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Dynamic Colloidal Stabilization by Nanoparticle Halos
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We explore the conditions under which colloids can be stabilized by the addition of smaller particles.
The largest repulsive barriers between colloids occur when the added particles repel each other with soft
interactions, leading to an accumulation near the colloid surfaces. At lower densities these layers of
mobile particles (nanoparticle halos) result in stabilization, but when too many are added, the
interactions become attractive again. We systematically study these effects—accumulation repulsion,
reentrant attraction, and bridging—by accurate integral equation techniques.
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Colloidal dispersions—solid particles with radii rang-
ing from a few nm to a few �m, suspended in a liquid
solvent —are common in nature and widely used in in-
dustry. Blood, paint, ink, and cement are typical ex-
amples. Because interatomic dispersion forces induce
effective van der Waals interactions with large attractive
values at contact, colloids will irreversibly aggregate,
which is usually undesirable, unless their surfaces are
prevented from approaching too closely. The two most
common ways to achieve this are called steric and charge
stabilization [1]. Popular strategies for steric stabilization
usually involve grafting a layer of polymers onto the
colloid surface, resulting in dense repulsive brushes that
prevent close contact. For charge stabilization, the route
most common in nature, the colloids have surface charges
of the same sign, leading to a double layer of microscopic
coions and counterions. Adding this effective repulsion to
the intrinsic van der Waals attraction results in the famous
Derjaguin-Landau-Verwey-Overbeek potential [2], with a
metastable free-energy barrier preventing aggregation.

In an important recent development, a third strategy
for colloidal stabilization, termed nanoparticle haloing,
was introduced by Tohver and co-workers [3]. By adding
charged hydrous zirconia nanoparticles of average radius
3 nm to a suspension of (marginally charged) colloidal
silica spheres of radius 285 nm in deionized water, the
following behavior was observed: For low nanoparticle
concentrations the silica spheres aggregate, driven by the
generic van der Waals attractions. At intermediate nano-
particle concentrations, the dispersion becomes stable,
whereas at higher concentrations the silica spheres aggre-
gate again. The authors [3] attribute the initial stabiliza-
tion to layering of the small nanoparticles near the
colloidal surfaces. These ‘‘halos’’ occur because it is
advantageous for the charged nanoparticles to be near
the uncharged colloid surfaces. When two colloids then
approach each other, their respective halos repel, prevent-
ing aggregation. The reentrant aggregated phase, ob-
served at higher nanoparticle concentrations, was
attributed to normal entropic depletion attraction [4].
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Clearly, a new route to stabilize colloids would have
many potential applications. Indeed, nanoparticle halo-
ing has already been used to enhance the self-assembly of
3D colloidal crystals on patterned surfaces [5]. Never-
theless, even though this novel stabilization strategy has
been demonstrated by experiment, many questions re-
main about its generic applicability. To address these
issues we carry out a systematic theoretical study of the
effective interaction �Veff

bb �r� [6] between colloids, in-
duced by (much) smaller particles (��1 � kBT is the
reduced temperature). We find a large regime of parame-
ter space where �Veff

bb �r� is repulsive enough for sta-
bilization, but this is usually followed by reentrant at-
traction at a higher small particle packing fraction. The
picture that emerges is considerably more subtle than that
of a static layer of adsorbed particles akin to steric
stabilization. Instead, the nanoparticle halos are dilute,
and in dynamic equilibrium with the bulk solution.
Moreover, we observe no obvious change in their charac-
ter when the reentrant attraction kicks in, implying that
this phenomenon is more complex than simple depletion
attraction.

The key quantity we study is �Veff
bb �r�, the effective

interaction between two spheres of diameter 	bb, induced
by smaller spheres. Its properties are determined by the
number density 
s � Ns=V of small particles and by the
interactions ��bs�r� and ��ss�r�; it is independent of the
intrinsic interaction ��bb�r� [7]. Introducing small par-
ticles that induce a �Veff

bb �r� repulsive enough to counter-
act an attractive ��bb�r� will stabilize the colloids.

The basic big-small and small-small interactions
��ij�r� are modeled by a hard-core Yukawa form which
is versatile without having too many parameters to vary
[7]. ��ij�r� � 1 if r < 	ij; ��ij�r� � �ij�r� for r > 	ij,
where in each case r denotes the distance between the
centers of the particles, and the Yukawa tail is

��ij�r� �
��ij	ij

r
exp

�
�
�r� 	ij�

�ij

�
; (1)

where 	bs�
1
2�	bb�	ss� with 	ss the small particle
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FIG. 1 (color online). (a) Comparison of simulations (from
[7]) and HNC calculations of the effective potential �Veff

bb �r�.
The size ratio q � 0:2, and the potential parameters �ss=	ss �
1=3, �bs=	ss � 1=1:2, and ��ss � 2:99 are kept constant,
while ��bs is varied. (b) HNC and DFT [12] calculations for
small size ratios q. To facilitate comparisons, we plot q�Veff

bs �r�
and shift the curve for q � 0:1 up by �0:1.
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FIG. 2 (color online). Two typical examples of the effective
potentials. First there is initial stabilization, and then a re-
entrant attraction.
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hard-core diameter. By varying the size ratio q � 	ss=
	bs, packing fraction �s �

1
6�
s	3

ss, and the four dimen-
sionless potential parameters ��ss, ��bs, �ss=	ss, and
�bs=	bs, a wide variety of different physical situations
can be studied [7]. For repulsive interactions, for example,
Eq. (1) is a good model for charged suspensions [8].

To restrict this vast parameter space somewhat, and
inspired by the successful experiments [3], we choose
�ss > 0 and, initially, �bs � 0. The effective potentials
�Veff

bb �r� are calculated by using the two-component
Ornstein-Zernike (OZ) equations in the 
b ! 0 limit
where they decouple, together with the hypernetted
chain (HNC) integral equation closure [9], leading to
�Veff

bb �r� � �
s
R
dr0hbs�r�cbs�jr0 � rj�, where hbs�r� �

gbs�r� � 1 with gbs�r� the pair correlation function be-
tween big and small particles, and cbs�r� is the direct
correlation function [9]. In this limit, HNC has some
important advantages [10] over other popular integral
equations such as Percus-Yevick (PY) or Rogers-Young
[9]. For example, it is exact for the Asakura-Oosawa (AO)
model [4] at all densities 
s (PY is not [10,11]). Moreover,
HNC is known to be particularly accurate for soft repul-
sive potentials of the type we are investigating [9]. To
validate our method, we compare, in Fig. 1, the perform-
ance of HNC with several simulations [7] for �ss > 0 and
find excellent agreement. Since we also want to study
rather extreme size ratios, we compare, in Fig. 1(b), to
depletion potentials for hard spheres (HS) calculated with
an accurate density functional theory (DFT) approach
[12]. Again HNC performs remarkably well. These results
provide the confidence that, even if HNC is not perfectly
quantitative, the trends we uncover will be robust, pro-
vided we limit ourselves to soft repulsions and low pack-
ing fractions [13]. Fortuitously, this appears to be the
regime where the nanoparticle haloing mechanism oper-
ates most effectively.

In order to systematically investigate the conditions for
which repulsive stabilization occurs, we calculated, with
HNC, �Veff

bb �r� for a large number of parameter combi-
nations. Two typical examples are shown in Fig. 2, dem-
onstrating the common pattern we find: for increasing
packing fractions a maximum first appears close to con-
tact and continues to increase until at higher �s a second-
ary minimum appears that grows with �s and rapidly
moves to a separation of about one 	ss. This sequence of
initial stabilization followed by reentrant attraction is
similar to that seen in the experiments [3] and is found
throughout the parameter regime we investigated.

To further quantify the region of stability, we choose
the following measure: For a given set ��ss, �ss=	ss, and
q, we calculate the effective potentials for different �s, as
done for Fig. 2. The ‘‘stability window’’ is defined as
�� � �u

s=�s
s, where �s

s is the packing fraction above
which the maximum of �Veff

bb �r� is >5 (leading to kinetic
stabilization), and �u

s is the packing fraction below which
the minimum of �Veff

bb �r� is <� 2 (a conservative esti-
24830
mate of where short-range attractions induce aggregation
[11]). The way our stability measure �� varies with
potential parameters is depicted in Fig. 3, from which
some general trends can be extracted: The size of the
window increases with increasing �ss=	ss and decreasing
��ss and q. [In the HS limit (��ss � 0) we find no
window of stability.] For a number of points (A–D) in
Fig. 3, we show the values of �u

s and �u
s . As expected,

these packing fractions decrease with increasing ��ss and
�ss=	ss since the small particles repel each other more
and have a larger effective ‘‘size.’’

The effective repulsion is clearly related to the accu-
mulation of particles near the colloids (nanoparticle halos
[3]). We define the ‘‘halo’’ as those particles between r �
	bs and r � rmin, the distance at which the pair correla-
tion function gbs�r� has its first minimum. The number of
particles Nhalo follows from integrating gbs�r� up to rmin.
The 2D packing fraction is given by �2D � 1

4�

2D	2

ss,
where 
2D � Nhalo=�4�	

2
bs�. For all the parameters

studied we find the same behavior depicted in the inset
of Fig. 3: The halo packing fraction �2D is linear with �s,
and there is no change of slope or other obvious property
3-2
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FIG. 4 (color online). (a) Adding an attractive ��bs�r� gen-
erates a deep minimum due to bridging effects when �bs � �ss.
(b) A dramatic stabilization effect occurs for weak longer
ranged attractions: �bs � 3�ss � 3	ss, and ��bs � �0:5.
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marking either the beginning of stabilization at �s
s or

reentrant attraction at �u
s . We have also investigated other

surface properties such as the adsorption �s �
�

R
hbs�r�dr and the related surface tension �s [14]. In

contrast to polymeric depletants, where �s helps deter-
mine �Veff

bb �r� [14], we observe no clear signatures of �s
s

or �u
s in the surface tension or the adsorption.

For small q we expect the gbs�r� to be similar within
corrections O�q�1�, which explains why the �2D vs �s
curves are so close for different q. However, the stability
windows, shown by the symbols in the inset of Fig. 3,
differ significantly: They are at lower �s for smaller q,
something we observe more generally. This can be under-
stood from an approximate Derjaguin [1] argument valid
in the small q limit. The potentials scale as 1=q times the
force between two plates, and so stabilization (and reen-
trant attraction) is achieved at lower packing fractions.
However, this does not easily explain why the window
size also grows with decreasing q.

The halos are very dilute at stabilization, and we have
checked that all layer densities studied are well below that
of any two-dimensional freezing transition. In fact, the
layers shown in the inset of Fig. 3 are among the densest
we investigated; for some �ss, �2D

s can easily be an order
of magnitude lower at �s

s. At these low packing fractions,
the particles rapidly diffuse between halos and the bulk.
In contrast to a steric stabilization mechanism, where the
layers are static, we emphasize that this nanoparticle halo
stabilization mechanism is dynamic.

Further evidence against a naive picture of static layers
comes from the reentrant attraction. If the halos would
become saturated, so that additional small particles can
no longer segregate to the colloidal surface and instead
act as depletants, then one might expect a linear depen-
dence of the minimum of �Veff

bb �r� on �s as in AO [4] or
HS [12] depletion. Instead, the minimum in �Vbb�r�
24830
grows initially as �2
s , closely resembling the behavior of

the second minimum of HS systems [12], which suggests
that it has a similar more complex origin in correlation
effects. In fact, both minima would be directly related if
the potentials were interpreted in terms of a nonadditive
HS reference system with 	bs <

1
2 �	bb � 	ss�, as ex-

plained in [15]. The repulsive effective interactions found
in many other theoretical studies of �Veff

bb �r� can also be
qualitatively interpreted in this way (see, e.g., [7] and
references therein for a discussion), suggesting that non-
additivity may be fruitfully used to interpret the reentrant
attraction [10].

One might argue that since adding an attractive �bs�r�
should increase the number of particles in a layer, this
should enhance the stabilization effect. However, we find
more subtle scenarios. If we choose �bs � �ss, to model
residual charge on the large colloids, then for weak at-
tractions the window indeed grows slightly. But, as ��bs
becomes more negative, the potentials rapidly develop a
large attractive component. This phenomenon, sometimes
called bridging for polymeric additives [1], results from
configurations where the two bigger colloids are both
attracted to the same set of smaller particles [10]. An
example of bridging is demonstrated in Fig. 4(a) and is
representative of what we find more generally: the stabil-
ity window �� initially grows slightly, but then rapidly
disappears, typically around ��bs & �1:5.

On the other hand, a dramatic enhancement of the sta-
bilization occurs for longer ranged colloid-nanoparticle
attractions, as demonstrated in Fig. 4 for �bs � 3�ss. The
bridging effect is bypassed and the first minimum shifts
up to positive absolute values; in fact, for these parame-
ters we find no reentrant attraction within the range where
we trust HNC [13]. In general, we find this effect for
�bs > �ss, but exactly where it kicks in depends on q and
the other potential parameters. In all cases studied, the
2D layer densities are still very low so that the halos are
dilute; typically for more negative ��bs bridging sets in
3-3
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again [10]. Of course when ��bs�r� is attractive enough to
induce static saturated layers, then the particles would be
sterically stabilized. But technically this is a nonequilib-
rium effect: it works only if the colloidal particles are
first isolated from each other on the time scale that the
(saturated) layer forms.

Finally, having systematically explored the effect of
different parameters on �Veff

bb �r�, we make some recom-
mendations for experiments. For �bs � 0 the best stabili-
zation should occur for modestly charged small additives
(nanoparticles) since the stability windows are largest for
small q, modest ��ss, and large �ss=	ss. Small 	ss are
needed to enhance the latter parameter, since the (Debye)
screening length is typically fixed by solution conditions,
e.g., �ss 
 30 nm for 0.1 mM monovalent salt concentra-
tion. Another argument in favor of small particles con-
cerns the dynamic nature of the layers. If the big particles
are driven at velocities such that the smaller particles can
no longer adiabatically follow, then the stabilization ef-
fect may disappear. Since the self-diffusion coefficients
of the nanoparticles scale as 1=	ss [1], this again favors
small particles. Moreover, larger windows �� also en-
hance stability under halo fluctuations.

Whereas adding charge to the colloids can destroy the
stabilization effect, a modest but longer ranged attraction
��bs�r� can significantly enhance it. The latter effect
could be induced by residual van der Waals attractions,
although this recommendation must be tempered by the
difficulty of adding van der Waals attractions between
different species without simultaneously significantly in-
creasing them between similar species. On the other
hand, the advantage of small van der Waals attractions
(which are independent of debye screening length), is that
the ratio �bs=�ss can be tuned by changing salt concen-
tration. This adds another handle for engineering effective
potentials and concomitant phase behavior [10].

We observe the same general trends seen in the experi-
ments of Ref. [3], such as lower �s

s with smaller q and
values of �2D well below saturation. A direct quantitative
comparison, however, is hampered by their use of poly-
disperse small particles, and the difficulty in deriving
accurate potentials ��ij�r�. Taking their estimates
(��ss 
 6, �ss=	ss 
 0:6) we find a smaller window
�� 
 2, at higher �s than what they observed. The dif-
ference could stem from a small attractive ��bs�r� or
from polydispersity (preliminary calculations suggest
that this lowers the effective �s

s and �u
s [16]).

In conclusion, we discovered a substantial parameter
regime where the addition of small (nano) particles can
stabilize bigger colloids. Fortuitously, this occurs where
the flexible HNC integral equation is most reliable. We
usually find a stability window of packing fractions,
above or below which the colloids aggregate again. The
effects are significantly enhanced for weak longer ranged
attractive ��bs�r�. Although the stabilization is clearly
related to the formation of diffusive accumulation layers
24830
around the bigger particles, we find no simple relationship
to layer properties. This suggests these effects are related
to more complex correlations. Colloidal stabilization by
dynamic nanoparticle halos should be widely applicable
and complimentary to existing steric and charge stabili-
zation techniques [1,2]. This new mechanism may also be
relevant for smaller scale biological interactions [17].

We thank H. Löwen for early discussions and
J. Dzubiella, R. Roth, and P. Bryk for invaluable help
with the calculations. We thank Schlumberger Cambridge
Research, the EPSRC, and Royal Society (London) for
financial support.

Note added.—Upon completion of this work we
became aware of a study by Liu and Luijten [18]
which uses different techniques but arrives at similar
conclusions.
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