the density profiles and surface tensions obtained
for these two cases, the present theory also leads to the first
estimate of the depletion potential between two walls induced
by colloid-polymer mixtures.

The paper is organized as follows. Section II briefly sum-
marizes the effective one and two-component representations
of colloid-polymer mixtures. The DFT formulation used in this
paper is presented in section III. Results for colloid density
profiles near a hard wall in the presence of ideal or interacting
polymers are presented in section IV, whereas the resulting wall
surface tension of the mixtures is calculated in section V. The
depletion potential between hard walls, induced by colloid-
polymer mixtures is described in section VI. The fluid-fluid
interfacial properties calculated within the same DFT ap-
proximation are presented in section VII, and conclusions are
drawn in section VIII.
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II. Effective One- and Two-Component Representations

Consider a binary mixture ofNc colloidal particles andNp

polymer coils in an external field (e.g., the confining field of a
hard wall). The total Hamiltonian of the system may be written
as

where the colloid-colloid, polymer-polymer, and colloid-
polymer termsHcc, Hpp, andHcp will be assumed to be sums of
pair interactions between the centers of mass (CM){RBi} (1 e i
e Nc) and {rbj} (1 e j e Np) of the colloids and polymers,
respectively. Within this assumption, the individual monomer
degrees of freedom of the polymer coils have been traced out,
and the resulting effective pair potential between polymer CM’s
is a state-dependent free energy;15 similarly the colloid-polymer
pair potential is a state-dependent free energy resulting from a
statistical average over monomer degrees of freedom for a fixed
distance between the CM’s of the two particles.16 Hence,

and

where æc
0 and æp

0 are direct external interactions acting on
colloidal particles and polymers, respectively. Note thatæp

0(rb)
is once more an effective potential acting on the polymer CM.

The colloid-colloid pair potential will henceforth always be
considered to be of the hard sphere form. The AO model for
noninteracting polymers further assumes that

with σcc ) 2Rc (Rc being the colloidal radius),σpp ) 0, andσcp

) Rc + Rp, whereRp is the radius of gyration of the polymer
coils. A generalization of Rosenfeld’s fundamental measure
theory (FMT) free energy functional for additive hard spheres17

has been worked out for the nonadditive hard sphere mixture
given by eq 418 and applied to colloid-polymer interfacial
properties.5,9

An alternative approach is to trace out the polymer degrees
of freedom to derive an effective Hamiltonian involving only
the colloid degrees of freedom.2,19 Within the semi-grand
canonical ensemble, with fixedNc and fixed chemical potential
µp of the polymers (or equivalently, fixed number densityFp

r of
the polymers in a reservoir), the effective Hamiltonian is

whereΩ is the grand potential of the inhomogeneous fluid of
polymers, which depends parametrically on the positions{RBi}
of the colloidal particles.Ω can be systematically expanded

in terms corresponding to the number of colloids:7,8

Ω0 is the free energy of the pure polymer solution at chemical
potentialµp, in the volumeV of interest,Ω1 is the free energy
cost of inserting independent single colloids,Ω2 takes pairwise
colloid-colloid interactions into account, and so forth for higher
order terms. Such an expansion can also be carried out near a
single wall of areaA, where the first few terms are

whereæc
eff(z) is the effective wall-colloid depletion potential

induced by the presence of polymers,Pp(µp) is the osmotic
pressure of the bulk polymer solution, andγw,p(µp) is the surface
tension induced by the flat wall. Surface tensions are defined
throughout relative to the position of the hard wall, atz ) 0.
Inserting a single colloid into a bulk polymer solution costs a
free energyω1(µp) ) Ω1

bulk/Nc, and æc
eff(z) describes the

correction to that insertion free energy when the colloid is at a
distancez from the wall. Veff(Rij) is the effective interaction
between two colloids, induced by the polymer solution. The
next higher order contributions toΩ includes a a three-body
colloid term, a three-body colloid-colloid-wall term, etc. These
will be ignored in the present work.

Brader et al. systematically worked out this expansion for
an AO mixture near a flat wall, finding8 âΩ0 ) -Fp

r (V - RpA)
(becauseâPp(µp) ) Fp

r and âγw,p
id ) Fp

rRp for AO particles20),
âΩ1 ) NcFp

r (4/3)π(Rc + Rp)3 + ∑i)1
Nc âæAO(zi), and âΩ2 )

∑i<jâVAO(Rij). âæAO(zi) acts on each colloid independently and
takes the form

whereηp
r ) 4πFp

rRp
3/3 is the polymer packing fraction in the

reservoir,q ) Rp/Rc is the size ratio, andθ(x) is the Heaviside
step function (θ(x) ) 0, x < 0; θ(x) ) 1, x > 0). VAO(Rij) is the
Asakura-Oosawa depletion13 potential between two spheres in
a bath of ideal polymers; defining nows ) (R - 2Rc)/Rc, VAO

is given by

The effective Hamiltonian for the AO model, withΩ
restricted to the zero-, one-, and two-body terms in eq 6, is
strictly valid only for size ratiosq < 0.1547; for larger size
ratios, three- and more-body effective interactions between
colloidal particles come into play,8 but explicit calculations of
bulk properties show that they do not play a significant role for
q up to≈1.21,22Subsequent calculations will neglect more than
two-body interactions. For the AO model,Ω0 and the bulk part
of Ω1, Ω1

bulk ) Ncω1, do not affect the interfacial profiles but

H ) Hcc + Hpp + Hcp + Φc + Φp (1)

Hcc ) ∑
i<j

Nc

Vcc(Rij)

Hpp ) ∑
i<j

Np

Vpp(rij)

Hcp ) ∑
i

Nc

∑
j

Np

Vcp(|RBi - rbj|) (2)

Φc ) ∑
i

Nc

æc
0(RBi) Φp ) ∑

i

Np

æp
0( rbi) (3)

VRâ(r) ) {∞ r < σRâ

0 r > σRâ; R, â ) c or p (4)

Hc
eff ) Hcc + Φc + Ω (5)

Ω ) ∑
n)0

Nc

Ωn (6)

Ω0 ) -Pp(µp)V + γw,p(µp)A

Ω1 ) Ncω1(µp) + ∑
i)1

Nc

æc
eff(zi)

âΩ2 ) ∑
i<j

Nc

âVeff(Rij) (7)

âæAO(z) ) -
ηp

r

4q3
(2q - z)2(3 + q + z)θ(2q - z) (8)

âVAO(s) ) -
ηp

r

16q3
(2q - s)2(6 + 4q + s)θ(2q - s) (9)
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do make contributions to the surface tensionγ, as will be shown
in subsequent sections.

The AO pair potential (eq 9) assumes ideal polymers to be
spherical, so that the width of the depletion layer is always equal
to 2Rp. However, polymers can “wrap” around colloidal spheres,
the more so the smaller the radiusRc of the latter. Hence, one
expects the width of the depletion layer around a colloid to
shrink asRc decreases. This effect can be accounted for by
following the prescription of refs 23 and 24, whereby the AO
form (eq 9) of the effective pair potential holds, but with a
renormalized size ratioq′ and a renormalized polymer packing
fraction ηp

r ′:

For interacting polymers we can also carry out an expansion
of Ω. Accurate expressions forPp, γw,p, ω1, andVeff(r) are known
and have been validated by computer simulations for self-
avoiding walk (SAW) chains,20,24so thatΩ0, Ω1, andΩ2 directly
follow from eq 7. The Derjaguin approximation, which is
reasonably accurate for an ideal polymer depletant, is expected
to remain valid in the case of interacting polymers, at least for
sufficiently smallq, so that the required wall-colloid effective
depletion potentialæc

eff(zi) is given by

where the effective potential between two colloids induced by
interacting polymers is well approximated by the semiempirical
form

Hered ) D/Rc andD is the range of the depletion potential:

BecauseVint(r) depends on polymer density only throughFp
r

(i.e.,µp), its form does not change when the polymer density is
inhomogeneous. In contrast to the AO model, higher order
colloid-colloid and colloid-wall terms are relevant for any size
ratio.

The effective one-component representation of colloid-
polymer mixtures is thus fully defined, both for ideal and
interacting polymers. The next step is to define the density
functional appropriate for the description of the inhomogeneous
effective one-component model.

III. Density Functional Formulation

Given the effective Hamiltonian specified by eqs 5 and 7,
one may construct an approximate free energy density functional
to investigate the properties of the inhomogeneous effective one-
component system of colloidal particles. The latter interact via
a hard sphere repulsions (forr < 2Rc) and a polymer-induced
depletion attraction that will be described within first-order
perturbation theory,25 which is expected to be accurate for not
too small values ofq (i.e., for sufficiently long-range attractions).
The intrinsic free-energy functional is then conveniently split

into ideal, hard sphere, and perturbation parts; for the hard core
part we adopt the very accurate “White Bear” version26 of
Rosenfeld’s “fundamental measure” (FMT) functional17

The ideal contribution is

whereΛc is an irrelevant colloidal length scale. The FMT-hard
core contribution is of the “weighted density” type, namely

where thenj(rb) are weighted densities of the form

The functionsΦi and the weight functionsω(j)(rb) are defined
in Appendix A. Finally, the first-order perturbation term reads

with

whereV(r) ) VAO(r) or Vint(r) is the depletion potential induced
by ideal (AO) or interacting (int) polymer coils;ghs is the pair
distribution function of the homogeneous reference hard sphere
fluid, evaluated at an intermediate density between the two
points rb and rb′:

with

Fjν(rb) is a smoothed density profile aroundrb; the radiusRν is of
the order ofRc, and results are not expected to be very sensitive
to the precise value ofRν. Following the earlier experience of
ref 27 we have chosenRν ) 1.6Rc. The form (19) is the
generalization of the standard first order thermodynamic theory32

to inhomogeneous fluids. The choices given in eq 20 and 21
have proved very adequate in many DFT calculations of fluids
near hard walls.

In the homogeneous limit, where the density profile reduces
to the bulk density, the free energy given by eq 14 goes over to
the Helmholtz free energy of the fluid phase calculated within
first-order thermodynamic perturbation theory,28 which leads
to reasonable phase diagrams of colloid-polymer mixtures.22

The familiar generalized van der Waals mean field approxima-
tion amounts to settinggHS(r) ) θ(2Rc - r), which leads of
course to a considerable simplification of the DFT calculations.

Keeping in mind that the total effective Hamiltonian of the
colloids is given by eqs 5-7, with Ω ) Ω0 + Ω1 + Ω2, the
grand potential functional to be minimized with respect to the

q′ ) (1 + 6

xπ
q + 3q2)1/3

- 1

ηp
r ′ ) (q′

q)3
ηp

r (10)

âæint(s) ≈ 2âVint(s) (11)

âVint(s) ) -π
âRc

2γw,p(Fp
r )

d(Fp
r )

[s - d(Fp
r )]2θ(d - s) (12)

D(Fp
r ) ) xπ

γw,p(Fp
r )

Pp(Fp
r )

‚q′
q

(13)

F[Fc( rb)] ) Fid[Fc( rb)] + FFMT[Fc( rb)] + F1[Fc( rb)] (14)

Fid[Fc] ) kBT∫drb Fc( rb)[ln(Λc
3Fc( rb)) - 1] (15)

âFFMT[Fc] ) ∫drb [Φ1({nj( rb)}) + Φ2({nj( rb)}) +

Φ3({nj( rb)})] (16)

nj( rb) ) ∫ω(j)( rb- rb′) Fc( rb′) drb′ (17)

F1[Fc] ) ∫drb Fc( rb) Ψ1( rb) (18)

Ψ1( rb) ) 1
2∫drb′Fc( rb′) V(|r-r′|) ghs(|r-r′|, Fjc( rb,rb′)) (19)

Fjc )
Fjν( rb) +Fjν( rb′)

2
(20)

Fjν( rb) ) 3

4πRν
3 ∫|r-r′|<Rν

Fc( rb′) drb′ (21)
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density profileFc(rb) is the sum of the intrinsic free energy
functional 14 and of the contributions from the external fields:

where µc
0 is the bulk chemical potential of the colloids,

whereasΩ0 andΩ1
bulk ) Ncω1 are defined in eq 7. Because the

latter are constants, they have no influence on the equilibrium
profile Fc(rb), but they will contribute to the equilibrium value
of the grand potential, and hence to the surface tension.æc(rb)
) æc

0(rb) + æc
eff(rb) is the sum of the external potential acting

directly on the colloidal particles (æc
0(rb)) and of the polymer-

induced depletion contribution,æc
eff(rb), given by eq 8 or 11 for

ideal and interacting polymers, respectively.
The Euler-Lagrange equation of the variational problem

reads

F is the sum of ideal (Fid) and excess (Fex ) FFMT + F1) parts;
defining the local excess chemical potential as

the Euler-Lagrange equation may be cast in the form

so that the density profile satisfies the nonlinear equation:

whereµc
0,ex is the excess part of the bulk chemical potential of

the colloids. The coupled equations (24) (withFFMT andF1 given
by eqs 16 and 18) and (26) must be solved numerically by
standard iterative procedures.

Because only planar interfaces will be considered, the external
potential, the density profile, and local chemical potential all
depend only onz, the coordinate orthogonal to the plane of the
interface. The corresponding simplified expression for the local
excess chemical potentialµc

ex(rb)29 is given in Appendix B,
together with the weight functionsω(j)(z-z′) appropriate for the
one-dimensional problem.

Once the equilibrium profileFc(z) has been determined, it
can be substituted into the expression of the functional 22 to
determine the equilibrium grand potentialΩ. Subtraction of the
bulk contribution then allows the surface tensionγ to be
calculated, according to the definition:

whereP is the total bulk osmotic pressure of the mixture and
A the total area of the planar interface.

IV. Density Profiles near a Hard Wall

Consider first the case of a colloid-polymer mixture near a
hard wall placed atz ) 0. The density profiles were calculated
by solving the one-dimensional versions of eqs 24 and 26 (see
Appendix B). A systematic comparison is made between profiles
for ideal and interacting polymers, over a range of colloid and

polymer packing fractionsηc
0 andηp

r and for size ratios ranging
from q ) 0.34 toq ) 1.05. Parts a and b of Figure 1 compare
the density profiles calculated for a fixed colloidal density and
several polymer concentrations, for interacting and ideal poly-
mers. As expected, the colloid adsorption at contact increases
dramatically with increasing polymer concentration, due to the
enhanced effective depletion-induced attraction to the wall. The
effect is stronger for ideal polymers, which also lead to strong
layering at the highest packing fraction, hinting at a possible
layering transition. The enhanced adsorption and layering are
easily understood, because the polymer induced attraction is
substantially stronger for ideal polymers (cf. eq 8) compared
to interacting polymers (eqs 12 and 11), at the sameRp, q, and
Fp

r .20 The structured profile atηp
r ) 0.4 in Figure 1b is for a

thermodynamic state close to the fluid-fluid binodal (on the
colloid-poor “vapor side”) calculated from the same free energy
model (see ref 22) giving further support to the possibility of a
layering transition.30,31

The effect of the range of the depletion attraction is illustrated
in Figure 2a,b for interacting and ideal polymers, respectively.
The trend of the density profiles with increasingq is opposite
that observed with increasingηp

r . The adsorption at contact is
now strongest for the smallest size ratio. This is essentially due
to the fact that the wall-colloid depletion potential at contact,
æc

eff(0), drops as the polymer density decreases. BecauseFp
r ∼

ηp
r /q3, a small increase in the size ratioq implies a big

reduction in polymer density, and also inæc
eff(0). Calculations

carried out at higher colloid packing fractions show that the

Ωæ[Fc] ) F[Fc] + ∫Fc( rb)[æc( rb) - µc
0] d rb + Ω0 + Ω1

bulk

(22)

δΩæ[Fc( rb)]

δFc( rb)
)

δF[Fc( rb)]

δFc( rb)
+ æc( rb) - µc

0 ) 0 (23)

µc
ex( rb) )

δFex[Fc( rb)]

δFc( rb)
)

δFFMT[Fc( rb)]

δFc( rb)
+

δF1[Fc( rb)]

δFc( rb)
(24)

kBT ln[Λc
3Fc( rb)] + µc

ex( rb) ) µc
0 - æc( rb) (25)

Fc( rb) ) Fc
0 exp{-â[æc( rb) + µc

ex( rb) - µc
0,ex]} (26)

γ ) Ω + PV
A

(27)

Figure 1. Colloid density as a function of the distance to the hard
wall for mixtures of colloids and (a) interacting polymers and (b) ideal
polymers, at different polymer concentrations. In both figures the bulk
colloid packing fraction and the size ratio were set atηc

0 ) 0.15 andq
) 0.67.
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effect of polymer-induced wall-colloid attraction on the density
profiles is much reduced asηc

0 increases, due to the predomi-
nance of purely excluded volume effects under high-density
conditions.28,32

V. Wall Surface Tension

Once the colloid density profiles have been calculated, the
surface tension may be determined by substitutingFc(z) into eq
22, and then applying relation 27. Some care has to be taken in
treating the bulk zero and one-body contributionΩ0 andΩ1

bulk.
These also contribute to the bulk properties (calculated by letting
Fc(z) go to the bulk valueFc

0), and in particular to the colloid
chemical potentialµc

0 and to the osmotic pressure of the
mixture. Thus, for the chemical potential of the bulk one obtains

whereω1 is already defined in eq 7.
In a similar fashion, the total osmotic pressure is the sum of

the colloid contributionPc(Fc
0,Fp

r ) (calculated by differentiating
the homogeneous limit of the intrinsic free energy (14) with
respect toFc

0) and of the osmotic pressure of the polymer
reservoir:

Hence,

whereF[Fc(z)] is the colloid contribution to the inhomogeneous
free energy, given by eq 14. Substituting eqs 28 and 29 shows
that the bulk contributions toΩ0 andΩ1 are exactly canceled
so that the final expression for the surface tension is given by

wheref ) F/V is the intrinsic colloid free energy density (14).
In other words, the surface tension may be written as the sum
of a colloid contributionγw,c (which would be obtained by
ignoring Ω0 andΩ1

bulk in eq 22) and of the contribution of the
polymers under reservoir conditions:

Equation 32 is exact within an effective one-component
representation of a mixture of colloids and polymers whereΩ
in eq 6 is truncated atΩ2. For theγw,c(Fc

0,Fp
r ) of interacting

(SAW) polymers, we use the results of ref 24. The resulting
total surface tensions for the cases of ideal and interacting
polymers are plotted as a function of the polymer reservoir
packing fraction in Figure 3 and compared to the predictions
of the two-component representation (with ideal polymers),
calculated within scaled particle theory,10 modified so as to
account for the “polymer wrapping” effect, according to the
prescriptions of eq 10.

The agreement between the surface tensions calculated within
the effective one- and two-component representations is seen
to be good for low densities and to deteriorate somewhat beyond.
The surface tension with interacting polymers is substantially
larger (up to a factor of 2 at the highest polymer concentrations)
compared to the ideal polymer case. This is because the colloid-
wall surface tension is higher with interacting polymers, due to
the weaker effective wall-colloid attraction, and the wall-
polymer surface tension is also higher for interacting polymers.20

Figure 4 illustrates the variation of the surface tension with
size ratioq. For fixed values ofηc

0 andηp
r , the surface tension

is seen to decrease rapidly asq increases, and to tend to the
result for hard spheres whenq > 1. Finally, the variation of
the surface tension with colloid packing fraction (for fixedq
and ηp

r ) is shown in Figure 5. The agreement between the
effective one and two-component representations found at low
packing fractions is seen to deteriorate rapidly asηc

0 increases,
thus illustrating the break-down of the effective one-component
model for highly concentrated colloidal suspensions.

VI. Depletion Interaction between Hard Walls

The depletion potential per unit area induced by a colloid-
polymer mixture between two hard walls of areaA separated
by L is determined by

Figure 2. Effect of the polymer-colloid size ratio,q, on the density
profile near a hard wall forηc

0 ) 0.15 andηp
r ) 0.4 induced by (a)

interacting and (b) ideal polymers. In both figures, the density profile
of pure one-component hard spheres (without depletant) atηc

0 ) 0.15
has been included for comparison.

µc
0 ) µc(Fc

0) + ω1 (28)

P ) Pc(Fc,Fp
r ) + Pp(Fp

r ) (29)

Ω + PV
A

)
Ω0 + Ω1 + Ω2 + PV

A
) {-PpV + γw,pA

A } +

{ω1(Fp
r )∫dz Fc(z) + ∫dz Fc(z) æc(z)} +

{F[Fc(z)]

A
- µc

0∫dz Fc(z)} + PV
A

(30)

γw ) lim
Lf∞

Ω + PV
A

) γw,p +

lim
Lf∞

∫0

L
dz {f[Fc(z)] + Fc(z)[æc(z) - µc(Fc

0)] + Pc} (31)

γw ) γw,c(Fc
0,Fp

r ) + γw,p(Fp
r ) (32)

W(L) )
Ω(L) - Ω(∞)

A
(33)
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Clearly,W(L) f 0 asL f ∞, whereasW(L)0) ) -2γw, because
when the walls come into contact, two fluid-wall interfaces
are destroyed. For arbitraryL, the colloid contributionWc to
W(L) obtained by momentarily ignoring the bulk contributions

Ω0 andΩ1
bulk to the total grand potential, reads, by straightfor-

ward analogy with expression (31) for the surface tension:

Figure 6 shows the comparison of the depletion potentialsWc(L)
calculated for a pure hard sphere depletant (i.e.,ηp

r ) 0) and
for hard sphere colloids and ideal or interacting polymers, within
the present effective one-component representation. The extra
attraction between the walls and colloidal particles forces the
latter into the region between the two plates, enhancing the
potential barrier of the depletion potential atL ) Rc. The effect
is stronger for ideal than for interacting polymers, because
effective wall-colloid and colloid-colloid attractive interactions
are enhanced in going from interacting to ideal polymers. For
L < 2Rc the hard colloids are excluded from the space between
the walls, and the depletion potential is entirely controlled by
the external, unbalanced osmotic pressure which pushes the
walls together, i.e.:

To obtain the total depletion potential, the volume termsΩ0

andΩ1
bulk must be included in the grand potential. It is easily

verified that, within the truncation ofΩ at Ω2, i.e., ignoring
colloid-colloid-polymer and similar higher order terms, the
depletion potential takes the form

where Pp
r is the osmotic pressure of the polymers in the

reservoir, γw,p is the corresponding wall-polymer surface
tension, andDw

p ) 2γw,p/Pp is the range of the polymer
depletion potential, which takes the valueDw

id ) 2Rp for AO
particles. The resulting total depletion potential for ideal
polymers is shown in Figure 7. It remains continuous atL )
2Rp, but the resulting force is discontinuous at that separation.

The basic input in the evaluation of surface tensions or
depletion forces are the density profilesFc(z). To check the
reliability of the profiles calculated within the present perturba-
tion DFT, we have carried out some grand canonical Monte
Carlo (GCMC) simulations of profiles, using the same effective

Figure 3. Wall surface tension for ideal (squares) and interacting
polymers (triangles) in the one-component representation, and for ideal
polymers in the two-component representation (solid line), as a function
of ηp

r (ηc
0 ) 0.15 andq ) 0.67). The dotted horizontal line is for hard

sphere colloids only (without depletant).

Figure 4. Wall surface tension for ideal (squares) and interacting
(triangles) polymers in the one-component representation, and for ideal
polymers in the two-component representation (solid line), as a function
of the size ratio,q (ηc

0 ) 0.2 andηp
r ) 0.2). The dotted horizontal line

is for pure hard spheres, and the colloidal contributions to the wall
surface tension,γw,c, are also shown for comparison.

Figure 5. Wall surface tension for ideal (squares) and interacting
(triangles) polymers in the one-component representation, and for ideal
polymers in the two-component representation (solid line), as a function
of the bulk colloid packing fraction,ηc

0 (ηp
r ) 0.2 andq ) 0.67).

Figure 6. Effective depletion potential between two flat parallel walls
as a function of the wall-wall distance,L, induced by pure hard colloids
(dotted line), colloids plus ideal polymers (triangles), and colloids plus
ideal polymers (squares).ηc

0 ) 0.15,ηp
r ) 0.15, andq ) 0.67.

Wc(L) )

∫0

L
dz {F[Fc(z)] + Fc(z)[æc(z) - µc(Fc

0)] + Pc} - 2γw,c (34)

Wc(L<2Rc) ) PcL - 2γw,c (35)

W(L) ) {Wc(L) + Pp
rL - 2γw,p(Fp

r ) L < Dw
p

Wc(L) L g Dw
p (36)
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colloid-colloid and colloid-wall interactions as with DFT. Two
typical examples of such a comparison are shown in Figure 8a,b
for a mixture of colloids and interacting polymers confined
between two hard walls (slit geometry). At the lower polymer
concentrations, corresponding to relatively weak colloid-colloid
and wall-colloid attraction, the agreement between DFT and
simulation is excellent (Figure 8a). At the higher polymer
concentration (Figure 8b), the attractive perturbation is much

stronger and, as expected, the agreement worsens. Nevertheless,
the perturbation DFT is still capable of reproducing the main
features of the density profile. Figure 8b also shows the result
from the mean-field DFT, which amounts to neglecting cor-
relations inF1[Fc] (cf. section III). The disagreement with the
simulated data is now much more severe (see the inset in Figure
8b), stressing the importance of properly including reference
system correlations in eq 19.

VII. Fluid -Fluid Interface

We finally turn to the fluid-fluid interface at coexistence
between colloid-poor (“gas”) and colloid-rich (“liquid”) phases.
This is a “free” interface, because translational symmetry is
broken in the absence of any external potential, i.e.,æc(rb) ) 0.
An accurate and consistent determination of the phase boundary
(binodal) in theηc

0 (colloid packing fraction)-ηp
r (polymer

reservoir packing fraction) is required. The bulk free energy
per unit volume, obtained from eqs 14-19 in the homogeneous
(Fc(rb) ) Fc

0) limit, reads

This free energy depends implicitly on the polymer concentra-
tion ηp

r via the effective depletion pair potentialV(r) ) V(r;ηp
r ),

which is given by eq 9 (VAO) for ideal polymers and by eq 12
(Vint) for interacting polymers.

For any fixed value ofηp
r the colloid packing fractions of the

coexisting phases may be determined by applying the standard
Maxwell double-tangent construction tof. The resulting binodals
for ideal and interacting polymers (not shown) are very close
to those calculated in ref 22, where an estimate of the second-
order perturbation correction to the free energy was included.
The trends of the binodals are according to expectation.
Qualitatively, the behavior for ideal and interacting polymers
is similar, with critical points at higherηp

r asq increases, but
with considerably “flatter” binodals for interacting polymers.
There are, however, very significant quantitative differences,
because the binodals for interacting polymers are shifted to
considerably larger values ofηp

r for each size ratioq, i.e.,
polymer interactions enhance the miscibility of colloid-polymer
mixtures. This is easily understood, because the polymer-induced
depletion attraction between colloids is weaker (for givenq and
ηp

r ) for interacting polymers.
The colloid density profile at the fluid-fluid interface is

calculated by minimizing the grand potential (eq 22), withæc

≡ 0, which leads back to expression 26 (again withæc ≡ 0).
The profiles for ideal and interacting polymers are shown in
Figures 9 and 10, under conditions close to the fluid-fluid-
solid triple point, for a size ratioq ) 0.67. The profiles are
compared to earlier predictions based on a square gradient
density functional (SGT),12 using the same effective one-
component description. There are remarkable differences be-
tween the profiles corresponding to interacting and ideal
polymers. The interface is much sharper in the latter case and
exhibits striking oscillations on the high colloid density
(“liquid”) side.9 The profile obtained with interacting polymers
varies more smoothly and shows no sign of oscillations. This
clear-cut difference in behavior may be partly understood by
noting that the jump in colloid density between the two fluid

Figure 7. Comparison between the wall-wall depletion potential in
a mixture of colloids and ideal polymers, with and without the bulk
contributions to the free energy (W andWc, respectively).ηc

0 ) 0.15,
ηp

r ) 0.15 andq ) 0.67.

Figure 8. (a) Colloid packing fraction between two hard walls obtained
using GCMC simulations (squares) and DFT (solid line) for a mixture
of colloids and interacting polymers and forq ) 0.67,ηc

0 ) 0.15, and
ηp

r ) 0.15. (b) Same as Figure 8a, but withηp
r ) 0.5. Dashed lines are

the results obtained from the mean-field DFT theory (MF). The inset
shows a magnification of the inner part of the data for better comparison.

âf ) Fc
0[ln(Fc

0) - 1 +
ηc

0(4 - 3ηc
0)

(1 - ηc
0)2 ] +

(Fc
0)2

2 ∫drb gHS(r,Fc
0) âV(r) (37)
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phases is significantly smaller in the case of interacting
polymers, for which the triple and critical points are much closer
than for ideal polymers. Figures 9 and 10 also show the result
of our earlier square gradient calculations (SGT).12 The corre-
sponding profiles agree reasonably well with the results of the
more elaborate density functional used in this paper; as expected,
the square gradient functional cannot account for the oscillatory
structuring on the dense fluid side in Figure 10.

In the case of interacting polymers (Figure 9) the width of
the interface predicted by the present perturbation DFT is
significantly larger than that obtained from square gradient
theory. The interfacial widthw is conventionally defined as the
distance between the two points where the density profileFc(z)
reaches 90% and 10% of the difference between the bulk
densities of the two coexisting phases. Results forw obtained
within the perturbation DFT are plotted in Figure 11 as a
function of the deviation of the polymer reservoir packing
fraction from its value at the critical point,R ) (ηp

r - ηp
r,crit)/

ηp
r,crit, for ideal and interacting polymers and for three size

ratiosq. As expected, the width increases withq and increases
sharply asR decreases, i.e., upon approaching the critical point.
Although the widthsw for ideal and interacting polymers are
rather close for givenR and q, polymer interactions tend to
reduce the width compared to the ideal case, as found in ref
12.

The surface tensionγ of the fluid-fluid interface is given
by a relation similar to eq 31, and it is easily verified that the

bulk termsΩ0 andΩ1
bulk in eq 22 do not contribute toγ. The

relation reads

where µc
0 and Pc are the common values of the colloid

contribution to the chemical potential and of the pressure in
the coexisting bulk phases. Figure 12 compares results obtained
from the perturbation and square gradient theories for ideal
polymers, at three different size ratios;γ is plotted versus the
difference between the colloid packing fractions in the “liquid“
and “gas” phases. The surface tensions are seen to increase with
q and ηc

L - ηc
G. The agreement between the two theories is

excellent forq ) 1.05 and deteriorates for smaller size ratios.
The surface tensions obtained from perturbation DFT are
systematically larger than their square gradient counterparts and
closer to the results of the two-component DFT of ref 9.

A comparison between the surface tensions calculated within
perturbation DFT for ideal and interacting polymers is finally
made in Figure 13. The surface tension is seen to be lowered
when polymer interactions are included, a trend that is opposite
to that observed for the wall surface tensionγw (cf. Figure 4).

A fluid-fluid interface also implies an inhomogeneous
polymer density profile. For ideal polymers at constantµp this
does not cost any additional free energy, but this is not true for
interacting polymers. For the latter depletant, this correction will
raise the surface tension compared to the values we calculate

Figure 9. Comparison between the colloid density profile forinteract-
ing polymers obtained using our perturbative DFT (solid line) and the
square gradient approximation SGT (dashed line), forηp

r ) 0.83 andq
) 0.67 (close to the triple point).

Figure 10. Comparison between the colloid density profile forideal
polymers obtained using our perturbative DFT (solid line) and the
square gradient approximation SGT (dashed line), forηp

r ) 0.56 andq
) 0.67 (close to the triple point).

Figure 11. Interfacial width obtained using the perturbation DFT for
interacting polymers (solid lines and black symbols) and ideal polymers
(dashed lines and white symbols), and forq ) 0.34, 0.67, and 1.05.

Figure 12. Comparison between the surface tension of the gas-liquid
interface obtained from our perturbation DFT (solid lines and black
symbols) and the square gradient theory SGT (dashed lines and white
symbols), for ideal polymers.

γ ) ∫-∞

∞
dz {f[Fc(z)] - Fc(z)µc

0 + Pc} (38)
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within the one-component picture. On the other hand, for ideal
polymers, the many-body interactions between the colloids, fully
taken into account with the two-component formulation, also
result in a larger surface tension. The effect of many-body
interactions for interacting polymers is unknown. Thus our
prediction for the relative strength of the surface tensions should
be tempered by the fact that the exact form of the neglected
corrections is not known and awaits a full two-component
treatment of interacting polymer-colloid mixtures.

VIII. Conclusion

We have introduced a simple generic density functional
description of colloid-polymer mixtures within the effective
one-component picture where polymer degrees of freedom have
been traced out. The free energy functional accounts correctly
for the colloid excluded volume effects and treats the polymer-
induced depletion attraction within first order perturbation
theory. The DFT formulation is very flexible and can be applied
to confined colloid-polymer mixtures as well as to the free
interface between coexisting fluid phases. Although this effective
one-component description accounts only for pairwise additive
depletion interactions and neglects more-than-two-body effective
interactions (which are automatically included in an effective
two-component representation), the present theory has the
advantage of being able to treat the cases of ideal as well as
interacting polymers consistently, thus allowing a direct estimate
of the effect of polymer interactions on the interfacial properties
of colloid-polymer mixtures. The present effective one-
component DFT description can be tested against the more
fundamental two-component DFT picture in the case of ideal
polymers.9,10 Reasonable agreement is found for size ratios up
to q ≈ 1, giving confidence in the predictions of the simpler
one-component representation for ideal and interacting polymers
alike. The reduction to an effective one-component representa-
tion leads to the appearance of zero- and one-body bulk
contributions to the total grand potential of the mixture (terms
Ω0 andΩ1

bulk in eq 22), which make significant contributions
to the wall surface tensionγw and to the depletion interaction
between two walls and must not be overlooked. The key findings
of the present investigation may be summarized as follows:

•Density profilesFc(z) near a hard wall deviate considerably
from pure hard sphere behavior at low colloid packing fractions.
Significant differences between the behavior observed for ideal
and interacting polymers may be traced back to the weaker
depletion attraction induced by the latter.

•When the bulk termsΩ0 and Ω1
bulk in the grand potential

are properly taken into account, the wall surface tensionsγw

calculated with ideal polymers are in good agreement with a
recent full two-component treatment of the AO model,10 for q
e 1 and not too high colloid packing fractionηc.

•The depletion potential induced by colloid-polymer mix-
tures between two walls exhibits structure on both length scales
Rc andRp, which opens the possibility of further flexibility in
“engineering” effective depletion forces.

•In general, the wall surface tensionγw induced by mixtures
of colloids and interacting polymers is larger than that found
for ideal polymers. This trend is opposite to that predicted for
the fluid-fluid interfacial tension. The present predictions agree
at least qualitatively with the experimental data of ref 4.

•The present effective one-component DFT predicts an
oscillatory density profile on the high colloid density side of
the fluid-fluid interface in the case of ideal polymers suf-
ficiently close to the triple point; this behavior agrees with the
earlier prediction based on the effective two-component (AO
model) representation.9 The oscillations are not observed in the
case of interacting polymers, presumably due to the smoother
variation (larger width) of the interfacial profile near the triple
point.

•A direct comparison between the results of square gradient
analysis12 and the present more sophisticated DFT shows that
the former is surprisingly accurate, even for rather sharp fluid-
fluid interfaces (except, of course, as regards the oscillatory
behavior observed for ideal polymers). The good agreement
validates the predictions of the simple square gradient theory
concerning the effect of polymer-polymer interactions on the
fluid-fluid interfacial properties.12

The present effective one-component description predicts a
number of significant differences between interfacial behavior
of mixtures of colloids and ideal versus interacting polymer
coils. The corresponding two-component representation involv-
ing ideal polymers (i.e., the AO model) is well established and
confirms many of the predictions of the present effective one-
component picture. Future work should focus on developing a
viable effective two-component representation in the case of
interacting polymers, to validate the present predictions based
on the effective one-component description.
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IX. Appendix

A. Fundamental Measure Theory for Hard Spheres.To
model the hard sphere nature of the colloidal particles, we have
used the White-Bear version of the Rosenfeld functional.26 This
functional improves the one proposed by Rosenfeld17 in that it

Figure 13. Surface tension of the free liquid-gas interface for
interacting polymers (solid lines and black symbols) and ideal polymers
(dashed lines and white symbols), and forq ) 0.34, 0.67, and 1.05.
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leads to the Mansoori et al. equation of state for a homogeneous
mixture.32 The free energy densityΦFMT ) Φ1 + Φ2 + Φ3

reads26

where{nj(rb)} are weighted densities, obtained as convolutions
of the colloid densityFc(rb) and the weight functionsω(j) (see
eq 17). The latter are given by

B. Particular Case: Planar Geometry. For the case of
planar fluid-fluid interfaces or infinite planar walls, the
calculations simplify to a one-dimensional problem. Then, the
position-dependent excess chemical potentialµc

ex(rb), which can
be obtained from the functional derivative of the excess part of
our perturbation free energy functional (eq 24), depends only
on z, the distance to the wall (or to the interface). Its explicit
form for z ) z1 is29

where V(r) is the corresponding colloid-colloid depletion
potential,rm its range and

For planar geometry, the weight functions are given by

wherekB is the unit vector along thez-axis. Thez-dependent
colloid density profile is obtained as

The coupled equations eqs 41 and 43 are solved iteratively.
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Φ1 ) -n0 ln(1 - n3)

Φ2 )
n1n2 - nbV1·nbV2

1 - n3

Φ3 ) (n2
3 - 3n2nbV2

2)
n3 - (1 - n3)

2 ln(1 - n3)

36πn3
2(1 - n3)

2
(39)

ω(3)(r) ) θ(Rc - r)

ω(2)(r) ) δ(Rc - r)

ω(V2)( rb) ) ( rb/r)δ(Rc - r)

ω(0)(r) )
ω(2)(r)

4πRc
2

ω(1)(r) )
ω(2)(r)
4πRc

ω(V1)( rb) )
ω(V2)( rb)

4πRc
(40)

âµc
ex(z1) ) ∫∑

j

∂ΦFMT[nj(z2)]

∂nj(z2)

δnj(z2)

δFc(z1)
dz2 +

2π∫z1-rm

z1+rmdz2 Fc(z2)∫|z1-z2|
rm dr12 r12âV(r12) ghs(r12,Fjc(z1,z2)) +

3π

4Rν
3
∫z1-rm

z1+rmdz2 Fc(z2)[Rν
2 - (z1 - z2)

2] ×

∫z2-rm

z2+rmdz3 Fc(z3)∫|z2-z3|
rm dr23 r23âV(r23)

∂ghs(r23,Fjc(z2,z3))

Fjc

(41)

δnj(z′)
δFc(z)

) ω(j)(z′ - z) (42)

ω(0)(z′ - z) ) 1
2Rc

θ(Rc - |z - z′|)

ω(1)(z′ - z) ) 1
2

θ(Rc - |z - z′|)

ω(2)(z′ - z) ) 2πRcθ(Rc - |z - z′|)
ω(3)(z′ - z) ) π[Rc

2 - (z - z′)2]θ(Rc - |z - z′|)

ωb(V1)(z′ - z) ) 1
2Rc

(z - z′)θ(Rc - |z - z′|)kB

ωb(V2)(z′ - z) ) 2π(z - z′)θ(Rc -|z - z′|)kB

Fc(z) ) Fc
0 exp{-â[æc(z) + µc

ex(z) - µc
0,ex]} (43)
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