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Effect of polymer—polymer interactions on the surface tension
of colloid—polymer mixtures
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The density profile and surface tension for the interface of phase-separated colloid—polymer
mixtures have been studied in the framework of the square gradient approximation for both ideal
and interacting polymers in good solvent. The calculations show that in the presence of polymer—
polymer excluded volume interactions the interfaces have lower widths and surface tensions
compared to the case of ideal polymers. These results are a direct consequence of the shorter range
and smaller depth of the depletion potential between colloidal particles induced by interacting
polymers. ©2003 American Institute of Physic§DOI: 10.1063/1.1621613

I. INTRODUCTION model system for the study of phase transitions in soft
matter®
Colloids are “soft” materials, readily deformable, with By applying theories similar to those used successfully

weak interfaces. This can be easily inferred from the “giantfor atomic and molecular f|1,|io%~.,Vrij,10 and Brader and
atom” picture of colloidal suspensions where, even thoughEvans!! calculated the properties of this fluid—fluid interface
each colloid is made up of thousands of individual mol-for the case of ideal polymers, finding qualitative agreement
ecules, it is treated as a single particle interacting with anwith experiments. We have recently derived a depletion pair
effective potential:? Since the effective interactions are potential valid for interacting polymeré,which captures the
roughly of the same shape as those of atomic fluids, an agtominant effects of polymer—polymer interactions on the
proximate corresponding states principle suggests that thehase diagram$. This success suggests that the same poten-
reduced or dimensionless surface tensions should be similafal can be used to calculate the properties of the fluid—fluid
Near the fluid—fluid transition, the attractive interactions forinterface.
both classes of fluids are typically of ordkgT, but the The main purpose of this paper is to investigate the ef-
colloidal particles have radR; which can be 2 or 3 orders fects of polymer—polymer interactions on the fluid—fluid in-
of magnitude larger than molecules. Thus, the surface tenerface of colloid—polymer mixtures. For that reason, we ap-
sion, which scales ag~kgT/RZ, is expected to be four or ply the same combination of thermodynamic perturbation
more orders of magnitude lower than the values found fotheory* and square-gradient theSrhat was used by Brader
simpler atomic and molecular fluids. Similar approximateand Evang! but with the new potentié‘f instead of the
corresponding states arguments also explain why colloidaAsakura—Oosaw#A0)®’ pair potential, valid only for ideal
crystals are so easily deformable: their elastic constantsiolymers. The differences between our new results, and
which scale askBT/Rg’, are at least 6 orders of magnitude those of Ref. 11, are then mainly due to the effect of
lower than those of simple atomic or molecular crystals. Col-polymer—polymer interactions.
loids are indeed a form of “soft matter.” The use of colloid—colloid depletion pair potentials de-
Surface tension plays an important role in the formationscribes one level of coarse graining. It is also possible to
of interfaces, as well as in phase transition kinetics, nucleeerive a more fundamental two-component picture based on
ation, and spinodal decompositidrits indirect effects are polymer—polymer, polymer—colloid, and colloid—colloid
therefore easily observable, but its low values make direcpair potentials. A number of more recent investigations have
experimental measurements very difficult. Neverthelessused sophisticated two-component density functional theo-
some recent experiments have made significant progress fies (DFT) for the AO model® to uncover a host of interest-
measuring the fluid—fluid interface of colloid—polymer mix- ing interfacial phenomena, including oscillatory density pro-
tures and its surface tensiéniln these systems, adding non- files at the fluid—fluid interface and a series of layering
adsorbing polymers induces attractive depletion pair potentransitions at the fluid—hard-wall interfat®. Computer
tials between the colloids’ which lead to the observed simulations’ have confirmed some of these results. At
phase-transition between a colloid-rigliquid” ) and a present, all these theories are only applicable to the AO
colloid-poor (“gas”) phase, separated by an interface. Be-model, and it is unfortunately not yet clear how to extend
cause the experimental parameters can be easily tuned atitbm to interacting polymertsee, however, Ref. 18For
controlled, colloid—polymer mixtures form an important that reason we restrict ourselves to the simplest square gra-
dient approximation for the interfacial profiles.
3Electronic mail: amjm3@cam.ac.uk Our paper is organized as follows: After briefly review-
YElectronic mail: aa120@cus.cam.ac.uk ing the nature of the depletion potentials and the equilibrium
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phase diagrams in Sec. Il, we describe the implementation giotential approximation becomes increasingly unreliable at
the square gradient approximation in Sec. lll, and present outigh g values, as many-body interactions become more im-
results for the interfacial tension and width in Sec. IV. Sec-portant. However, we have recently shdthat calculations

tion V summarizes our conclusions. based on pair potentials alone remain remarkably accurate up
to g~1. In this paper we use the phase-diagrams calculated

II. ONE-COMPONENT EFEECTIVE DEPLETION in Ref. 13, based on second order perturbation theory, as the

INTERACTIONS basis for our calculations of the properties of the fluid—fluid

interface. We make the implicit assumption that the effective
Hamiltonian used for phase behavior is also appropriate for
describing the interface. This follows from the fact that we
%re working at a contact chemical potential, so that the same
effective potential holds across the density inhomogeneity
occurring at the “free” interfacdsee Ref. 2h

This section briefly describes the colloid—colloid effec-
tive depletion potentials for both ideal and interacting poly-
mers. They are characterized by the polymer radius of gyr
tion Ry, the colloid radiusR;, and the polymer number
densityp,, or equivalently by the size-ratig=Ry/R; and
the reduced polymer densibyp=pp/p;§ , wherep; = %wRS
is the so-called overlap density. In the ideal case, the dephsil-I INTERFACIAL PROPERTIES FROM THE SQUARE
tion interaction between two isolated colloidal spheres at diS'GI.?ADIENT APPROXIMATION

tancer is accurately approximated by a potential of the
Asakura—OosawgAO) form Once phase separation occurs, there are two phases with

3/ 1/ \3 well-defined colloidal bulk densitiespf and p\ for the di-
o Z(U_CJ i E(a_cp)

(1) lute and concentrated colloidal phases, respectivipth
phases are separated by a planar interface where the local

for 2R,<r<2(R.+REM): Viy(r)=0 for r>2(R,+REM). density depends on the distance to the interfaxgez)._A
Here, ocp=(Re+ RS and pl, is the polymer density in a yveII know_n way to treat the free—energy_ cost of ma!qng_an
reservoir in osmotic equilibrium with the full colloid— INterface is given by the square gradient approximation,
polymer mixture'® The range of this potential depends only Where the free energy is expanded to lowest nontrivial order
on the polymer length and the depth is proportional to thé" @ gradient expansion around the homogeneous fluid. The
polymer density. The effective Asakura—Oosawa parameteturface tension and the density profile are then obtained from
RSf is set by the requirement that the insertion free energy of€ integral of the free energy across the interf4te?®

4w
BVig(r)=— 3 PpOcp

one colloid is equal to that of ideal polyméeiit is given % dpc)?
by* Y= J_w W(pc(2)+ & E) dz, 5
13
Rifé): R | 1+ 6_q+3q2 -1/, 2 where ¥(pc(2)) = [(pc(2)) — mepc(2) +P. Here u. and P
\/; are the chemical potential and osmotic pressure of the col-

dloids at coexistence anfi(p.(z)) is the Helmholtz free en-
ergy density of a hypothetical colloid fluid of densjiy(z).
The coefficient of the square gradient terkn,describes the
free-energy penalty for creating an interface. Minimizing this

For interacting polymers, we will use a recently propose
pair potentialt?> which accurately reproduces the depletion
potentials obtained from direct computer simulations

r—2R.\? functionat®?’leads to the following expressions for the den-
Vo(r)=—mRcyu(pp)Ds(pp)| 1— TR (3 sity profile:
s\Pp
dpc\? W
for 2R.<r<2R.+Dg andV4(r)=0 for r>2R.+Dg. Here ﬁ) =— (6)
‘yW(pE,) is the surface tension of the polymer solution near a dz K
single walf! and Ds(p;,) is the range of the potential, given and the surface tension
> —
=2 J kWP ]¥*dpe. 7
- (P} RED v=2] et ere v
Dy(pp)=m——" =, (4)

(py) g Requiring the functional in Eq5) to satisfy linear re-
wherell is the osmotic pressure of the solution of interactingSPONse relates the coefficientto properties of the direct
polymers, which is well understodd. correlation functionc(r) of the homogeneou#uid

The range ofV,4 is independent of density, whereas the kg T (=
range ofV shrinks with increasing density. Furthermore, for K="3 JO ric(r,pc)dr. (8)

a givenp; andRy, the well depth olVj4 is greater than that
of Vg, which implies that ideal polymers induce stronger Note that all these variables depend implicitly on the
depletion potentials than interacting polymésse, e.g., Fig. polymer chemical potentidbr equivalently the polymer res-
2 of Ref. 13 for some explicit examples ervoir density,p[)) of the corresponding coexistence point.
The differences in pair potentials help explain why, for aDue to the factor* in the integrand of expressiai8), the
given g, phase separation occurs at a larger valugypfor  value of x is mainly determined by the behavior ofr) at
interacting polymers than for ideal polymérs’* a differ-  large r, where it is well known that(r)~—aV(r). We
ence that grows with increasing. Of course the pair- therefore follow Ref. 11, and sei(r,p.) to be zero for
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FIG. 1. Phase diagrams of a colloid—polymer mixture for id@shed ) ) . . . . .
lines and interacting polymerssolid lines compared forq=R,/R; FIG. 2 Density profiles of the colloidal _packln_g fractlon for ideal an_d in-
—0.67 (taken from Ref. 18 7, is the colloidal packing fraction ang), the teracting polymers. In both cases, the size ratiq+s1.05 and the relative
reservoir polymer packing fraction. The binodal for interacting polymers is polyn;ﬁr reservorr packing fraction from the critical point isyy(
at a higher, than that of ideal polymers, because the latter are stronger” 7o~ )/ 75" =0.2. Including polymer excluded volume interactions re-
depletants than the former. sults in sharper interfaces.

r<2R;and equal to-BV(r) for r>2R., whereV is given  sjze ratio in Fig. 1, the differences become more pronounced
by Egs.(1) and (3) for ideal and interacting polymers, re- for increasingq,*24 and are finally quite dramatic in the

spectively. Hence E¢8) reduces to so-called protein limit wherg> 13!
T [ It should be noted that, at least within our perturbation
R V(r)rédr. (9)  theory treatment, the gas—liquid binodal obtained for inter-

acting polymers atj=0.34 is metastable with respect to the
This approximation has the further advantage that it cirfluid—solid coexistence. This is not, however, an obstacle to
cumvents the conceptual difficulty of definiegr;p.) inthe  the calculation of surface tensions. Furthermore, in many
coexistence region. Even though the approximationc{o) experimental systems the fluid—solid nucleation rates are
itself may not always be so reliable, we found that the valuesery low, allowing the observation of metastable fluid—fluid
of « still compare well with more sophisticated calculations phase separation.
of ¢(r), because this simple model interpolates between the The free energy densities from perturbation theory were
values at the two coexistence points. Similar conclusionsised in Eqs(6) and(7) to calculate first the density profiles
were reached in a paper studying Lennard-Jones systemsand then the surface tensions for the coexistence points along
where the Percus—Yevick approximation for the low andthe fluid—fluid binodal. Two typical density profiles corre-
high density fluid phases was combined with a lever rule tosponding to ideal and interacting polymers are shown in Fig.

obtainc(r) in the coexistence region. 2 for q=1.05 andA 7,=(77,— ng‘“‘t)/ng“‘tzo.z. All pro-
files obtained using the square gradient theory share approxi-
IV. RESULTS AND DISCUSSION mately the same shape, i.e., a smooth monotonic curve which

goes from the dense to the dilute colloidal phase. Compari-
son between both curves shows that the difference between
In our earlier work!® the free energy densities for the the colloidal packing fractions in the two phases is larger for
effective one-component systeii(,.), were calculated for interacting polymerga consequence of the flatter binodals
various q ratios by second order perturbation theory usingwhereas the interfacial thickness is smaller.
the Barker—Henderson formulatidh.The phase diagrams The interfacial profiles can be characterized by their
were determined by the common tangent construction. Thevidth. The 10-90 width of the interfad®V), defined as the
resulting coexistence curves for ideal and interacting polydistance along the interface over which the colloidal density
mers are plotted in Fig. 1, for size ratip=0.67, as a func- varies from @S+ 0.1(75— 75)) to (nS+0.9(n5— 5%)), is
tion of the colloid packing fractionyc=477pcR§/3 and poly-  plotted in Fig. 3 with respect to the deviation of the polymer
mer reservoir packing fractiom;,=47rp[)Rg/3. The fluid—  reservoir packing fraction from the critical point. As ex-
fluid coexistence lines are at higher values of polymempected, the interface is very diffuse near the critical point,
packing fraction for interacting polymers, which implies that and becomes sharper upon approaching the triple point. The
polymer excluded volume effects reduce the global attractiointerfacial widths increase with increasimg reflecting the
between colloidal particles. But not only is the position of longer ranged attractions. For a given valuegpthe widths
the binodal different, so is its shape. In particular, the binodahre consistently lower for interacting polymers than for ideal
is flatter and the separation between the critical and triplgpolymers.
points is smaller for interacting polymers. This effect is not  The resulting dimensionless surface tensio;aRﬁ(/kBT)
merely an artifact of the pair-potential approximation. Theare shown in Fig. 4 versus the difference in colloidal packing
qualitative difference in shape is also observed when comfractions between both phases for three different size ratios,
paring two-component simulations of ideal and interactingg=0.34, 0.67, and 1.05. For both ideal and interacting poly-
polymer modelg* Although we only show results for one mers, the surface tension vanishes at the critical point, and

A. Phase behavior and interfacial properties
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.FItG' 3-t' The IlO—QC;t;/IvidLh of tgninte;;aez fqr ti.de(a"?ittﬁ SyTbOI$ and FIG. 5. Effective colloid—colloid depletion pair potential induced by inter-
Interacting polymersbiack symbolsvs the deviation of the polymer reser- acting (solid line) and ideal polymergdashed ling for q=0.67 at their

Yr?llr E‘f"r?kmglfr;:(:tr'on ﬂiogl ctihe (I:rlrtr:cal_nriolnt,t_fog=r().g4, 06;‘ an%t:rl{osf'th respective critical points, as a function of the distance between the particle
infel:falcg polymer excluded volume interactions reduces the width o esurfacesx=r—2Rc. Inset: ratio between the parameter for interacting

and ideal polymers at the critical point vs the size ratio

increases withA 7= 75— 7S as expected. These reduced

values are of the same order as those found for simplease of interacting polymers. In this section, we will attempt

liquids® Their absolute values depend only Ba; typical  to rationalize these differences on the basis of the effective

colloid sizes result in values of near the triple point on the pair potentials.

order of uN/m which is much smaller than the values of  Close to the critical point¥(7.) can be approximated

10—100 mN/m found for simple fluids. For a givam., the  as the product of two quadratic potential wells centered

surface tension increases withMoreover, for a giverythe  around the coexistence points

ideal polymer surface tension is always significantly larger c

than that of interacting polymers. U*(g.)~ E( ne— 1) (ne— 15)?, (10)

In view of the mean field nature of the present theory,

the critical exponents are obviously classical, igxA72  where W* =(4wR33)B¥ is dimensionless andC

and Wec A 7. 1. However, the prefactors are expected to be=(1/12)d*¥*/d e, calculated at the critical point. If we

different for ideal and interacting polymer depletants. Theseassume thak is independent op., as we did in the preced-

prefactors are determined in the following section. For ideaing section, then inserting Eq10) into Eq. (7) yields the

polymers similar scaling laws with the reservoir dens;ity following expression for the reduced surface tension:

can also be derived, by exploiting the analogy with inverse Rzy

temperature. For examp’réWgc(A 7p) 1’2.. However, for in- P = 2 ~0.0275/C\w* () (75— 78)3, (11)

teracting polymers such a simple scaling Wﬁb does not kgT

follow, because the effective well-deptiise., the inverse \yhere x* = Bxk/RS. The dependence of* on the polymer

“temperatures) do not scale in a simple way with this vari- reservoir packing fraction is indicated explicitly to remind us

able. that it is not a constant parameter but rather increases as we
move away from the critical point since it depends o{p

B. Connection to the form of the depletion potential throughV(r). The same arguments lead to

The results of the preceding section show that both the K* () _
; s . X X W\ —— (gt — 5% (12
10-90 width, and the interfacial tension, are lower in the C Te™ M)

The values ofW and v* are determined by the param-
. . . etersk* and C. Equation(9) directly relates« to the deple-

044 ° :’;g:z‘; :ZZZ; ;o tion potential, wherea€ is given by the shape of the free
- g=1.05 ideal ‘ energy inside the van der Waals loop. Understanding how the
- 037 —a—g=0.24 interacting s ) depletion potentials govern the interfacial behavior now re-
o, T IR0 interacting A duces to explaining how these two parameters depend on the
&, 927 ——q=1.05 interacting I . potentials.
% 0.1 Figure 5 compares the depletion pair potential for ideal
and interacting polymers at their corresponding critical
0.0 | - . ‘ points wherg=0.67. Even though the depletion potential for

0.0 0.1 0.2 03 04 05 interacting polymers has a larger depth at contact, its range is

L G
e =7, significantly shortened by the polymer excluded volume
FIG. 4. Dimensionless surface tensions for idgehite symbol$ and inter- mteraCtlonSl' The mtegrand in chg), which determines,

. - B 4 - B .
acting polymergblack symbolsas a function ofy-— & for q=0.34, 0.67, multiplies the potential byr~, giving extra weight tp the
and 1.05. longer ranged parts of the potentials. Thus the ratiochf
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[calculated with Eq(3)] to % [calculated with the potential fective one-compc-)nent-descriptié?]ln particular, the two-
of Eq. (1)], is always less than 1, and decreases with increagiomponent theories yield a !aFYQ% distance between the
ing g, as shown in the inset of Fig. 5. It has been recentlycritical point and the triple poin]*® which may have an
shown that the reduced second virial coefficient, which idmportant qualitative and quantitative effect on the interfacial
proportional to the integral of2(exy—BV(r)]-1), is very  behavior. While it would clearly be desirable to have a two-
similar at the critical point for a wide class of attractive component theory of similar accuracy for interacting poly-
potentials® This observation remains true for the two deple-Mers, this is not available at present. However, it is possible
tion potentials, giving further support to our argument that it!0 Use more sophisticated D¥Tapproaches to study the
is the large factor? in the integrand for which is respon- ~ON€-component interacting polymer system, a direction
sible for the differences betweert; and %, . which we are now pursuing. In fact, we have already per-
The value of the other paramete, is not as easy to link formed preliminary calculations using an accurate DFT for
directly to the pair potential. Nevertheless, it can be deterthe HS part, and with the interaction of E@) treated as a
mined numerically from our previous calculations of the Sur_perturbat|on°’. The results for surface tensions and interfacial
face tension. It turns out not to depend stronglyqokve find widths are slightly higher than those from the present treat-
C=85.8-0.5 for ideal andC=76.0+0.3 for interacting ment, but the trends are very similar. This suggests that our

polymers, the small difference perhaps reflecting the fact thafS€ Of the square gradient theory, coupled with our rather
the free energy loop is slightly flatter for interacting poly- SIMPle approximation for(r), as used in Eq(9), is quite
mers. reliable.

Compared to the large changes in the surface tension, the N the longer term, it would be interesting to develop
values ofC are quite similar, so that differences in ths, some approximate density functional for interacting poly-

which scale asy~ Jx*C, arise mainly from. Sincex in- mers using a two-component representation, perhaps along
creases with the range of the potential, i.e., vatithis ex- the lines of Ref. 18, in order to obtain accurate predictions of

plains why, for a given type of depletant, the surface tensiofin€ interfacial properties of free fluid—fluid interfaces, ad-
grows with. It further shows how the main differences in sorption and wetting behavior at hard walls and even surface

v* between ideal and interacting polymers are linked to théensions and density profiles of fluid—solid interfa(_:es.
reduction of the depletion potential range induced by Although the actual values of the surface tensions found

polymer—polymer interactions. Since this effect becomeé"’ithin the square gradient theory may only be accurate to
more important for increasing, we expect the differences about a factor of 2, the differences between ideal and inter-

between the surface tensions induced by ideal and interacti tmg polymers are falrlly large, and follow from a simple
polymers to grow withg as well, and to become more pro- ysical explanation which seems robust. We therefore do

nounced in the protein limi as was recently pointed out by n_ot expect_more sophisticated theories to reverse the trends
Seap334 discussed in this paper. On the other hand, whether or not the

The interfacial width scales a&/~ Jx*/C. Again, dif- more subtle interfacial phenomena fou'nd. for the' two-
ferences inW are dominated by ThusK the negt offect of COMPonent AO modé&it’ will be even qualitatively similar

adding polymer—polymer interactions is to decrease the in]ior Interacting polym_ers remains 1o be seen. Eor exampl_e_, n
terfacial width. the latter case the differences between the triple and critical

These results show that the decrease of the range in tkgag'ms are less pronounced, which may lead to less well-

depletion potential, caused by the polymer interactions, play fined osgllauons in the density profiles. Clearly more
work remains to be done.

the dominant role in determining the differences in the inter- . .
g The square gradient theory does not include the effects

facial properties between the two types of depletants. The

change in the depth of the potential is only a secondary ef9f capillary fluctuations, but these are not expected to be

fect large, as shown in Ref. 11. We can therefore make compari-

In all the arguments above it should be kept in mind thatOns with experiments. Full two-component AO model cal-

our double symmetric parabola approximation of Ed) is ;:#Izt;\tlons :N'th"t] Dt::-F Ieafd to vatlues Of_ thgrs;rface tension
only valid close to the critical point. For coexistence points at are close fo those of recent experim WEVer, our

far from it, the bulk correlation lengtHdefined asé, results suggest that including polymer—polymer interactions
=(2K/(nd,(Pb)/de))1/2 wherep, is the colloidal density will lower the value of the surface tension, leading to less

in the bulk phaskdoes differ between the two phases, im- agreement.
plying that the decay of the profile tails is different between
the liquid and the gas colloidal phaSkStrictly speaking,
more sophisticated theories are needed in order to describe We have used thermodynamic perturbation theory and
the interfacial properties near the triple point. DFT theoriesthe square-gradient approximation to calculate the properties
of the fluid—fluid interface in the two-component AO model of the fluid—fluid interface for mixtures of colloids and inter-
suggest that for ideal polymers, the square gradient approxacting polymers within an effective one-component represen-
mation underestimates the values of the interfacial ten'§ion, tation. We find significant differences compared to the case
and that it misses more subtle effects like oscillatory densityf ideal polymers. The main effect of polymer—polymer ex-
profiles. Part of the difference comes from using more accueluded volume interactions is to reduce the value of the in-
rate DFT'’s, but some also arises from the fact that the twoterfacial tensiony and the interface widttW. This effect
component DFT yields different phase-diagrams than the efoecomes more pronounced as the size-rgtiocreases. It

V. CONCLUSION
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