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Thermodynamic perturbation theory is used to calculate the free energies and resulting
phase diagrams of binary systems of spherical colloidal particles and interacting polymer coils
in a good solvent within an effective one-component representation of such mixtures, whereby
the colloidal particles interact via a polymer-induced depletion potential. Monte Carlo
simulations are used to test the convergence of the high temperature expansion of the
free energy. The phase diagrams calculated for several polymer-to-colloid size ratios
differ considerably from the results of similar calculations for mixtures of colloids and ideal
(non-interacting) polymers, and are in good overall agreement with the results of an explicit
two-component representation of the same system, which includes more than two-body

depletion forces.

1. Introduction

The structure, rheology and phase behaviour of
sterically stabilized colloidal dispersions are strongly
affected by the presence of non-adsorbing polymers.
Nearly fifty years ago Asakura and Oosawa realized
that finite concentrations of polymer coils would induce
an effective attraction between colloidal particles, of
essentially entropic origin, the so-called depletion inter-
action [1]. Since the initial colloid—polymer Hamiltonian
involves only repulsive interactions between all pairs
of particles, the polymer-induced effective attraction
between colloids, which results from tracing out the
polymer degrees of freedom, was referred to as ‘attrac-
tion through repulsion’ by A. Vrij. For non-interacting
(ideal) polymers, the range of the depletion attraction is
independent of polymer concentration, and close to the
polymer radius of gyration R,, while the depth of the
attractive well, when two colloids touch, is proportional
to polymer concentration. Consequently, one expects
that for sufficiently high concentration, and for not too
small size ratios ¢ = R,/R. (where R, is the radius of the
spherical colloids), the effective attraction may drive a
depletion-induced phase separation into colloid-rich
(‘liquid’) and colloid-poor (‘gas’) colloidal dispersions,
similar to condensation in simple fluids. This phase
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transition, which is in fact a colloid—polymer demixing
transition, was investiga-ted by Gast et al. [2], who first
calculated the phase diagram from thermodynamic
perturbation theory. Their findings were later confirmed
by the Monte Carlo (MC) simulations of Meijer and
Frenkel [3], and the free volume theory of Lekkerkerker
et al. [4]. The predicted phase diagrams agree qualita-
tively with experimental findings for various colloid/
polymer mixtures [5, 6].

More recently the question was raised of how
interactions between polymer coils would affect the
phase behaviour compared to that of ideal polymers
[7-12]. The early theoretical investigations into the
problem were made at the two-component level, invol-
ving an explicit consideration of the polymer coils.
However, very recently the depletion-driven effective
pair potential between two colloidal particles in a bath of
interacting polymers in good solvent, modelled as self-
avoiding walk (SAW) polymers, was calculated by MC
simulations [13]. A simple analytic form, with coefficients
determined by the SAW polymer osmotic equation of
state and surface tension, yields excellent agreement with
the simulation data over a wide range of polymer-to-
colloid size ratios ¢, and polymer concentrations [13].

In this paper we use thermodynamic perturbation
theory [14] to calculate the phase diagram of mixtures
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of hard sphere colloids and interacting polymers within
the effective one-component representation, whereby
the colloidal particles interact via the above-mentioned
depletion potential induced by the SAW polymers. The
results of these calculations can be directly compared
to the predictions of recent MC simulations of the two-
component representation of the same system [9], which
agree quantitatively with recent experiments [12]. Any
discrepancies between the phase diagrams obtained
within the effective one-component and two-component
representations can then be traced back to more-than-
two-body depletion interactions between colloidal par-
ticles, which are automatically included in the latter
representation, but are of course neglected in the pairwise
additive effective one-component picture considered in
the present paper.

The main insights resulting from our work are
manifold: we show that the effective one-component
picture in conjunction with thermodynamic perturba-
tion theory (TPT) provides a flexible and numerically
undemanding tool to predict reasonable phase diagrams
of colloid/interacting polymer mixtures in a good solvent.
Comparison of the present TPT predictions with the
results from much more demanding simulations of the
full two-component system, which automatically include
more than two-body effective interactions, allows the
importance of the latter to be estimated quantitatively.
Furthermore the convergence of each term in the TPT
is explicitly tested against MC simulations showing its
reliability for a wide range of size ratios.

Thermodynamic perturbation theory was previously
applied to mixtures of hard sphere colloids and ideal poly-
mers within the effective one-component representation
by Gast et al. [2], and extended by Lekkerkerker et al. [4]
who stressed the importance of working at constant

chemical potential x. Similar calculations were recently
published for mixtures of colloids and star polymers
for several functionalities / (where f is the number of
identical arms of the star polymer connected at the
centre), again within an effective one-component repre-
sentation, as well as within the two-component des-
cription [15]. Star polymers are particularly instructive
depletants, since upon varying the functionality, they
change continuously from linear polymer (f =2) to
hard sphere-like behaviour (f — oo0). The phase dia-
grams obtained in [15] for f = 2 are thus, in principle,
directly comparable to the results presented in this
paper. Such a comparison will be made in section 4, but
is only tentative, since the calculations in [15] neglect
the polymer concentration dependence of the effective
colloid—polymer and the polymer—polymer interactions,
which are not negligible [9, 16, 17].

2. One- and two-component representations

Consider a system of N, spherical colloidal particles
of radius R, in a bath of linear polymers which are in
equilibrium with a polymer reservoir of fixed chemical
potential p,. The corresponding semigrand canonical
description is schematically represented in figure 1. The
colloidal particles interact via the standard hard sphere
potential, while each polymer is made up of L mono-
mers or segments; segments from the same or different
chains are not allowed to overlap. In a good solvent, this
excluded volume constraint is the only monomer—
monomer interaction and for sufficiently large L, where
chemical details become irrelevant, the interacting
polymers may be accurately modelled by self-avoiding
walks on a three-dimensional lattice. The monomers,
moreover, are not allowed to penetrate the hard sphere
colloids. At finite colloid and polymer concentrations,

N,V

2

Figure 1.

Schematic representation of the semigrand canonical ensemble. N, colloidal particles in a volume V' are in osmotic

equilibrium with a polymer reservoir of fixed chemical potential 1.
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such a binary mixture of hard spheres and interacting
polymers poses a formidable problem to theoreticians
and simulators alike.

One coarse-graining strategy which has proved very
successful is to trace out individual monomer degrees of
freedom in the ‘polymers as soft colloids’ paradigm,
whereby the total interaction between two polymer coils,
averaged over all monomer configurations, reduces to
an effective (entropic) interaction between their centres
of mass, which depends on polymer concentration [16].
Similarly, one can trace out the monomer degrees of
freedom, to derive a state-dependent effective interac-
tion between the hard sphere colloids and the centres of
mass of the polymer coils [16, 17]. This coarse-graining
procedure, which amounts to a reduction of the number
of degrees of freedom of each polymer from O(L) to 3,
leads to a two-component representation of ‘hard’ and
effective ‘soft’ colloids, which has been exploited in
recent MC simulations to determine the phase diagram
of colloid/interacting polymer mixtures for several size
ratios ¢ [9]. However, following the Asakura—Oosawa
(AO) strategy for non-interacting polymers, one can
carry the coarse-graining procedure one step further, by
eliminating the polymer degrees of freedom altogether
and determining the resulting depletion interactions
between the colloidal particles. If this procedure is
carried out in the semigrand canonical ensemble, the
total effective interaction energy between N, colloidal
particles for any configuration 7 is:

Vfcff(7Nv) =V, (N)—kpTln < expl—BVepl >u,. 0.7 ),
(1)

where V., 1is the direct colloid—colloid interaction
energy, while V,, is the total colloid—polymer interac-
tion; the brackets denote a grand-canonical average over
polymer degrees of freedom at fixed polymer chemical
potential, volume and temperature, and a given colloid
configuration. In the model under consideration, V.
and V,, are the colloid—colloid and colloid-monomer
excluded volume interactions, which are pairwise
additive. The depletion interactions between the N,
colloidal particles are given by the second term on the
RHS of equation (1) and are not, a priori, pairwise
additive. However, for sufficiently low colloid concen-
tration, or small size ratio ¢, the pairwise additive
contribution dominates.

2.1. Depletion potential for interacting polymers
The depletion pair potential between an isolated pair
of colloidal spheres has been determined as a function
of the centre-to-centre distance, and over a range of
interacting polymer concentrations covering the dilute
and semidilute regimes, in [13]. The resulting depletion

pair potential is accurately reproduced by the following
simple semi-empirical form, inspired by the Derjaguin
approximation, as discussed in detail in [13]:

0 <x <Dy(p),

2
X
Brs(r) = —n R, Vw(p)DS(IO)<1 - D:(P)) ®))

0 otherwise.

r is the centre-to-centre separation, while x = r — 2R, is
the surface-to-surface distance between the colloids;
yw( p) 1s the polymer surface tension near a planar wall,
a function of polymer bulk concentration p = p;, deter-
mined in [18] for SAW polymers; Dy( p) is the range of
the depletion potential given, according to [13], by:

2y(p) RYL(q)

P =000 Rl — 0) @

where TI( p) is the osmotic pressure of the interacting
polymers taken from renormalization group calcula-
tions [13], namely:

[(p) = pZ(ag), (4a)

where a =2.55, ¢ =4npR}/3, R, is the polymer radius
of gyration at zero density (p=0), and

Z(x)=1 +§exp |:0.309 X |:(1 —%) In(1 +x)+%]i|- (4b)

The second ratio on the RHS of equation (3) accounts
for finite curvature of the colloid surface, as estimated
approximately from the AO model for ideal polymers

[18]:
RilffO(q) _l <1 6 3 2> 1/3_1 5
R, —q( Rt ; )

which reduces to 2/4/m in the limit ¢ — 0.

2.2. Depletion potential for ideal polymers
For comparative purposes, we also consider the
depletion pair potential induced by ideal polymers.
Meijer and Frenkel [3] showed that to a good approx-
imation this is well represented by the Asakura—Oosawa
form [1]:

Bvia(r)

0 otherwise,

where o0 = R. + RL is the radius of a sphere around
the colloids from which the interpenetrable polymers
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are excluded, but with an effective RY calculated
from the insertion free energy of a single colloid in a
bath of ideal polymer. The radius is given by equation
(5); for a hard wall it reduces to 2/ /7~ 1.128,
while it monotonically decreases for increasing size
ratio ¢ since the polymer can deform around the
spherical colloid. For the size ratios considered
here the curvature effects are small, on the order of a
few % [10].

(@)
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The two pair potentials (2) and (6) are always
attractive. For interacting polymers the range decreases
with increasing polymer concentration p, while the latter
is constant for ideal polymers. Furthermore, at any
given p, the depth of vy(r) is always less than that of
via(r), so that the depletion attraction induced by
interacting polymers is weaker than for ideal polymers.
Representative examples of the depletion potentials (2)
are shown in figure 2.
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interacting, g = 0.67

interacting, g = 1.05 E

4 - ideal, ¢ =0.67 —
-5 —
6 \ \
0 0.25 0.5 0.75
x/2R,
(b) 0 =

. - - .

1 —

2 —

N q=0.67

interacting, (1)[:: 0.58 i

Bwex) -3 - /.:'./‘ ——— interacting, ¢;= 1.16 N

il . . r I

R interacting, ¢ =2.32

b B P |

I —-= ideal.¢,=1.16 |

S |

6 \ \
0 0.25 0.5 0.75
x/2R,

Figure 2.

Depletion potential between two colloids as a function of the surface-to-surface distance, shown for interacting polymers

(w = vy from equation (2)) characterized by ¢ = 0.34,0.67 and 1.05, for ¢, = 1.16 (a), and by ¢, = 0.58,1.16 and 2.32 for
q = 0.67 (b). The dashed lines indicate the ideal potential (w = v;; from equation (6)) for the intermediate cases. For a given

¢y, and g, viu(r) 1s always more attractive than vy(r).
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3. Free energy calculations

Our objective is to draw phase diagrams of colloid/
polymer mixtures in the (7.,¢,) plane, where 7, = 4np. x
R? /3 is the colloid packing fraction, while ¢ = 4mpf, x
Rf,/ 3 is the ratio of the polymer density in the reservoir
(r) over the overlap density p,=3 /4nR§; the latter
conventionally separates the dilute (p, < £y) and the
semidilute (o, > p;) regimes. To this end we need to
calculate the free energies of the various phases. Within
the semigrand canonical ensemble the required free
energy is related to the Helmholtz free energy F.(N., N,
V,T) by a Legendre transformation:

F(N.,¢,V,T)
=F(WN¢, pup, V, T)=Fc(Ne, Ny, V., T) — upNy. (7)

Since the colloidal particles interact via a hard sphere
repulsion and an effective, depletion-driven attraction,
the natural way forward is to calculate the free energies
of the various phases from thermodynamic perturbation
theory, using the well-documented hard sphere fluid
as a reference system [14]. To second order in the
high-temperature expansion:

F=FK+FHh+F

2
= Rt W) S [(3) ~vek] ®
where Fy = Fy(N,., V, T) is the free energy of the hard
sphere fluid, {...), denotes an average over the reference
system configurations, and Wy, is the perturbation

potential energy:

N,

Wy, =Y wiry) 9)

i<j

with rj = |F; —7j|, the distance between the centres
of colloids i and j; w=w(r;¢;) is the polymer
concentration-dependent depletion potential (2) for
interacting polymers (w = v,) or (6) for non-interacting
polymers (w = v;;). We stress that within the semigrand
canonical description the depletion potential must be
calculated for the polymer density in the reservoir, which
is unequivocally determined by fixing the chemical
potential p,.

Fy in equation (8) is calculated from the Carnahan
and Starling equation of state for the hard sphere fluid
[20] while for the hard sphere solid we adopt Hall’s
equation of state [21]. F; is easily expressed in terms of
the hard sphere pair distribution function go(r) for
which we adopted the Verlet—-Weis parametrization in
the fluid [22], and the form proposed by Kincaid and
Weis for the FCC solid phase [23]. The calculation of
F, involves three- and four-body contributions of the
reference system. We have adopted the approximate

expression due to Barker and Henderson [24], which
involves only the pair distribution function and the
compressibility of the reference system. Gathering
results:

FBR, 1
lzgvl. B /jvo +5P0c / d*r go(r)w(r)

1 (dp.

‘Z(aagoﬂpc [@rameo. o

Note that in the solid phase, go(r) is the orientationally
averaged pair distribution function.

In order to assess the accuracy of F, and the
convergence of the perturbation series (10), we have
carried out MC simulations to compute explicitly the
fluctuation term in equation (8), which is approximated
by the last term in equation (10), as well as the total
excess free energy. The latter is most conveniently
calculated by the standard A-integration procedure [14],
whereby the depletion-induced perturbation Wy, is
gradually switched on, resulting in:

1
FO.= 1):F(A:0)+/ (W), dx, (11)
0

where F(A = 1) is the required free energy of the fully
interacting colloid/polymer mixture, F(A =0) = Fy is
the free energy of the hard sphere reference system, and
(Wy.), is the statistical average of the perturbation
weighted by the Boltzmann factor appropriate for a
system of particles interacting via the hard sphere
repulsion and the partially switched on depletion
potential Aw(r). The calculation of the free energy F
hence involves several MC simulations to determine
(W), for a series of discrete values of A [25], typically
A=nx0.05(1 <n<?20).

The convergence of the perturbation series (10) is
illustrated in figure 3 for the depletion potential (2) and
a size ratio ¢ = 0.67. Similar convergence tests were
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Figure 3. Ratio of the first two perturbative terms F,/F, as
a function of the colloid packing fraction n, and the
polymer density in the reservoir é,- The diamonds are for
the fluid phase and the crosses (1. > 0.5) for the solid
phase. The size ratio is ¢ = 0.67.
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carried out for other size ratios ¢. As expected, the
convergence of the series is faster when the size ratio ¢ is
larger, the polymer concentration is lower and the colloid
packing fraction higher.

The accuracy of each term in the series, and of the
truncated sum, was tested by MC simulations of periodic
samples of N, = 108 colloidal particles. Representative
results are presented in tables 1 and 2. Table 1 shows
that values of F from equation (10) are very close to the
simulation data, both for the fluid and the solid.
The Barker—Henderson approximation underestimates
the absolute value of F5, by less than a factor of two in the
fluid phase, and by a much larger factor in the FCC
crystal phase, where it is totally inadequate. However, as
shown in Table 2, the sum of the first three terms of the
perturbation series (10) yields a total free energy which
is surprisingly close to the ‘exact’” MC results from the
A-integration. Similar comparisons show that the predic-
tions of perturbation theory are very reliable both for
larger and for somewhat smaller values of ¢ (say for
¢20.3), but that the predictions rapidly deteriorate

for small ¢, corresponding to narrow potential wells, as
expected. This failure will be illustrated in the case
¢ = 0.1 at the end of the following section.

4. Phase diagrams

Once the free energies of the fluid and FCC solid
phases have been calculated from thermodynamic
perturbation theory, as explained in the previous section,
the phase diagrams can be calculated using the standard
double-tangent construction. Since the initial two-
component system is athermal, the depletion potentials
(2) and (6) are purely entropic, so that the temperature
scales out in the Boltzmann factor, and the resulting
phase diagrams are independent of temperature. The
phase diagrams for mixtures of colloids and interacting
polymers in the (n..¢,) plane are shown in figure 4 for
four values of the size ratio ¢, in the range 0.1 Sg 1.
The phase diagrams look superficially similar to earlier
results obtained for mixtures of colloids and ideal
polymers [4, 27] or star polymers [15]. In particular, for
the smaller size ratios, the fluid—fluid phase separation is

Table 1. First two terms of the perturbation series, as obtained using equation (10) (FP!), and by MC simulations (FMC), for
several colloid and polymer concentrations, and for g =0.67. The free energy densities are given in reduced units
F = BF(2R.)’/V. Whereas both F*"" and F*" are accurate in the fluid phase, the latter underestimates the absolute value of
FMC in the solid phase.

Perturbations Simulations
9 n State Fer F Ay e
0.17 0.22 Fluid —0.194 —0.004 —0.193 —0.006
0.64 Solid —2.692 —0.001 -2.701 —0.032
0.29 0.22 Fluid —-0.318 —0.012 —0.318 —0.021
0.64 Solid —4.663 —0.003 —4.679 —0.097
0.42 0.22 Fluid —0.434 -0.025 —0.433 —0.043
0.64 Solid —6.900 —0.006 —6.941 -0.210
0.54 0.22 Fluid —0.535 —0.041 —0.534 -0.077
0.64 Solid —8.604 —-0.011 —8.635 -0.329

Table 2. Truncated free energy densities Fy + F} + F>, in reduced units (see table 1), as obtained using equation (10) and MC
simulation, and total free energy of the system, as obtained from A-integration (equation (11)). Whereas the results of MC
simulations are accurate only in the fluid phase, those obtained using equation (10) are in good agreement with A-integration
in both phases.

Py +F+F F
#, ne State Perturbations Simulations A-integration
0.17 0.22 Fluid —0.055 —0.056 —0.056
0.64 Solid 7.551 7.511 7.541
0.29 0.22 Fluid —0.194 —0.196 —0.196
0.64 Solid 5.578 5.468 5.562
0.42 0.22 Fluid —0.316 —0.333 —0.339
0.64 Solid 3.582 3.368 3.563
0.54 0.22 Fluid —0.434 —0.468 —0.483

0.64 Solid 1.629 1.279 1.605
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Phase diagrams of colloid/interacting polymer mixtures as obtained from perturbation theory for the effective one-

component system with size ratios (a) ¢ = Rg/R. = 0.0905, (b) ¢ =0.34, (c) ¢ =0.67, and (d) ¢ = 1.05, in the plane of the
colloid packing fraction 7. and the polymer concentration ¢/, in the reservoir. F and S denote the stable fluid and solid (FCC)
phases. F + S and F + F denote the stable fluid—solid and (meta)stable fluid—fluid coexistence regions. The solid lines denote
the phase boundaries for the coexistence of stable phases, while the dashed lines denote the metastable fluid—fluid binodal.

The critical points are indicated by asterisks.

metastable, and pre-empted by phase coexistence
between a high-density solid and a single low-density
fluid phase. Such a behaviour is a typical signature
of ‘narrow’ potential wells like those pictured in figure 2
[2, 4]. For larger size ratios a stable fluid—fluid phase
separation appears with a critical point and a triple point,
and the resulting phase diagrams are not unlike those
of simple atomic systems in the density-temperature
plane (with 1/¢;, playing the role of 7).

The corresponding phase diagrams for mixtures of
colloids and ideal polymers, calculated using the ideal
depletion potential (6) are shown in figure 5 for
comparison. While they look qualitatively similar to
those for interacting polymers in figure 4, there are a
number of striking quantitative differences. Because
the depletion attraction for ideal polymers (equation (6))
is stronger than that for interacting polymers (equation
(2)) for the same polymer concentration, the fluid—fluid
phase separation becomes stable at a larger ¢ for
the interacting than for the non-interacting polymers.
While the phase diagrams for ¢ >~ 0.1 are fairly close, the
differences grow with increasing ¢. For ¢ >~ 1 the critical
point in figure 5 (ideal case) is at (7. = 0.18, ¢} = 0.48)
compared to (0.25,1.21) in the interacting case, while the
triple points are at (0.47,0.92) and (0.43,1.42), respec-
tively, indicating dramatic changes when going from

ideal to interacting polymers. Also note that while the
critical polymer concentration is practically independent
of ¢ (for ¢ =0.35) in the ideal case, it shifts to higher
values as ¢ increases in the interacting case. On the other
hand, the critical colloid packing fraction decreases as
¢ increases in the non-interacting case, while it is
practically constant for interacting polymers.

All these trends are similar to those reported recently
in simulations of the two-component description of
mixtures of colloids and SAW polymers [9]. The
enhanced miscibility due to polymer interactions was
first predicted on the basis of PRISM integral equation
in reference [8]. A detailed comparison between the
present perturbation theory results for the effective one-
component system, and the phase diagrams determined
for the two-component representation is made in figure 6.
The agreement between the simulation data for the
two-component representation and the predictions of
perturbation theory for the effective one-component
representation is seen to be reasonable, but not perfect,
and to deteriorate as ¢ increases. The obvious reason is
that perturbation theory only includes the pairwise
additive part of the depletion interactions, while the
two-component representation also accounts for effec-
tive many-body depletion interactions between colloidal
particles. The fact that the phase diagrams obtained
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Figure 5. Phase diagrams of colloid/ideal polymer mixtures as obtained from perturbation theory for the effective one-component
system using v;4(r) (equation (6)) for the same ¢s as in figure 4, as functions of the colloid packing fraction 7, and the polymer
concentration ¢/, in the reservoir. Note that the critical points (asterisks) are always at lower ¢/, than the corresponding critical
points for interacting polymers.

(b)

(c) 2

0 0.2 04 06 0.8

Figure 6. Phase diagrams of colloid/interacting polymer mixtures, as obtained from perturbation theory for the effective
one-component system (lines), compared to simulations of the two-component system (symbols) [9]. The size ratios are
(a) ¢ =0.34, (b) 0.67 and (c) 1.05. The critical points are indicated by crosses (two-component) and asterisks (one-component).
The agreement is surprisingly good.
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from the two-component representation are shifted to
lower polymer concentrations relative to the prediction
for the effective one-component system indicates that the
more-than-two-body depletion interactions are overall
attractive in naturet. The opposite trend was found in
the case of ideal polymers [27], and is consistent with
the more pronounced trends in the limit of large ¢ [28].

We pointed out earlier that the convergence of thermo-
dynamic perturbation theory is expected to deteriorate
when the range of the attractive potential well decreases,
i.e. when ¢ decreases. To check the reliability of second-
order perturbation theory at ¢ >~ 0.1, we have system-
atically computed the ‘exact’ free energy by MC
simulations, using the A-integration (equation (11)).
The phase diagrams determined with the approximate
and ‘exact’ free energies are compared in figure 7. The
agreement remains acceptable for the fluid—solid transi-
tion, even for ¢ >~ 0.1, but the (metastable) binodal of
the fluid—fluid transition is at too high a colloid packing
fraction [27].

Two-component simulations [9] would be very expen-
sive for small ¢, because the number of polymers needed
scales as ¢ 3. However, for sufficiently small g we
don’t expect many-body interactions to be important,

0.4 T I T

and so our one-component simulation should accurately
represent the true colloid/polymer system.

A final instructive comparison is between the present
results for the phase behaviour of colloid/interacting
polymer mixtures and the results for colloid/star
polymer mixtures of functionality f =2 [15], which
reduce in fact to interacting linear polymers considered
in the present work. The phase diagrams calculated
from both depletion potentials within the same approx-
imation (10) for the free energies are compared in
figure 8 for similar size ratios g. Although, as explained
earlier in this paper, the depletion pair potential
calculated for the f = 2 star polymers [15] is not quite
the same as the more accurate one we use [13], the phase
diagrams show similar trends when compared to ideal
polymers.

5. Conclusions
We have shown that traditional thermodynamic per-
turbation theory, requiring only the well-documented
equations of state and pair distribution functions of the
fluid and solid phases of the reference hard sphere
system, leads to reasonably accurate phase diagrams of
mixtures of colloidal particles and interacting polymer

g = 0.0905

0.8

Figure 7. Phase diagram for colloid/interacting polymer mixture, as a function of the colloid packing fraction n. and the polymer
concentration ¢, in the reservoir, for a small size ratio (¢ = 0.0905). The solid (resp. dashed-dotted) line denotes the fluid-solid
binodal obtained from perturbation theory (resp. from MC simulations) of the effective one-component system, while the
dashed (resp. dotted) line denotes the metastable fluid—fluid binodal obtained by the same methods.

+Of course part of the difference is also due to the perturbation theory, which, in general, slightly underestimates the value of ¢,
along phase boundaries (see, for example, the work of Dijkstra ez al. [27]). This suggests that the many-body interactions are slightly

more attractive than would be inferred from figure 6.
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Figure 8.

Phase diagrams of colloids/polymer mixtures within three different one-component models: ideal polymers (dashed-

dotted lines, ¢ = 0.67), interacting polymers (solid lines, ¢ = 0.67) and star polymers with functionality /' = 2 (dashed lines,
¢q = 0.6). The critical points are indicated by asterisks, while the symbol 7 denotes the triple points.

coils, provided the appropriate concentration-dependent
depletion potential between two colloidal spheres is
used. As expected, the agreement between the predic-
tions of the effective one-component description, and
the more elaborate two-component description observed
for low size ratios ¢ deteriorates as ¢ increases, due to
the enhanced importance of many-body interactions,
which are neglected in the one-component picture.
Nevertheless, the disagreement remains tolerable even
at ¢ &~ 1, and in view of the excellent agreement between
the predictions of the two-component description [9]
and recent experimental data [6, 12], we conclude that
the effective one-component picture, in conjunction with
standard thermodynamic perturbation theory, provides
a reliable prediction of the phase diagrams of colloids/
polymer mixtures in a good solvent.

A direct comparison between the phase diagrams for
interacting and ideal polymers calculated at the same
level of approximation shows considerable quantitative,
and even qualitative differences between the two
depletants. The main effect of polymer—polymer inter-
actions is to enhance the miscibility of the colloid/
polymer mixtures. Similar conclusions were reached by
a number of different recent investigations, based on
two-component approaches, including integral equa-
tions [8], ‘polymers as soft colloids’ [9], extensions of
free-volume theory [10], density functional theory [11],
and star-polymer potentials [15]. Here we show that the
differences between the two types of depletants can be

rationalized within a one-component effective potential
picture, mainly because for a given R, and density p,,
the depletion potentials for interaction polymers are less
attractive than those for interacting polymers.

The results of the present work apply to polymers in a
good solvent, for which the SAW model constitutes an
excellent representation. We plan to examine the
situation where solvent quality is such that attractive
forces between monomers can no longer be neglected
[26]. Upon lowering the temperature from very high
(corresponding to the SAW limit) to the 6 temperature,
we should be able to investigate the gradual change in
the phase diagrams from the fully interacting case to one
similar to the ideal polymer limit, which have both been
considered in the present paper.
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