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Interfacial properties of colloiepolymer mixtures are examined within an effective one-component
representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles
interacting via polymer-induced depletion forces. Restriction is made to zero-, one-, and two-body effective
potentials, and a free energy functional is used that treats colloid excluded volume correlations within
Rosenfeld’s fundamental measure theory, and depletion-induced attraction within first-order perturbation theory.
This functional allows a consistent treatment of both ideal and interacting polymers. The theory is applied to
surface properties near a hard wall, to the depletion interaction between two walls, and to théuidid
interface of demixed colloidpolymer mixtures. The results of the present theory compare well with predictions
of a fully two-component representation of mixtures of colloids and ideal polymers (the Asa@Rosawa
model) and allow a systematic investigation of the effects of polyrpetymer interactions on interfacial
properties. In particular, the wall surface tension is found to be significantly larger for interacting than for
ideal polymers, whereas the opposite trend is predicted for the-ffluidl interfacial tension.

I. Introduction reported” Various versions of density functional theory (DFT)

Mixtures of colloidal particles and nonadsorbing polymers of inhomogeneous fluids have been used to determine the

dispersed in a solvent provide experimentalists and theoreticiansdenSity prgfiles, adsorption, and sgrfacg tension of cottoid
with a very flexible model system to explore the statics and polymer mixtures near a hard wall, either in the one-compdnent

dynamics of phase transitions, including flifluid demixing, or two-componerit'° representations or at the phase-separated
crystallization, gelation, or glass transitichas well as the  fluid—fluid interface!l12 Most of the theoretical work so far
interfacial properties associated with phase coexistence. Thefocused on mixtures of hard sphere colloids and ideal (nonin-
flexibility of this model system stems from the fact that its teracting) polymers within the classic model of Asakura and
properties can be easily tuned by varying, among others, theOosawé®and of Vrij* (the AO model), although some attempts
size ratio of the two components (e.g., by controlling the degree have been made to extend the DFT calculations to the case of
of polymerization), their concentrations, or the quality of the nonideal (interacting) polymer coil8;!? pointing to very
solvent that determines whether the polymer coils behave significant differences between the two situations.
essentially like interacting self-avoiding walks (SAW), or more  This paper presents a unified DFT description of wéllid
like ideal noninteracting polymers (und@ssolvent conditions).  and fluid—fluid interfaces within an effective one-component
More specifically, if, as will be done in this paper, one adopts representation. The DFT theory is a perturbative one with respect
an effective one-component representation (by tracing out theq the polymer-induced depletion attraction between hard sphere
polymer degrees of freedom), the resulting effective interactions ¢ oids and applies to mixtures of colloids and noninteracting,
between the colloidal particles, obtained from the well-known ,¢ el as interacting, polymer coils. Apart from a systematic

dﬁple_Uoln mechaTls@ar; eagﬂyt:]unefd tEy vaf;ylntg the t?bmt/_e comparison of the density profiles and surface tensions obtained
physical parameters. the depth of the efieclive -allraclion ¢ yhege two cases, the present theory also leads to the first

between qollmds is essentially controlled by the p°'ymef estimate of the depletion potential between two walls induced
concentration, whereas the range depends on the polymer size) ; :
y colloid—polymer mixtures.

(radius of gyration). The resulting phase diagrams are very ) ) ] ]
sensitive to changes in the depletion-induced pair potential "€ paper is organized as follows. Section Il briefly sum-
between colloidd.Recent experimentsnd theoretic& efforts marizes the effective one and two-component representations
have focused on interfacial and wetting properties of cottoid ~ ©Of colloid—polymer mixtures. The DFT formulation used in this
polymer mixtures, either near solid substrates (hard walls) or Paper is presented in section Ill. Results for colloid density
at fluid—fluid phase coexistence. The density profiles near a profiles near a hard wall in the presence of ideal or interacting
glass wall and the surface tension at fhaftliid phase coexist- polymers are presented in section IV, whereas the resulting wall
ence were measurédnd very recently the first direct observa- surface tension of the mixtures is calculated in section V. The
tion of capillary fluctuations at the fluidfluid interface was depletion potential between hard walls, induced by cottoid
polymer mixtures is described in section VI. The fluifiuid

"Part of the special issue “David Chandler Festschrift’. interfacial properties calculated within the same DFT ap-
*To whom correspondence should be addressed. E-mail: moncho@ugr.es. . . di . VI d lusi

% Universidad de Granada. proximation are presented in section VII, and conclusions are
8 University of Cambridge. drawn in section VIII.
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Il. Effective One- and Two-Component Representations

Consider a binary mixture df colloidal particles and\,
polymer coils in an external field (e.g., the confining field of a
hard wall). The total Hamiltonian of the system may be written
as

H=H,+HytHpt @+ P Q)
where the colloig-colloid, polymerpolymer, and colloie-
polymer termsHcc, Hpp, andHc, will be assumed to be sums of
pair interactions between the centers of mass @W)(1 < i
= Ng) and{Tj} (1 =] = Np) of the colloids and polymers,
respectively. Within this assumption, the individual monomer

degrees of freedom of the polymer coils have been traced out,

and the resulting effective pair potential between polymer CM’s
is a state-dependent free enetggimilarly the colloid-polymer

pair potential is a state-dependent free energy resulting from a
statistical average over monomer degrees of freedom for a fixed

distance between the CM’s of the two particlésience,

Ne
Hcc = zvcc(Rij)
]
Np
Hop = ;Upp(rij)
Ne Np B
Hcp= ZzuchRi - ?JD (2
T
and
Ne Ny
=3 gR) 0= gT) 3)

where qog and gag are direct external interactions acting on

colloidal particles and polymers, respectively. Note

is once more an effective potential acting on the polymer CM.
The colloid—colloid pair potential will henceforth always be

considered to be of the hard sphere form. The AO model for

noninteracting polymers further assumes that

o) I’<Ouﬁ

0 r>oa,p=corp )

Vep(r) = {

with occ = 2R (R being the colloidal radius),, = 0, andocp
= R. + Ry, whereR; is the radius of gyration of the polymer
coils. A generalization of Rosenfeld’s fundamental measure
theory (FMT) free energy functional for additive hard sphé&res
has been worked out for the nonadditive hard sphere mixture
given by eq 4% and applied to colloietpolymer interfacial
properties:®

An alternative approach is to trace out the polymer degrees
of freedom to derive an effective Hamiltonian involving only
the colloid degrees of freedofd? Within the semi-grand
canonical ensemble, with fixed. and fixed chemical potential
up of the polymers (or equivalently, fixed number densp'gy)f
the polymers in a reservoir), the effective Hamiltonian is

®)

whereQ is the grand potential of the inhomogeneous fluid of
polymers, which depends parametrically on the positidR}
of the colloidal particlesQ can be systematically expanded

Hf =H, + @, + Q
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in terms corresponding to the number of colloids:

Ne

Q=5Q,

n=

(6)

Qo is the free energy of the pure polymer solution at chemical
potentialup, in the volumeV of interest,2; is the free energy
cost of inserting independent single colloi@, takes pairwise
colloid—colloid interactions into account, and so forth for higher
order terms. Such an expansion can also be carried out near a
single wall of area\, where the first few terms are

g2O = _Pp(aup)v + J/W,p(/'tp)A
Ne

Q= Nawyu) + ¥ ¢'(z)

N

BR,= Zﬁveﬁ(Rj)

1<]

()

where¢§ﬁ(z) is the effective walt-colloid depletion potential
induced by the presence of polymeR(uy) is the osmotic
pressure of the bulk polymer solution, angls(«p) is the surface
tension induced by the flat wall. Surface tensions are defined
throughout relative to the position of the hard wall,zat 0.
Inserting a single colloid into a bulk polymer solution costs a
free energywi(up) = Q1PN and ¢£(2) describes the
correction to that insertion free energy when the colloid is at a
distancez from the wall. ve(R;j) is the effective interaction
between two colloids, induced by the polymer solution. The
next higher order contributions t@ includes a a three-body
colloid term, a three-body colloigcolloid—wall term, etc. These
will be ignored in the present work.

Brader et al. systematically worked out this expansion for
an AO mixture near ?flat waiI(!, f|nd|rr¥gf3§20 pL(V - RyA)
(becausegBPy(up) = p, and fyy,, = ppRy for AO particled?),
PR = Nepy(413)1(Re + Ro)* + T foao(2), and pQ, =
Yi<iBvao(Ri). Beao(z) acts on each colloid independently and
takes the form

r

Boao® = — 4"—q2(2q —2/3+q+200—2 (8)

wheren; = 4np;,Rp3_/3 is the polymer packing fraction in the
reservoir,g = RyR: is the size ratio, an@(x) is the Heaviside
step function @(x) = 0,x < 0; 8(X) = 1,x > 0). vao(Ry) is the
Asakura-Oosawa depletidf potential between two spheres in
a bath of ideal polymers; defining nosv= (R — 2R)/Re, vao

is given by

r

Buno(®) = — 1%;3(2‘* — 9%6+4q+9020—9 (9)

The effective Hamiltonian for the AO model, witl@2
restricted to the zero-, one-, and two-body terms in eq 6, is
strictly valid only for size ratioqy < 0.1547; for larger size
ratios, three- and more-body effective interactions between
colloidal particles come into pla/but explicit calculations of
bulk properties show that they do not play a significant role for
g up to~1.2122Subsequent calculations will neglect more than
two-body interactions. For the AO modé&l, and the bulk part
of Qq, Qtl’”"‘ = Nw1, do not affect the interfacial profiles but
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do make contributions to the surface tensigras will be shown into ideal, hard sphere, and perturbation parts; for the hard core
in subsequent sections. part we adopt the very accurate “White Bear” versfoof
The AO pair potential (eq 9) assumes ideal polymers to be Rosenfeld’s “fundamental measure” (FMT) functioral
spherical, so that the width of the depletion layer is always equal
to 2R,. However, polymers can “wrap” around colloidal spheres, Flo(T)] = Figlp(T)] + Feurlo(T)] + Filp(T)] (14)
the more so the smaller the radiBsof the latter. Hence, one
expects the width of the depletion layer around a colloid to The ideal contribution is
shrink asR; decreases. This effect can be accounted for by

following the prescription of refs 23 and 24, whereby the AO = =Kk.T [ dF o(FIN(A 30(T)) — 1 15
form (eq 9) of the effective pair potential holds, but with a alpd =k f PNIN(AP(T) =11 (19)

renormalized size ratiq' and a renormalized polymer packing \yhereA. is an irrelevant colloidal length scale. The FMT-hard

fraction ’7:)'1 core contribution is of the “weighted density” type, namely
L 6 > 1/3 N N ~
q={1 +ﬁq +307) -1 BFewrled = [T [@,({n(T)}) + ©,(n(T)}) +
N3 @,({ny(F)})] (16)
| — q r
a where then;(f) are weighted densities of the form
For interacting polymers we can also carry out an expansion .
of Q. Accurate expressions f&%, v, w1, andven(r) are known n(r) = f 0O(F=T") p(T") dF’ (17)

and have been validated by computer simulations for self- _
avoiding walk (SAW) chaind?24so thatQo, 1, andQ; directly The functions®; and the weight functiona0)(r) are defined
follow from eq 7. The Derjaguin approximation, which is in Appendix A. Finally, the first-order perturbation term reads
reasonably accurate for an ideal polymer depletant, is expected
to remain valid in the case of interacting polymers, at least for Filed = fd? p(T) W(T) (18)
- - ; i ¢ 1
sufficiently smallg, so that the required watlcolloid effective
depletion potentialpﬁ“(zi) is given by with

BPin(S) ~ 2Bvin(S) (11)

where the effective potential between two colloids induced by
interacting polymers is well approximated by the semiempirical whereu(r) = vao(r) or vin(r) is the depletion potential induced
form by ideal (AO) or interacting (int) polymer coilgjs is the pair
distribution function of the homogeneous reference hard sphere
ﬁRczyW'p(p:)) fluid, evaluated at an intermediate density between the two
— P
d(ep)

Wy(7) =3 /AT pF) oIr =) Gyl —'l, 5(T.T) (19)

ﬂUint(S) = [s— d(P:))]ze(d -5 (12 pointsT andt":

Hered = D/R; andD is the range of the depletion potential: Pe 5 (20)
r
D(p}) = JE—VW"’(’: .d (13)  with
Po(op) 9 .
Becausevin(r) depends on polymer density only througb puT) = 4JtRV3 \rfr’\<R«/pc(r ) dr (21)

(i.e.,up), its form does not change when the polymer density is

|nhomogenepus. In contrast to the AO model, higher qrder 5,(F) is a smoothed density profile arouficthe radiusR, is of
colloid—colloid and colloid-wall terms are relevant for any size

; the order ofR;, and results are not expected to be very sensitive
ratio. . . . to the precise value dR,. Following the earlier experience of
The effective one-component representation of cottoid ot 27 we have choseR, = 1.6R.. The form (19) is the
polymer mixtures is thus fully defined, both for ideal and gonerajization of the standard first order thermodynamic tieory
interacting polymers. The next step is to define the density inhomogeneous fluids. The choices given in eq 20 and 21

functi_onal appropriate for the description of the inhomogeneous 5,/e proved very adequate in many DFT calculations of fluids
effective one-component model. near hard walls.

In the homogeneous limit, where the density profile reduces
to the bulk density, the free energy given by eq 14 goes over to

Given the effective Hamiltonian specified by eqs 5 and 7, the Helmholtz free energy of the fluid phase calculated within
one may construct an approximate free energy density functionalfirst-order thermodynamic perturbation thedtwhich leads
to investigate the properties of the inhomogeneous effective one-to reasonable phase diagrams of colteblymer mixtureg?
component system of colloidal particles. The latter interact via The familiar generalized van der Waals mean field approxima-
a hard sphere repulsions (for< 2R;) and a polymer-induced  tion amounts to settingus(r) = 0(2R. — r), which leads of
depletion attraction that will be described within first-order course to a considerable simplification of the DFT calculations.
perturbation theorg? which is expected to be accurate for not Keeping in mind that the total effective Hamiltonian of the
too small values o (i.e., for sufficiently long-range attractions).  colloids is given by eqs-57, with Q = Qy + Q; + Q,, the
The intrinsic free-energy functional is then conveniently split grand potential functional to be minimized with respect to the

lll. Density Functional Formulation
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density profile p¢(f) is the sum of the intrinsic free energy 1.0 . T T T
functional 14 and of the contributions from the external fields: interacting polymers 1
o - » 0s{ (3 n=015 q=067 -
Q,led = Flod + [ pF)ledF) — ] dT +90+9122 | =0
P
(22) 0.6 — 1, =01 .
where #2 is the bulk chemical potential of the colloids, R — 7"'=02
wherea€2g andQE“'k = Nw; are defined in eq 7. Becausethe o4 7' =04 ]
latter are constants, they have no influence on the equilibrium
profile pc(F), but they will contribute to the equilibrium value
of the grand potential, and hence to the surface tensig() ]
= ¢XF) + ¢"(F) is the sum of the external potential acting
directly on the colloidal particlesrp@(?)) and of the polymer- 0.0 . T T ]
induced depletion contributiomiﬁ(r’), given by eq 8 or 11 for ! 2 3 °
ideal and interacting polymers, respectively. e
The Euler-Lagrange equation of the variational problem 10 . . . .
reads { )
% ideal polymers
0Q [o(F)]  OF[o(F os{| (b) n°=015 q=067 -
ol _OHPAO) oy —i2=0 (29 e
6Pc(r) c‘)pc(r) T =
0.6 | —— 7, =01 .
F is the sum of idealRiq) and excessHex = Frwt + F1) parts; o O n'=0.2
defining the local excess chemical potential as | 0.4
"= 0. .
L) = OFedp(F)] _ OFpurle(F)] | OFs[p(T)] (24)
i Sp(T) Sp(7) opdT) T 0N s :
the Euler-Lagrange equation may be cast in the form 0.0 : : : :
1 2 3 4 5
ke T IN[Ap(F)] + 4¢(F) = e — @T)  (25) 2o,

. . o . . Figure 1. Colloid density as a function of the distance to the hard
so that the density profile satisfies the nonlinear equation:  wall for mixtures of colloids and (a) interacting polymers and (b) ideal
polymers, at different polymer concentrations. In both figures the bulk
p(F) = po exp{ —Blo(F) + uSX(T) — u2®}  (26) colloid packing fraction and the size ratio were sefd 0.15 andg
= 0.67.

whereug’ex is the excess part of the bulk chemical potential of

the colloids. The coupled equations (24) (Wt andF; given polymer packing fractions; ands}, and for size ratios ranging
by egs 16 and 18) and (26) must be solved numerically by 7omM d = 0.34 tog = 1.05. Parts a and b of Figure 1 compare
standard iterative procedures. the density profiles calculatgd fora f]xed co!I0|daI densny and
Because only planar interfaces will be considered, the externalS€veral polymer concentrations, for interacting and ideal poly-
potential, the density profile, and local chemical potential all Mers: As expected, the colloid adsorption at contact increases
depend only oz, the coordinate orthogonal to the plane of the dramatically Wlth increasing pplymer concentration, due to the
interface. The corresponding simplified expression for the local €nhanced effective depletion-induced attraction to the wall. The
excess chemical potential®(F)2° is given in Appendix B effecf[ is stronger_for ideal po_Iymers, yvhlch_al_so lead to strong
together with the weight furfctions(i)(z—z’) appropriate for the layering at the highest packing fraction, hinting at a possible
one-dimensional problem layering transition. The enhanced adsorption and layering are
Once the equilibrium profileo(?) has been determined, it easily understood, because the polymer induced attraction is
can be substituted into the expression of the functional 22 to substantla_lly stronger for ideal polymers (cf. eq 8) compared
determine the equilibrium grand potentfal Subtraction of the to interacting polymers (egs 12 and 11), at the s&pe, and

bulk contribution then allows the surface tensignto be pp*° The structured profile ag, = 0.4 in Figure 1b is for a
calculated, according to the definition: thermodynamic state close to the fluifluid binodal (on the

colloid-poor “vapor side”) calculated from the same free energy
model (see ref 22) giving further support to the possibility of a
layering transitior?9-31

The effect of the range of the depletion attraction is illustrated
whereP is the total bulk osmotic pressure of the mixture and in Figure 2a,b for interacting and ideal polymers, respectively.

_Q+PV
A

(27)

A the total area of the planar interface. The trend of the density profiles with increasigds opposite
_ _ that observed with increasing, The adsorption at contact is
IV. Density Profiles near a Hard Wall now strongest for the smallest size ratio. This is essentially due

hard wall placed a = 0. The density profiles were calculated ¢ (0), drops as the polymer density decreases. Begaluse
by solving the one-dimensional versions of eqs 24 and 26 (see7,/d®, a small increase in the size ratip implies a big
Appendix B). A systematic comparison is made between profiles reduction in polymer density, and also cjf(ﬁ(O). Calculations
for ideal and interacting polymers, over a range of colloid and carried out at higher colloid packing fractions show that the
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25 T T T T T
interacting polymers
(a) nco =0.15 np’: 0.4
hard spheres
——q=0.50

2.0+

1

25 3.0 3.5

ideal polymers

n, =015 75/=0.4
hard spheres ]
—q=0.50

3.5

Figure 2. Effect of the polymet-colloid size ratioq, on the density
profile near a hard wall fong =0.15 andn[) = 0.4 induced by (a)
interacting and (b) ideal polymers. In both figures, the density profile
of pure one-component hard spheres (without depletanﬁ at0.15
has been included for comparison.

effect of polymer-induced waticolloid attraction on the density
profiles is much reduced ag increases, due to the predomi-
nance of purely excluded volume effects under high-density
conditions?8-32

V. Wall Surface Tension

Once the colloid density profiles have been calculated, the

surface tension may be determined by substitugiyig) into eq

treating the bulk zero and one-body contributi@p and Q2.

These also contribute to the bulk properties (calculated by letting

pc(2) go to the bulk valuepg), and in particular to the colloid
chemical potentialﬂg and to the osmotic pressure of the
mixture. Thus, for the chemical potential of the bulk one obtains

1= upd) + o, (28)
wherew; is already defined in eq 7.

In a similar fashion, the total osmotic pressure is the sum of
the colloid contributiorPC(pg,p;) (calculated by differentiating
the homogeneous limit of the intrinsic free energy (14) with
respect tOpg) and of the osmotic pressure of the polymer
reservoir:

P = Ppcpp) + Pylpp) (29)

Hence,

Moncho-Jordaet al.
Q+PV_ QtQ+Q,+PV {—va+ yW'pA} N
A A - A
{w:(p)) [dzp@) + [dzp(2) @2} +

F
{ B 0 e pc<z)} +2 @30)

A
whereF[p(2)] is the colloid contribution to the inhomogeneous
free energy, given by eq 14. Substituting eqs 28 and 29 shows
that the bulk contributions t&, and Q2; are exactly canceled
so that the final expression for the surface tension is given by

Q+PV_
A - Vw,p

fim [ dz{flo(d] + p@l@dd — el + P (31)

Y = lim +

L—o0

wheref = F/V is the intrinsic colloid free energy density (14).

In other words, the surface tension may be written as the sum
of a colloid contributionyy ¢ (which would be obtained by
ignoring Qo and Q2% in eq 22) and of the contribution of the
polymers under reservoir conditions:

Yar = YuucdPoPl) T VaupPD) (32)

Equation 32 is exact within an effective one-component
representation of a mixture of colloids and polymers wtere
in eq 6 is truncated af2,. For theyw,c(pg,p;,) of interacting
(SAW) polymers, we use the results of ref 24. The resulting
total surface tensions for the cases of ideal and interacting
polymers are plotted as a function of the polymer reservoir
packing fraction in Figure 3 and compared to the predictions
of the two-component representation (with ideal polymers),
calculated within scaled particle thed&modified so as to
account for the “polymer wrapping” effect, according to the
prescriptions of eq 10.

The agreement between the surface tensions calculated within
the effective one- and two-component representations is seen
to be good for low densities and to deteriorate somewhat beyond.
The surface tension with interacting polymers is substantially
larger (up to a factor of 2 at the highest polymer concentrations)
compared to the ideal polymer case. This is because the celloid
wall surface tension is higher with interacting polymers, due to
the weaker effective watcolloid attraction, and the waH

olymer surface tension is also higher for interacting polyrffers.
22, and then applying relation 27. Some care has to be taken inp y g g poy

Figure 4 illustrates the variation of the surface tension with
size ratiog. For fixed values ofyg and n[,, the surface tension
is seen to decrease rapidly @sncreases, and to tend to the
result for hard spheres when> 1. Finally, the variation of
the surface tension with colloid packing fraction (for fixgd
and ;7;) is shown in Figure 5. The agreement between the
effective one and two-component representations found at low
packing fractions is seen to deteriorate rapidlyy%mcreases,
thus illustrating the break-down of the effective one-component
model for highly concentrated colloidal suspensions.

VI. Depletion Interaction between Hard Walls

The depletion potential per unit area induced by a cottoid
polymer mixture between two hard walls of ar@aseparated
by L is determined by

Q(L) — ()

W(L) = A

(33)
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Figure 3. Wall surface tension for ideal (squares) and interacting
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polymers (triangles) in the one-component representation, and for ideal Figure 6. Effective depletion potential between two flat parallel walls
polymers in the two-component representation (solid line), as a function as a function of the wattwall distanceL, induced by pure hard colloids

of 77; (ng = 0.15 andq = 0.67). The dotted horizontal line is for hard
sphere colloids only (without depletant).
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Figure 4. Wall surface tension for ideal (squares) and interacting

(dotted line), colloids plus ideal polymers (triangles), and colloids plus
ideal polymers (squareSr)g = 0.15,77:) = 0.15, andg = 0.67.

Qo and QE“”‘ to the total grand potential, reads, by straightfor-
ward analogy with expression (31) for the surface tension:

W(L) =
[rdz{Flo@] + pD[@eD — uloD] + P — 27, (34)

Figure 6 shows the comparison of the depletion poterfig(k)
calculated for a pure hard sphere depletant (iy?.,= 0) and

for hard sphere colloids and ideal or interacting polymers, within
the present effective one-component representation. The extra
attraction between the walls and colloidal particles forces the
latter into the region between the two plates, enhancing the
potential barrier of the depletion potentiallat= R.. The effect

is stronger for ideal than for interacting polymers, because
effective wall-colloid and colloid-colloid attractive interactions

(triangles) polymers in the one-component representation, and for idealare enhanced in going from interacting to ideal polymers. For
polymers in the two-component representation (solid line), as a function L < 2R; the hard colloids are excluded from the space between

of the size ratioq (172 =0.2 andn[, = 0.2). The dotted horizontal line
is for pure hard spheres, and the colloidal contributions to the wall
surface tensiony,, are also shown for comparison.
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Figure 5. Wall surface tension for ideal (squares) and interacting

(triangles) polymers in the one-component representation, and for ideal

the walls, and the depletion potential is entirely controlled by
the external, unbalanced osmotic pressure which pushes the
walls together, i.e.:

WC(L<2RC) = PcL - 2VW,C (35)
To obtain the total depletion potential, the volume ter®s
and Q2" must be included in the grand potential. It is easily
verified that, within the truncation of2 at Q, i.e., ignoring
colloid—colloid—polymer and similar higher order terms, the
depletion potential takes the form

WC(L) + P;)L - Zyw,p(p;rj) L < D\F/:/

WL =1 w1y L=DP

(36)

where P[) is the osmotic pressure of the polymers in the
reservoir, yw, is the corresponding watpolymer surface
tension, andD}, = 2y,,/P, is the range of the polymer
depletion potential, which takes the vaIDé?, = 2R, for AO

polymers in the two-component representation (solid line), as a function particles. The resulting total depletion potential for ideal

of the bulk colloid packing fractiorwg (77:) = 0.2 andq = 0.67).

Clearly,W(L) — 0 asL — o, whereadM(L=0) = —2y,,, because
when the walls come into contact, two fluigvall interfaces
are destroyed. For arbitraty, the colloid contributionW; to
W(L) obtained by momentarily ignoring the bulk contributions

polymers is shown in Figure 7. It remains continuous. at

2R,, but the resulting force is discontinuous at that separation.
The basic input in the evaluation of surface tensions or

depletion forces are the density profilegz). To check the

reliability of the profiles calculated within the present perturba-

tion DFT, we have carried out some grand canonical Monte

Carlo (GCMC) simulations of profiles, using the same effective
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Figure 7. Comparison between the walvall depletion potential in
a mixture of colloids and ideal polymers, with and without the bulk

contributions to the free energyMand W, respectively)ng = 0.15,
1, = 0.15 andq = 0.67.
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Figure 8. (a) Colloid packing fraction between two hard walls obtained
using GCMC simulations (squares) and DFT (solid line) for a mixture
of colloids and interacting polymers and fg= 0.67,772 =0.15, and

1, = 0.15. (b) Same as Figure 8a, but with= 0.5. Dashed lines are
the results obtained from the mean-field DFT theory (MF). The inset
shows a magnification of the inner part of the data for better comparison.

colloid—colloid and colloid-wall interactions as with DFT. Two

Moncho-Jordaet al.

stronger and, as expected, the agreement worsens. Nevertheless,
the perturbation DFT is still capable of reproducing the main
features of the density profile. Figure 8b also shows the result
from the mean-field DFT, which amounts to neglecting cor-
relations inF1[p] (cf. section IIl). The disagreement with the
simulated data is now much more severe (see the inset in Figure
8b), stressing the importance of properly including reference
system correlations in eq 19.

VII. Fluid —Fluid Interface

We finally turn to the fluid-fluid interface at coexistence
between colloid-poor (“gas”) and colloid-rich (“liquid”) phases.
This is a “free” interface, because translational symmetry is
broken in the absence of any external potential, ¢¢f;)) = O.

An accurate and consistent determination of the phase boundary
(binodal) in theng (colloid packing fraction}n[) (polymer
reservoir packing fraction) is required. The bulk free energy
per unit volume, obtained from eqs-149 in the homogeneous

(pe(F) = p) limit, reads

0
4—3
Bt = p} |n<pg)—1+M +
1_77c
(00)?

2 J AT gus(r.o0) fu(r) (37)

This free energy depends implicitly on the polymer concentra-
tion 77, via the effective depletion pair potentialr) = v(r;),
which is given by eq 9uxo) for ideal polymers and by eq 12
(viny) for interacting polymers.

For any fixed value of;L the colloid packing fractions of the
coexisting phases may be determined by applying the standard
Maxwell double-tangent constructionftoThe resulting binodals
for ideal and interacting polymers (not shown) are very close
to those calculated in ref 22, where an estimate of the second-
order perturbation correction to the free energy was included.
The trends of the binodals are according to expectation.
Qualitatively, the behavior for ideal and interacting polymers
is similar, with critical points at highex][) as( increases, but
with considerably “flatter” binodals for interacting polymers.
There are, however, very significant quantitative differences,
because the binodals for interacting polymers are shifted to
considerably larger values oﬂ, for each size ratiag, i.e.,
polymer interactions enhance the miscibility of colleidolymer
mixtures. This is easily understood, because the polymer-induced
depletion attraction between colloids is weaker (for gigeand
77[)) for interacting polymers.

The colloid density profile at the fluidfluid interface is
calculated by minimizing the grand potential (eq 22), wjth
= 0, which leads back to expression 26 (again wjith= 0).

The profiles for ideal and interacting polymers are shown in
Figures 9 and 10, under conditions close to the fitfldid—

solid triple point, for a size ratigg = 0.67. The profiles are
compared to earlier predictions based on a square gradient
density functional (SGT) using the same effective one-
component description. There are remarkable differences be-

typical examples of such a comparison are shown in Figure 8a,btween the profiles corresponding to interacting and ideal

for a mixture of colloids and interacting polymers confined

between two hard walls (slit geometry). At the lower polymer

concentrations, corresponding to relatively weak cottadlloid

and wall-colloid attraction, the agreement between DFT and
simulation is excellent (Figure 8a). At the higher polymer

concentration (Figure 8b), the attractive perturbation is much

polymers. The interface is much sharper in the latter case and
exhibits striking oscillations on the high colloid density
(“liquid”) side.® The profile obtained with interacting polymers
varies more smoothly and shows no sign of oscillations. This
clear-cut difference in behavior may be partly understood by
noting that the jump in colloid density between the two fluid
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Figure 11. Interfacial width obtained using the perturbation DFT for
interacting polymers (solid lines and black symbols) and ideal polymers
(dashed lines and white symbols), and épr= 0.34, 0.67, and 1.05.

Figure 9. Comparison between the colloid density profile fimteract-

ing polymers obtained using our perturbative DFT (solid line) and the
square gradient approximation SGT (dashed Iine)ngoat 0.83 andy

= 0.67 (close to the triple point).
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Figure 10. Comparison between the colloid density profile fdeal Figure 12. Comparison between the surface tension of the-tigsid
polymers obtained using our perturbative DFT (solid line) and the interface obtained from our perturbation DFT (solid lines and black
square gradient approximation SGT (dashed line)yfor 0.56 andq symbols) and the square gradient theory SGT (dashed lines and white
= 0.67 (close to the triple point). symbols), for ideal polymers.

phases is significantly smaller in the case of interacting Pulk terms€o and Q""in eq 22 do not contribute tp. The
polymers, for which the triple and critical points are much closer rélation reads

than for ideal polymers. Figures 9 and 10 also show the result

of our earlier square gradient calculations _(SGZIThe corre- y = f_mwdz{f[pc(z)] — o@ud+ P} (38)
sponding profiles agree reasonably well with the results of the
more elaborate density functional used in this paper; as expected
the square gradient functional cannot account for the oscillatory
structuring on the dense fluid side in Figure 10.

Wwhere yg and P;. are the common values of the colloid

contribution to the chemical potential and of the pressure in
i . s . the coexisting bulk phases. Figure 12 compares results obtained
In the case of interacting polymers (Figure 9) the width of 5 the perturbation and square gradient theories for ideal
the interface predicted by the present perturbation DFT is polymers, at three different size ratiosjs plotted versus the
significantly larger than that obtained from square gradient gitference between the colloid packing fractions in the “liquid®
theory. The interfacial widtw is conventionally defined as the  5nq “gas” phases. The surface tensions are seen to increase with
distance between the two points w_here the density prof(® q and ’75 _ 77cG- The agreement between the two theories is
reaches 90% and 10% of the difference between the bulk gyceient forg = 1.05 and deteriorates for smaller size ratios.
densities of the two coexisting phases. Resultsf@btained 1o gyrface tensions obtained from perturbation DFT are

W'th'r,' the perturbatllor) DFT are plotted in F|gur(_a 11 8S a gystematically larger than their square gradient counterparts and
function of the deviation of the polymer reservoir patckmg closer to the results of the two-component DFT of ref 9.
fraction from its value at the critical poing = U A comparison between the surface tensions calculated within
n,"", for ideal and interacting polymers and for three size perturbation DFT for ideal and interacting polymers is finally
ratiosq. As expected, the width increases wittand increases  made in Figure 13. The surface tension is seen to be lowered
sharply asx decreases, i.e., upon approaching the critical point. when polymer interactions are included, a trend that is opposite
Although the widthsw for ideal and interacting polymers are  to that observed for the wall surface tensian(cf. Figure 4).

rather close for giverw and g, polymer interactions tend to A fluid —fluid interface also implies an inhomogeneous

reduce the width compared to the ideal case, as found in refpolymer density profile. For ideal polymers at constanthis

12. does not cost any additional free energy, but this is not true for
The surface tensiop of the fluid—fluid interface is given interacting polymers. For the latter depletant, this correction will

by a relation similar to eq 31, and it is easily verified that the raise the surface tension compared to the values we calculate
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Figure 13. Surface tension of the free liquidhas interface for at least qualitatively with the experimental data of ref 4.
interacting polymers (solid lines and black symbols) and ideal polymers

(dashed lines and white symbols), and épr= 0.34, 0.67, and 1.05. eThe present effective one-component DFT predicts an
oscillatory density profile on the high colloid density side of
within the one-component picture. On the other hand, for ideal the fluid—fluid interface in the case of ideal polymers suf-
polymers, the many-body interactions between the colloids, fully ficiently close to the triple point; this behavior agrees with the
taken into account with the two-component formulation, also oayjier prediction based on the effective two-component (AO
result in a larger surface tension. The effect of many-body ,qqel) representatichThe oscillations are not observed in the

mtec;fa?_tlonfs f?hr mtler?ctm({:; po'%mirti IS upkno;/vn. _Thushouzd case of interacting polymers, presumably due to the smoother
prediction for the refative strength of Ine surtace tensions should'y 4 a4iqn (larger width) of the interfacial profile near the triple
be tempered by the fact that the exact form of the neglected

corrections is not known and awaits a full two-component point.

treatment of interacting polymeicolloid mixtures. A direct comparison between the results of square gradient
analysid? and the present more sophisticated DFT shows that

VIII. Conclusion the former is surprisingly accurate, even for rather sharp-luid

_ _ _ _ . fluid interfaces (except, of course, as regards the oscillatory
We have introduced a simple generic density functional pehavior observed for ideal polymers). The good agreement
description of colloid-polymer mixtures within the effective  yalidates the predictions of the simple square gradient theory

one-component picture where polymer degrees of freedom haveconcerning the effect of polymepolymer interactions on the
been traced out. The free energy functional accounts correctlyfig —fiuid interfacial propertied2

for the colloid excluded volume effects and treats the polymer- ) o _
induced depletion attraction within first order perturbation ~ The present effective one-component description predicts a
theory. The DFT formulation is very flexible and can be applied number of significant differences between interfacial behavior
to confined colloid-polymer mixtures as well as to the free of mixtures of colloids and ideal versus interacting polymer
interface between coexisting fluid phases. Although this effective coils. The corresponding two-component representation involv-
one-component description accounts only for pairwise additive ing ideal polymers (i.e., the AO model) is well established and
depletion interactions and neglects more-than-two-body effective confirms many of the predictions of the present effective one-
interactions (which are automatically included in an effective component picture. Future work should focus on developing a
two-component representation), the present theory has theviable effective two-component representation in the case of
advantage of being able to treat the cases of ideal as well asinteracting polymers, to validate the present predictions based
interacting polymers consistently, thus allowing a direct estimate on the effective one-component description.
of the effect of polymer interactions on the interfacial properties
of colloid—polymer mixtures. The present effective one-
Component DFT description can be tested against the more ACknOWledgment A.M.-J. thanks the Ministerio de Ciencia
fundamental two-component DFT picture in the case of ideal Y Tecnologia [Plan Nacional de Investigati€ientifica, De-
polymers?10 Reasonable agreement is found for size ratios up sarrollo e Innovacio Tecnolgica (H-D-1), project MAT 2003-
to g &~ 1, giving confidence in the predictions of the simpler 08356-C04-01], J.D. acknowledges the EPSRC within the
one-component representation for ideal and interacting polymersPortfolio grant RG37352, and A.A.L. thanks the Royal Society
alike. The reduction to an effective one-component representa-(London), for financial support. Part of this work was carried
tion leads to the appearance of zero- and one-body bulk out while J.P.H. was on leave at Universitegli studi di Roma
contributions to the total grand potential of the mixture (terms “La Sapienza”, and support of INFM is gratefully acknowl-
Qo and Q"% in eq 22), which make significant contributions  edged.
to the wall surface tensiop, and to the depletion interaction
between two walls and must not be overlooked. The key findings
of the present investigation may be summarized as follows: IX. Appendix

eDensity profilesp(2) near a hard wall deviate considerably
from pure hard sphere behavior at low colloid packing fractions. ~ A. Fundamental Measure Theory for Hard Spheres.To
Significant differences between the behavior observed for ideal model the hard sphere nature of the colloidal particles, we have
and interacting polymers may be traced back to the weaker used the White-Bear version of the Rosenfeld functiéhahis
depletion attraction induced by the latter. functional improves the one proposed by Roserfdluthat it
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leads to the Mansoori et al. equation of state for a homogeneous

mixture32 The free energy densitpeyr = ®1 + O, + D3
readg®

®, =—nyIn(1—ny)
_ M~ Ny, Ry,
2 1—n,
— (1-ny)?In(1—ny)

= (nz3 - 3n2nv2 ) (39)

36mn, (1 — ny)?

where{n;()} are weighted densities, obtained as convolutions
of the colloid densityp.(f) and the weight functiona®) (see
eq 17). The latter are given by

0PN =R, ~ 1)
o®N =R~ 1)
o(F) = (FMOR. ~ 1)

(0)( = wﬂ I:\():) (1)( r= Z)Igc)
(V)=
V(1) =2 Mé: ) (40)

B. Particular Case: Planar Geometry. For the case of
planar fluid—fluid interfaces or infinite planar walls, the
calculations simplify to a one-dimensional problem. Then, the
position-dependent excess chemical potepfi4F), which can
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0z -2 = ZRCH(R° 1z—Z])
0z ~2)=0(R. ~ |2~ Z)

02 —2) =27ROR, — 12— Z|)
oz —2) =a[R?~ (2~ 2))0R, — |z~ Z|)
2"z -2 = Rc(z— 2)0(R, — |z~ Z|)k
oz — 2) =2n(z— 2)0(R,. —|z— Z|)k

wherek is the unit vector along the-axis. Thez-dependent
colloid density profile is obtained as

(2 = po exp{ —Bled2) + 1@ — ue1}

The coupled equations eqs 41 and 43 are solved iteratively.

(43)
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