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The effect of solvent quality on dilute and semidilute regimes of polymers in solution is studied by
means of Monte Carlo simulations. The equation of state, adsorption near a hard wall, wall–polymer
surface tension, and effective depletion potential are all calculated as a function of concentration and
solvent quality. We find important differences between polymers in good andu solvents. In the
dilute regime, the physical properties for polymers in au solvent closely resemble those of ideal
polymers. In the semidilute regime, however, significant differences are found. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1756571#

I. INTRODUCTION

The properties of polymers in solution are determined by
the balance between effective monomer–monomer attrac-
tions and excluded volume repulsions. Upon increasing the
relative strength of the attractions—for example, by
cooling—several regimes are encountered. As long as the
thermal energykBT far exceeds the absolute valuee of the
effective monomer–monomer attraction, good solvent condi-
tions prevail and individual polymer coils are swollen due to
the dominance of excluded volume effects. The polymer ra-
dius of gyrationRg scales likeLn, whereL is the number of
monomers or~Kuhn! segments andn'0.59 is the Flory
exponent.1,2 When the temperature is lowered, the coils
shrink due to the action of effective~solvent-induced!
monomer–monomer attraction, until theu regime is reached;
at theu temperatureTu , monomer–monomer repulsion and
attraction cancel, at least at the two-body level, and indi-
vidual coils behave essentially like ideal~random walk!
polymers, such that their radius of gyration scales likeL1/2.
Below Tu individual coils collapse into dense globules with
Rg;L1/3.

Moving away from the infinite-dilution limit, interac-
tions between different polymer coils come into play and
give rise to the lowest-order correction to the van t’Hoff limit
of the osmotic equation of state, valid for noninteracting
polymers @see Eq.~1! below#. The correction, due to pair
interactions, is proportional to the square of the overall
monomer concentrationc; the coefficient is the second virial
coefficientB2(T;L). The Boyle temperatureTB is the tem-
perature at whichB2 vanishes—i.e.,B2(TB ,L)50. Since
this condition is met when the monomer–monomer repulsion
and attraction cancel, one expects thatTB.Tu .

Finally, upon lowering the temperature at a finite poly-
mer concentration, the polymer solution is found to separate
into polymer-poor and polymer-rich phases below a critical
temperatureTc . Within Flory–Huggins mean-field theoryTc

is found to coincide withTB within corrections of order

1/AL. Thus a polymer solution is characterized by three tem-
peraturesTu , TB , and Tc , of which the first is a single-
polymer property, defined in theL→` limit. For any given
L, it is believed thatTB(L).Tu.Tc(L),3,4 but in the scaling
limit L→`, TB5Tc5Tu . In fact, when simulating simple
models of nonideal polymers, probably the most accurate
estimate forTu in the scaling limit is obtained by extrapolat-
ing results forTB(L) to 1/L505. In this paper the opera-
tional definition ofTu will be Tu5TB for sufficiently long
chains (L>500).

For a finiteL, there is a ‘‘u solvent regime’’ of tempera-
tures aroundTu , where the polymer behavior most re-
sembles that predicted for theta polymers. The longer the
polymer, the sharper the transition between ‘‘u solvent’’ and
‘‘good solvent’’ regimes.1,2,5A typical phase diagram for so-
lutions of polymers of finite length is presented in Fig. 1.

In the low-concentration limit, the physical properties of
interacting polymers in solution closely resemble those of
ideal polymers with the sameRg . For good solvents, how-
ever, important deviations from ideal behavior rapidly set in
for increasing concentration, even in the dilute regime; see,
e.g., Ref. 6. On the other hand, the fact thatB2(T,L).0 for
T nearTu suggests that in theu regime the osmotic pressure
P will follow van t’Hoff’s law

bP.
c

L
~1!

for a larger concentration range than is found for polymers in
good solvent. Nevertheless, as concentration is increased fur-
ther, the effect of higher-order virial coefficients will even-
tually kick in, leading to deviations from the simple van
t’Hoff behavior. Similar differences with ideal-polymer be-
havior should also be observable for interfacial properties
such as the adsorption or surface tension near a hard nonad-
sorbing wall.

While much theoretical and numerical work on simple
models of interacting polymer solutions has been devoted to
behavior for athermal conditions or atT5Tu ~see, e.g., Ref.
7!, less is known about how properties of polymer solutions
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vary with temperature and concentration in the intermediate
regime (̀ .T*Tu).

In the present paper we present Monte Carlo~MC! data
for the bulk and interfacial properties of dilute and semidi-
lute polymer solutions for the same model as used in Ref. 5,
over a range of temperatures between the athermal~high-
temperature! limit and Tu . The main objective is a system-
atic investigation of polymer solution properties over a wide
range of concentrations, to determine how equilibrium prop-
erties like the osmotic pressure, the adsorption near a wall,
the surface tension, and the polymer-induced depletion po-
tential between two walls vary as thermal conditions change
from the good solvent to theu regime. In particular, we are
examining the important problem of how, as their concentra-
tion increases, the behavior of polymers inu solvent differs
from that of ideal~noninteracting! polymers.

The paper is organized as follows. The polymer lattice
model and the computational methodology are introduced in
Sec. II. Results for the osmotic equation of state will be
presented and discussed in Sec. III. We shall next turn our
attention to monomer density profiles near a nonadsorbing
wall as well as the polymer–wall surface tension as a func-
tion of temperature and concentration~Secs. IV and V!. The
polymer-induced depletion potential between two walls will
be discussed in Sec. VI, and concluding remarks will be
made in Sec. VII.

II. MODEL AND SIMULATION METHODOLOGY

A. Lattice model of polymer solutions

A familiar coarse-grained representation of linear poly-
mers in a solvent, which captures the essential physical fea-
tures, is a self-avoiding walk~SAW! lattice polymer, where
each lattice site can be occupied by at most one monomer~or

polymer segment! to account for excluded volume and where
pairs of nonsequential monomers of nearest-neighbor~NN!
sites experience an attractive energy2be. The parametere
accounts for the difference between solvent–solvent,
solvent–monomer, and monomer–monomer interactions and
includes both energetic and entropic components.1,2 As the
dimensionless ratiobe5e/kBT increases from zero~corre-
sponding to the athermal solvent limit! to larger values, the
quality of the solvent decreases; i.e., effective monomer–
monomer attractions become increasingly important, so that
the polymer coils tend to shrink until theu regime is reached.
Upon further cooling at finite concentrations, phase separa-
tion sets in at someT,Tu ; see, e.g., Fig. 1.

In this paper we consider polymer chains made up ofL
monomers on a simple cubic lattice ofM sites~coordination
numberz56), with periodic boundary conditions. IfN poly-
mers reside on that lattice, the polymer concentration isr
5N/M , while the monomer concentration isc5NL/M .
Here Rg;Ln ~with n50.59 in good solvent andn5 1

2 in u
solvent! is the radius of gyration of a polymer coil, and the
overlap concentration is defined as 1/r* 5 4

3pRg
3, whereRg ,

which depends onbe, will conventionally be chosen to be
the radius of gyration in the infinite dilution limit (r→0).
r* separates the dilute regime of the polymer solution
(r/r* ,1) from the semidilute regime (r/r* .1).

In the scaling limit (L→`), the properties of a polymer
solution in the dilute and semidilute regimes depend only on
r/r* andRg , and are independent of the monomer concen-
tration c ~Refs. 1 and 2!. In other words, simulations with
different c but the samer/r* should give equivalent results
when length is expressed in units ofRg . This requires that
simulations be carried out with sufficiently long polymers so
that the monomer concentrationc!1. Under good solvent
conditions,Rg'0.4L0.59 for polymers on a simple cubic lat-
tice, so that

c* 5Lr* '
4

L0.77, ~2!

whereas inu solvent,Rg'0.55L1/2 ~Ref. 5!, and so

c* '
1.4

L0.5. ~3!

Most of the subsequent MC simulations have been carried
out for L5500 polymers, such thatc* .0.027 under good
solvent conditions, whilec* .0.06 in u solvent. In order to
ensure thatc,0.25 in all simulations, the semidilute regime
which could be explored was hence restricted tor/r* ,10 in
good solvent andr/r* ,4 in u solvent. For higher concen-
trations, thec dependence of the results would no longer be
negligible and nonuniversal effects would become important,
depending on the property under consideration. For this rea-
son, much smaller polymers—say,L5100—could not be
used to study the semidilute regime.

The previous extensive MC study by Grassberger and
Hegger5 determinedTB as a function ofL for a model iden-
tical to the one used here. They found that forL5500, the
Boyle temperatureTB gavebe50.265, the value which we
shall use throughout the discussion in this paper as a reason-
able estimate for the theta-temperature.8

FIG. 1. Schematic phase diagram of a polymer solution as a function of
temperatureT and monomer concentrationc, for a finite lengthL. HereRg

decreases with decreasingT so that for good solvents, the monomer concen-
tration at which the dilute regime crosses over to the semidilute regime
increases. AsT is lowered further, there is also a crossover to the ‘‘u re-
gime,’’ denoted schematically by the shaded region. In the limitL→`, TB

and Tc both approachTu , so that the size of the ‘‘u regime’’ decreases.
Furthermore, the monomer concentration at the crossover between the dilute
and semidilute regimes, as well as that of the critical point, both tend to zero
for infinite L.
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B. Monte Carlo simulation methodology

We used four different types of moves to sample con-
figuration space: The pivot algorithm attempts to rotate part
of the polymer around a randomly chosen segment. Transla-
tions move the whole polymer through space, and reptations
remove a segment at one end of the polymer and attempt to
regrow it at the other end. Since translation and pivot rapidly
become less efficient for increasing polymer concentration,
we also used configurational bias Monte Carlo~CBMC!
moves.9 These are also very effective at lower temperatures,
since the attraction between polymers reduces the accepted
number of pivot and translation moves.10

Simulations were carried out in a box of size 1603100
3100 for polymers of lengthL5500. For calculations of
radii of gyration and other bulk properties, periodic boundary
conditions were used in all directions, whereas for surface
properties calculations, hard walls were placed at 0 and 160
along thex axis. Simulations extended over typically 106

MC moves per monomer, and statistical error bars are nor-
mally expected to be smaller than the symbols on the graphs.
The osmotic pressures were calculated using the method of
Dickman.11 An external repulsive potentialew that acts on
monomers next to the wall is introduced and varied such that
the parameter 0<l5e2ew /kBT<1. l50 prevents any par-
ticles from being adjacent to the wall, and the varying wall
hardness allows the osmotic pressurebP to be calculated
from the integral

bP~r!5E
0

1 dl

l
rw~l!, ~4!

where rw(l) is the site occupation fraction of monomers
right next to the wall. We performed five simulations at dif-
ferentl values, chosen from a standard Gauss–Legendre dis-
tribution, to carry out the integral above. By using two walls
of varying hardness, the statistics is enhanced over using a
single wall. Adding repulsive walls increases the bulk den-
sity at the center of the simulation cell, an effect which be-
comes more pronounced for smaller boxes. ThusN/V should
not be taken as the bulk density. Instead, we have determined
the bulk density by averaging over the region, near the center
of the box, where the influence of the two depletion layers
has completely decayed.12

As a first application of the MC code, we have computed
the radius of gyration of an isolated polymer for lengthsL
5100– 5000 and extracted an exponentRg;Ln, shown in
Fig. 2. For higher temperatures,n50.588 within error bars,
as expected for the good solvent regime, but forbe50.2 the
exponent n appears to deviate slightly, and we findn
50.57060.003. In the limitL→`, this scaling should be
independent of temperature, as long asT.Tu . However,
here we observe some rounding, most likely due to finite-
length crossover effects. The precise temperature at which
u-type scaling behavior ofRg sets in is dependent on length.
The longer the polymer, the smaller the range of tempera-
tures over which the transition from the good solvent to theu
regime occurs.5,13 Note also that for a givenL, the Rg for,
e.g.,be50.1 is smaller thanRg for be50. Nevertheless, the
scaling with length,Rg;L0.59, is still the same for those two

temperatures; i.e., the polymers are still in the good solvent
regime. Thus the effect of lowering the temperature is simply
to renormalize the effective step length.

For T5TB , with TB for each length taken from Ref. 5,
we findn50.49860.008, as expected for theu regime.14 As
the temperature is lowered further,n continues to decrease,
and for low enoughT the polymer should collapse to a com-
pact globule state wheren5 1

3. The beginning of this trend is
evident in the plot forbe50.285. The larger error bars re-
flect the more pronounced finite-L effects expected at this
temperature. For short polymers the transition from extended
to collapsed states occurs over a broad range of temperatures,
whereas for longer polymers the collapse transition is
sharper.5

Rg shrinks ~for fixed L! as the temperature is lowered,
because the excluded volume interactions are partially com-
pensated for by attractive interactions between monomers.
Similarly in the good solvent regime,Rg decreases with den-
sity because the excluded volume interactions are screened
by overlapping polymer coils. This decrease follows a scal-
ing law Rg;r0.125 ~Refs. 1, 2! once the semidilute regime is
well developed.15 At the u temperature, on the other hand,
chain statistics are nearly ideal on all length scales and
concentrations,2 so thatRg should be nearly independent of
concentration.16 For even lower temperaturesTB.T.Tc ,
the screening of attractive interactions now implies thatRg

should increase with concentration. These trends are indeed
observed in our MC simulations, as illustrated in Fig. 3 for
L5500 polymers.

III. EQUATION OF STATE IN THE DILUTE
AND SEMIDILUTE REGIMES

The thermodynamic property which is most readily ex-
tracted from the simulations is the internal energy of polymer
solutions, which is simplyU52N̄ce, whereN̄c is the aver-
age number of nearest-neighbor ‘‘contacts’’ between noncon-
nected monomers. The energy per polymer isU/N5
2eLn̄c , where n̄c is the average number of nonconnected

FIG. 2. Effective exponentsn, extracted from simulations with different
lengths L, as a function ofbe. Note that the value presented atbe
50.256, corresponding toTB for L5500, was calculated at slightly different
temperatures, corresponding toTB , for each polymer length.
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nearest neighbors around a monomer. Within a simple mean-
field picture, n̄c is expected to increase linearly with the
polymer concentration. Such linear behavior is indeed ob-
served in Fig. 4 foru conditions. At higher temperatures,
there is a significant downward curvature onU(r), while
below TB , but aboveTc , U(r) curves upward.

The osmotic equation of state~EOS! Z5P(r)/(rkBT)
was calculated using Dickman’s method11 described in the
previous section. The MC results forZ as a function ofr/r* ,
for various temperatures, are plotted in Figs. 5 and 6 on
linear and logarithmic scales. As expected,Z increases with
r/r* and decreases with temperature.17 Since theu solvent
regime is defined byT'TB , the EOS is expected to be very
flat at low polymer concentrations sinceTB is defined as the
temperature at which the second virial coefficientB2(T,L)
vanishes in the virial expansion:1,2

Z5
bP

r
511B2c1B3c21O~c3!. ~5!

This is indeed confirmed by the MC results in the dilute
regime, as illustrated in the inset of Fig. 5. Up tor/r* .1, Z
hardly rises withr; i.e., the system behaves like a solution of
ideal polymers. At higher concentrations, however, interac-
tions between monomer triplets come into play, so that, ac-
cording to Eq.~5!, Z is expected to increase liker2, in agree-
ment with a standard scaling argument.1,2 The same scaling
argument predicts that the EOS of polymers in good solvent
scales asZ;r1/(3n21);r1.3; the exponent 1.3 indeed agrees
with the slopes of the double-logarithmic plots ofZ(r)
shown in Fig. 6, forr/r* *1 and 0<be<0.2. The slope of
the u temperature EOS is clearly significantly larger and
compatible with the expected exponent of 2. However, for
theL5500 chains used in the present simulations, the acces-
sible semidilute regime of concentrations is too small to al-

FIG. 3. Rg , calculated forL5500 polymers, decreases with concentration
for polymers in good solvent, is virtually independent of density forT
5TB , and increases with concentration whenT,TB . For each temperature
simulations were performed up to a maximum monomer concentrationc
'0.25, so that the totalr/r* range accessible decreases with temperature.

FIG. 4. MC data for the reduced internal energy per polymerU(r)/e5

2N̄c for L5500 chains, plotted as a function of polymer concentration
r/r* for five different temperatures. Note how the curvature changes with
solvent quality.

FIG. 5. Linear graph of the EOSZ5bP(r)/r as a function of concentra-
tion for different temperatures. Inset: a blowup of the dilute regime high-
lights the differences between near-u solvents and polymers in good solvent.
The former show behavior that mimics that of ideal polymers.

FIG. 6. The EOS as a function of concentration for different temperatures,
plotted on a double-logarithmic scale. In the semidilute regime, the EOS is
consistent with scaling theory, which predictsbP(r)/r;r1.3 for good sol-
vents andbP(r)/r;r2 for u solvents.
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low a fully quantitative estimate~cf. the discussion in Sec.
II !. Since the EOS ofu polymers scales with a larger expo-
nent than that of polymers in good solvent, there will even-
tually be a concentrationr/r* where the EOS of theu poly-
mers becomes larger than that of polymers in good solvent.
This may, at first sight, seem counterintuitive, but it should
be remembered that for a given sizeRg , u polymers are
more compact. By extrapolating our simulation data to larger
r/r* , we expect the crossover betweenu polymers andbe
50 ~SAW! polymers to occur atr/r* *35, which is, in
practice, very hard to achieve both in simulations and
experiments.18 On the other hand, if one starts from a solu-
tion under good solvent conditions—i.e., ‘‘high’’
temperature—at a givenr and lowers the temperature, then
the EOS will decrease monotonically, becauseRg—and with
it the ratior/r* —decreases with temperature.

IV. MONOMER DENSITY PROFILES
NEAR A NONADSORBING WALL

For entropic reasons, polymer solutions will be highly
depleted in the vicinity of a nonadsorbing hard wall. Since
fewer conformations are available to a polymer coil, the wall
will effectively repel the polymers so that their concentration
will drop from the bulk value for distancesz*Rg to a much
lower value at contact.1 The case of polymers in good sol-
vent ~in the SAW limit! has been investigated in much detail
in Ref. 6, where important deviations from ideal polymer
behavior were found even in the dilute regime. Here we con-
tinue these investigations, but for polymers in solvents of
varying quality.

A. Monomer density profiles

Figure 7 compares the present MC results for the re-
duced monomer density profilesc(z)/c as functions of the
distancez from the planar surface in the good solvent (be
50) and u solvent (be50.265) limits for L5500 chains

and several bulk concentrations. The differences between the
two regimes are very significant. In the dilute regime the
density profiles in theu solvent hardly change and are re-
markably close to that of ideal polymers, while the profiles in
good solvent already differ significantly from the latter and
are ‘‘pushed’’ closer toward the hard wall. In the semidilute
regime, on the other hand, the density profiles of polymers in
u solvent differ considerably from that of ideal polymers
~which are independent of concentration! and instead more
closely resemble those of polymers in good solvent, although
the depletion ‘‘hole’’ is systematically wider for the former
compared to that of the latter, an effect also seen in other
simulations.19 This is illustrated in Fig. 8, where the profiles
at three different temperatures are compared at low concen-
tration and in the semidilute regime.

B. Reduced adsorption

The reduced adsorption of polymers near a hard wall is
defined as20

Ĝ~r!52
1

r

]~Vex/A!

]m
5E

0

`

h~z!dz, ~6!

whereVex/A is the surface excess grand potential per unit
areaA, m is the chemical potential, andh(z)5c(z)/c21.
Because of the depletion hole,Ĝ(r) is negative and has the
dimension of length. One could replacec(z) by the distribu-
tion of the center of mass~c.m.! of the polymersrc.m.(z).
Although the reduced profileshc.m.(z)5rc.m.(z)/r21 would
look different from h(z) ~see, e.g., Fig. 1 of Ref. 6!, the
reduced adsorptions would be identical to those calculated
from the monomer density profiles, due to the conservation
of the number of monomers.

For ideal polymers, the reduced adsorption can be ex-
actly calculated to be15,21

Ĝ id522Rg /Ap'21.1284Rg , ~7!

FIG. 7. Monomer density profilesc(z)/c for polymers near a hard nonad-
sorbing wall. The upper panel shows the density profiles for polymers in
good solvent, while the lower panel is for polymers atT5TB . At these
near-u conditions, the density profiles in the dilute regime are nearly indis-
tinguishable from those of ideal polymers, but important deviations emerge
in the semidilute regime.

FIG. 8. Monomer density profiles as a function of temperature for two
densities. The upper panel is forr/r* '0.14, and the lower panel is for
r/r* '4, well into the semidilute regime. The density profiles at lower
temperatures are more extended when plotted in terms ofz/Rg .
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which is independent of concentration. For polymers in good
solvent, a renormalization group13 ~RG! calculation predicts
that Ĝ(0).21.074Rg for the adsorption in the low-density
limit,22 which is close to, but slightly less negative than, the
ideal result~7!. As the polymer concentration increases, in-
teractions between monomers of nonideal polymers cause
the depletion layer to shrink, as illustrated by the density
profiles shown in Figs. 7 and 8. Thus, in contrast to the case
of ideal polymers, wherec(z)/c and thereforeĜ is indepen-
dent of concentration, for interacting polymers the reduced
adsorptionĜ should become less negative for increasing
polymer concentration. This is indeed what is observed in
Fig. 9, where the variation of the reduced adsorption with
concentration is shown for several temperatures.

1. Adsorption in the dilute regime

In the dilute regime (r/r* &1), there is, once again, a
qualitative difference between polymers inu or good solvent,
as highlighted in the inset of Fig. 9. While the curvature of
the Ĝ(r) curves with concentration is negative in good sol-
vent conditions, it is clearly positive underu conditions and
changes to negative in the semidilute regime. Up tor/r*
.1, the results forĜ remain close to~but above! the ideal
polymer result~7!. Note, however, that the relative deviation
from ideal polymers is more pronounced than for the osmotic
EOS~compare the insets to Figs. 5 and 9!, hinting at a stron-
ger effect of three-particle interactions on the adsorption ofu
polymers.

2. Adsorption in the semidilute regime

In the semidilute regime we expect the adsorption
to be proportional to the correlation lengthj/Rg

;(r/r* )2n/(3n21) ~Refs. 1 and 2!, since this is the only
relevant length scale. Note that the numerical prefactors for
different semidilute correlation lengths vary with the prop-
erty one is attempting to describe; see, e.g. Ref. 23 for a very

useful discussion of this matter. In our previous paper6 we
showed that for polymers in good solvent, the reduced ad-
sorption Ĝ/Rg;(r/r* )20.77 is consistent with this scaling.
Here we present more simulations in the semidilute regime
to confirm this behavior, finding that Ĝ/Rg;
20.4(r/r* )20.77 provides a good fit. Scaling theory consid-
erations also predict thatj/Rg;(r/r* )21 for u solvents.1,2

However, this behavior cannot be reliably extracted from the
current simulations ofĜ, which are not performed for a large
enough range ofr/r* . Furthermore, we expect that for the
higher values ofr/r* sampled here, finite-c effects may al-
ready be coming into play.

V. WALL–POLYMER SURFACE TENSION

The wall–polymer surface tension—i.e., the free-energy
cost of introducing a nonadsorbing hard wall and its associ-
ated depletion layer—can be calculated from the adsorption
and EOS by use of the Gibbs adsorption equation24

gw~r!5
]Vex

]A
52E

0

rS ]P~r8!

]r8 D Ĝ~r8!dr8. ~8!

By performing one integration by parts with respect to den-
sity, Eq. ~8! can also be expressed as

gw~r!52P~r!Ĝ~r!1E
0

r

P~r8!S ]Ĝ~r8!

]r8
D dr8. ~9!

The first term in this equation has an appealing physical
interpretation as the free-energy cost per unit area of creating
a slab cavity of widthĜ(r). For ideal polymers, whereĜ(r)
is independent of concentration, this term is the only one that
contributes, and sogw

id52rĜ id52r2/Ap. Since the EOS
andĜ(r) for interacting polymers in various quality solvents
were calculated in the previous sections, we can now, using
Eq. ~9!, determine the surface tension for different solvent
qualities. Results are shown in Fig. 10. For good solvent
conditions—i.e.,be50—they are, to within simulation er-

FIG. 9. Reduced adsorptionĜ/Rg as a function of concentration for several
temperatures. Inset: blowup of the dilute regime. Note the different curva-
ture at low densities. The values atr/r* 50 are taken from theory to be

Ĝ/Rg51.074~Ref. 22! for the first three temperatures andĜ/Rg52/Ap for
T5TB .

FIG. 10. Wall–polymer surface tension divided by the ideal surface tension
for various solvent qualities, plotted as a function of concentrationr/r* .
Inset: a blowup of the dilute regime highlights the differences between
gw /gw

id for good and theta solvents.
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rors, in near-quantitative agreement with the RG calculations
of Maasen, Eisenriegler, and Bringer.25 In fact, the larger
number of simulation results in the semidilute regime, used
in the present work, lead to even better agreement than that
shown earlier in Ref. 6. We are not aware of theories of
comparable quality for the surface tension of theta polymers.

As discussed earlier for the EOS and the adsorption, we
again find qualitatively different behavior for theT5TB so-
lution in the dilute regime, as highlighted in the inset of Fig.
10. The surface tension for suchu-like solvents resembles
that of ideal polymers much more closely than that of poly-
mers in good solvent. As expected from the related behavior
of the adsorption, the relative deviation from ideal polymer
behavior in the dilute regime is somewhat larger than what
was found for the EOS. Note that the curvesgw /g id cross at
very low r/r* . This follows from the fact that the low-
concentration limit of the surface tension is given by
limr→0 bgw52rĜ, and2Ĝ is smaller for interacting poly-
mers than for ideal oru polymers~see Fig. 9!. At slightly
higher densities, the curves cross becausegw increases more
rapidly with concentration for good solvents than foru sol-
vents.

In the semidilute regime, whereĜ;j;r2n/(3n21) and
P(r);r3n/(3n21), Eq. ~8! simplifies6 to

gw
sd~r!'2

3

2
PĜ;r2n/~3n21!. ~10!

This impliesgw
sd;r1.539 semidilute scaling for polymers in

good solvent andgw
sd;r2 behavior foru solvents, which is

consistent with the results in Fig. 10. Furthermore, this scal-
ing suggests that for large enoughr/r* , the surface tension
curve foru polymers will eventually cross that of polymers
in good solvent. Indeed, Fig. 10 already appears to suggest
this behavior, although some care must be taken in extracting
ther/r* at which crossover occurs, due to the possibility of
finite-c effects foru polymers.18 With these caveats in mind,
our results suggest that the surface tension foru polymers
would be greater than that of interacting polymers when
r/r* >10, which is considerably lower than the predicted
crossing for the EOS and within reach of experiment and
simulations. On the other hand, just as in the case of the
EOS, if one were to lower the temperature of an experimen-
tal polymer solution at a givenr, this would lead to a lower
r/r* , so that a monotonic behavior ofgw with temperature
is expected when following this route.

VI. DEPLETION POTENTIALS BETWEEN TWO WALLS

The depletion potential between two walls or plates in-
duced by a polymer solution is defined as the difference in
free energy between the cases where the plates are at a dis-
tancez or infinitely far apart. The polymer solution between
the plates is taken to be in equilibrium with a much larger
reservoir of pure polymer solution at the same chemical po-
tential. At infinite distance, the free-energy cost of having
two plates is simply twice the cost of making a depletion
layer, while at contact, these two depletion layers are de-
stroyed. Thus, whenz50, the free energy per unit area of
plate is given by

W~0!522gw~r!. ~11!

For smallz virtually no polymer is expected to penetrate
between the plates, which are hence pressed together by the
osmotic pressureP~r!, leading to a linear increase ofW(z)
with z. As discussed in Ref. 26, the simplest approximation
for the depletion potential is to continue this linear form for
largerz:

W~z!5W~0!1P~r!z, z<Dw~r!,

W~z!50, z.Dw~r!, ~12!

where the range is given by

Dw~r!52
W~0!

P~r!
5

2gw~r!

P~r!
. ~13!

We note that this approximation is similar to that adopted by
Joanny, Leibler, and de Gennes who, in their pioneering
paper,27 approximated the force between two plates as con-
stant forx<pj(r) and zero forx.pj(r). This also results
in a linear depletion potential.

In Ref. 26, we showed that this simple theory is virtually
quantitative for polymers in good solvent.28 Furthermore, it
is well known to be quite accurate for ideal polymers as
well.15 Although one could easily generalize the theory to
include the small curvature seen for ideal polymers close to
z5Dw ~Ref. 21!, we ignore these small corrections in the
interest of simplicity. Since this theory is accurate for poly-
mers in good solvent as well as for ideal polymers, we pos-
tulate that the same simple assumptions are valid for other
solvent qualities and use Eq.~12! to calculate the depletion
potentials.

The well depthW(0) follows from Eq. ~11! and is
shown in Fig. 11. The behavior mirrors that of Fig. 10 of
course. From the inset it is clear thatu polymers most closely
resemble ideal polymers in the dilute regime, while impor-
tant deviations are found in the semidilute regime.

In Fig. 12, we plot the rangeDw(r) for a number of
different solvent qualities. In the dilute regime, highlighted
in the inset, the range for the near-u solvent is fairly close to

FIG. 11. The depletion potential at contact is given byW(0)522gw(r).
Inset: a blowup of the dilute regime shows thatu polymers most closely
resemble the ideal polymers.
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that of ideal polymers, whereas for polymers in good solvent
the range decreases markedly in the dilute regime. In the
semidilute regime both good andu solvent regimes show
important deviations from ideal polymer behavior. From
scaling theory we expectDw(r);r20.77 and Dw(r);r21

for the polymers in good andu solvents, respectively.
The results forW(0) andDw(r) can be combined with

Eq. ~12! to determine the full depletion potential between
two plates. An example, forr/r* '1, is shown in Fig. 13.
The depletion potential foru polymers most closely re-
sembles that of ideal polymers. For lowerr/r* we expect an
even closer correspondence.

In the dilute regime, Figs. 11–13 suggest that the deple-
tion potential between two plates, induced byu polymers,
resembles that of ideal polymers. We have recently shown
how to construct depletion potentials between two spheres
from that between two plates26 and found quantitative agree-
ment with direct simulations ofL5500 SAW polymers be-

tween spheres and, also, good results for ideal polymers.
This suggests that the same procedure should work well for
the depletion potential between two spheres induced byu
polymers. Furthermore, since the depletion potentials are the
dominant determinant of depletion-induced phase separation
for Rg /Rc&1 ~Refs. 29 and 30!, we would expect the phase
behavior ofu polymers to closely follow that of ideal poly-
mers, at least for these size ratios. If there are slight devia-
tions, then Fig. 13 suggests that the binodals would shift
toward those of polymers in good solvent. Recent
experiments31 of colloids mixed with polymers in a near-u
solvent indeed show behavior that more closely resembles
that of ideal polymers than that of polymers in good solvent.

VII. CONCLUSIONS

We have performed extensive Monte Carlo simulations
to investigate the bulk and interfacial properties of polymers
in good solvent and polymers in theu regime. For infinite
lengthL, there would be a sharp transition between the be-
havior of polymers in good solvent and those in au solvent.
The simulations were carried out forL5500, so that continu-
ous crossover effects are to be expected.5,13 Working out the
detailed crossover behavior would require many more simu-
lations at differentL. However, in practice, most experimen-
tally investigated polymer solutions do not reach the scaling
regime either. Moreover, we do observe significant qualita-
tive differences betweenu polymers and polymers with
weaker monomer–monomer attraction.

In contrast to polymers in good solvent, solutions of
polymers inu solvent are quite well described by ideal poly-
mer theories throughout the entire dilute regime. This works
best for bulk properties like the EOS and slightly less well
for interfacial properties such as the density profiles, adsorp-
tions, and surface tension. However, as predicted by
theory,1,2 in the semidilute regimeu polymers also begin to
exhibit important deviations from ideal polymers. Our simu-
lations show behavior which is consistent with that predicted
by scaling theories, but the concentration range we were able
to investigate is not wide enough to unambiguously confirm
the expected scaling behavior. We also suggest that, for large
enough concentrations, the values of various properties, in-
cluding the EOS, the adsorption, and the surface tension, will
be larger foru polymers than for polymers in good solvent at
the same reduced concentrationr/r* .

The close agreement between theories for ideal polymers
and our simulations ofu polymers in the dilute regime sug-
gests that the effective depletion pair potentials and associ-
ated phase behavior should also resemble those of ideal poly-
mers, at least in the so-called ‘‘colloid limit,’’ whereRg /Rc

&1.

ACKNOWLEDGMENTS

We thank P. G. Bolhuis and V. Krakoviack for use of
their computer codes and for their help and Andrea Pelissetto
for valuable discussions concerning the scaling limit. C.I.A.
thanks the EPSRC for a quota studentship, and A.A.L. thanks
the Royal Society for their financial support.

FIG. 12. Range of the depletion potentialDw(r), as given by Eq.~13!. In
the dilute regime, highlighted in the inset,u polymers are most similar to
ideal polymers, whereas polymers in good solvent already show fairly
strong deviations: atr/r* 51 the range has dropped by almost a factor of
2 compared to ideal polymers.

FIG. 13. Depletion potentials, calculated via Eq.~12!, for r/r* 50.26 and
r/r* 51.01. This simple theory compares well with direct simulations,
taken from Ref. 26, for good solvents. Foru polymers the depletion poten-
tial resembles that of ideal polymers: atr/r* 50.26 they are virtually indis-
tinguishable; atr/r* 51.01 there are slight differences.
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