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Effect of polymer–polymer interactions on the surface tension
of colloid–polymer mixtures

A. Moncho-Jordá,a) B. Rotenberg, and A. A. Louisb)

Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 30 June 2003; accepted 2 September 2003!

The density profile and surface tension for the interface of phase-separated colloid–polymer
mixtures have been studied in the framework of the square gradient approximation for both ideal
and interacting polymers in good solvent. The calculations show that in the presence of polymer–
polymer excluded volume interactions the interfaces have lower widths and surface tensions
compared to the case of ideal polymers. These results are a direct consequence of the shorter range
and smaller depth of the depletion potential between colloidal particles induced by interacting
polymers. © 2003 American Institute of Physics.@DOI: 10.1063/1.1621613#
h
n
g

ol
a
e
a
t
il

fo

s
te
r
fo
te
id
n
e
o

io
cle

e
s
s

x-
-

te
d

e
a

nt

oft

lly

e
ent
air

he
ten-
uid

ef-
n-
ap-
ion
r

and
of

e-
to
on

d
ve

eo-
-
o-
ng

At
AO
nd

gra-

-
um
I. INTRODUCTION

Colloids are ‘‘soft’’ materials, readily deformable, wit
weak interfaces. This can be easily inferred from the ‘‘gia
atom’’ picture of colloidal suspensions where, even thou
each colloid is made up of thousands of individual m
ecules, it is treated as a single particle interacting with
effective potential.1,2 Since the effective interactions ar
roughly of the same shape as those of atomic fluids, an
proximate corresponding states principle suggests that
reduced or dimensionless surface tensions should be sim
Near the fluid–fluid transition, the attractive interactions
both classes of fluids are typically of orderkBT, but the
colloidal particles have radiiRc which can be 2 or 3 order
of magnitude larger than molecules. Thus, the surface
sion, which scales asg;kBT/Rc

2, is expected to be four o
more orders of magnitude lower than the values found
simpler atomic and molecular fluids. Similar approxima
corresponding states arguments also explain why collo
crystals are so easily deformable: their elastic consta
which scale askBT/Rc

3, are at least 6 orders of magnitud
lower than those of simple atomic or molecular crystals. C
loids are indeed a form of ‘‘soft matter.’’

Surface tension plays an important role in the format
of interfaces, as well as in phase transition kinetics, nu
ation, and spinodal decomposition.3 Its indirect effects are
therefore easily observable, but its low values make dir
experimental measurements very difficult. Neverthele
some recent experiments have made significant progres
measuring the fluid–fluid interface of colloid–polymer mi
tures and its surface tension.4,5 In these systems, adding non
adsorbing polymers induces attractive depletion pair po
tials between the colloids,6,7 which lead to the observe
phase-transition between a colloid-rich~‘‘liquid’’ ! and a
colloid-poor ~‘‘gas’’ ! phase, separated by an interface. B
cause the experimental parameters can be easily tuned
controlled, colloid–polymer mixtures form an importa
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model system for the study of phase transitions in s
matter.8

By applying theories similar to those used successfu
for atomic and molecular fluids,9 Vrij, 10 and Brader and
Evans,11 calculated the properties of this fluid–fluid interfac
for the case of ideal polymers, finding qualitative agreem
with experiments. We have recently derived a depletion p
potential valid for interacting polymers,12 which captures the
dominant effects of polymer–polymer interactions on t
phase diagrams.13 This success suggests that the same po
tial can be used to calculate the properties of the fluid–fl
interface.

The main purpose of this paper is to investigate the
fects of polymer–polymer interactions on the fluid–fluid i
terface of colloid–polymer mixtures. For that reason, we
ply the same combination of thermodynamic perturbat
theory14 and square-gradient theory9 that was used by Brade
and Evans,11 but with the new potential12 instead of the
Asakura–Oosawa~AO!6,7 pair potential, valid only for ideal
polymers. The differences between our new results,
those of Ref. 11, are then mainly due to the effect
polymer–polymer interactions.

The use of colloid–colloid depletion pair potentials d
scribes one level of coarse graining. It is also possible
derive a more fundamental two-component picture based
polymer–polymer, polymer–colloid, and colloid–colloi
pair potentials. A number of more recent investigations ha
used sophisticated two-component density functional th
ries ~DFT! for the AO model15 to uncover a host of interest
ing interfacial phenomena, including oscillatory density pr
files at the fluid–fluid interface and a series of layeri
transitions at the fluid–hard-wall interface.16 Computer
simulations17 have confirmed some of these results.
present, all these theories are only applicable to the
model, and it is unfortunately not yet clear how to exte
them to interacting polymers~see, however, Ref. 18!. For
that reason we restrict ourselves to the simplest square
dient approximation for the interfacial profiles.

Our paper is organized as follows: After briefly review
ing the nature of the depletion potentials and the equilibri
7 © 2003 American Institute of Physics
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phase diagrams in Sec. II, we describe the implementatio
the square gradient approximation in Sec. III, and present
results for the interfacial tension and width in Sec. IV. Se
tion V summarizes our conclusions.

II. ONE-COMPONENT EFFECTIVE DEPLETION
INTERACTIONS

This section briefly describes the colloid–colloid effe
tive depletion potentials for both ideal and interacting po
mers. They are characterized by the polymer radius of g
tion Rg , the colloid radiusRc , and the polymer numbe
densityrp , or equivalently by the size-ratioq5Rg /Rc and
the reduced polymer densityhp5rp /rp* , whererp* 5 4

3pRg
3

is the so-called overlap density. In the ideal case, the de
tion interaction between two isolated colloidal spheres at
tance r is accurately approximated by a potential of t
Asakura–Oosawa~AO! form

bVid~r !52
4p

3
rp

r scp
3 F12

3

4 S r

scp
D1

1

16S r

scp
D 3G ~1!

for 2Rc,r ,2(Rc1RAO
eff ); Vid(r )50 for r .2(Rc1RAO

eff ).
Here, scp5(Rc1RAO

eff ) and rp
r is the polymer density in a

reservoir in osmotic equilibrium with the full colloid–
polymer mixture.19 The range of this potential depends on
on the polymer length and the depth is proportional to
polymer density. The effective Asakura–Oosawa param
RAO

eff is set by the requirement that the insertion free energ
one colloid is equal to that of ideal polymers;20 it is given
by21

RAO
eff 5RcF S 11

6q

Ap
13q2D 1/3

21G . ~2!

For interacting polymers, we will use a recently propos
pair potential,12 which accurately reproduces the depleti
potentials obtained from direct computer simulations

Vs~r !52pRcgw~rp
r !Ds~rp

r !S 12
r 22Rc

Ds~rp
r !
D 2

~3!

for 2Rc,r ,2Rc1Ds andVs(r )50 for r .2Rc1Ds . Here
gw(rp

r ) is the surface tension of the polymer solution nea
single wall21 andDs(rp

r ) is the range of the potential, give
by

Ds~rp
r !5Ap

gw~rp
r !

P~rp
r !

RAO
eff

Rg
, ~4!

whereP is the osmotic pressure of the solution of interacti
polymers, which is well understood.22

The range ofVid is independent of density, whereas t
range ofVs shrinks with increasing density. Furthermore, f
a givenrp

r andRg , the well depth ofVid is greater than tha
of Vs , which implies that ideal polymers induce strong
depletion potentials than interacting polymers~see, e.g., Fig.
2 of Ref. 13 for some explicit examples!.

The differences in pair potentials help explain why, fo
given q, phase separation occurs at a larger value ofhp for
interacting polymers than for ideal polymers,23,24 a differ-
ence that grows with increasingq. Of course the pair-
Downloaded 04 Dec 2003 to 131.111.116.196. Redistribution subject to 
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potential approximation becomes increasingly unreliable
high q values, as many-body interactions become more
portant. However, we have recently shown13 that calculations
based on pair potentials alone remain remarkably accurat
to q;1. In this paper we use the phase-diagrams calcula
in Ref. 13, based on second order perturbation theory, as
basis for our calculations of the properties of the fluid–flu
interface. We make the implicit assumption that the effect
Hamiltonian used for phase behavior is also appropriate
describing the interface. This follows from the fact that w
are working at a contact chemical potential, so that the sa
effective potential holds across the density inhomogen
occurring at the ‘‘free’’ interface~see Ref. 25!.

III. INTERFACIAL PROPERTIES FROM THE SQUARE
GRADIENT APPROXIMATION

Once phase separation occurs, there are two phases
well-defined colloidal bulk densities (rc

G and rc
L for the di-

lute and concentrated colloidal phases, respectively!. Both
phases are separated by a planar interface where the
density depends on the distance to the interface,rc(z). A
well known way to treat the free-energy cost of making
interface is given by the square gradient approximati
where the free energy is expanded to lowest nontrivial or
in a gradient expansion around the homogeneous fluid.
surface tension and the density profile are then obtained f
the integral of the free energy across the interface9,26–28

g5E
2`

` FC~rc~z!!1kS drc

dz D 2Gdz, ~5!

where C(rc(z))5*(rc(z))2mcrc(z)1P. Here mc and P
are the chemical potential and osmotic pressure of the
loids at coexistence and*(rc(z)) is the Helmholtz free en-
ergy density of a hypothetical colloid fluid of densityrc(z).
The coefficient of the square gradient term,k, describes the
free-energy penalty for creating an interface. Minimizing th
functional10,27 leads to the following expressions for the de
sity profile:

S drc

dz D 2

5
C

k
~6!

and the surface tension

g52E
rc

G

rc
L

@kC#1/2drc . ~7!

Requiring the functional in Eq.~5! to satisfy linear re-
sponse relates the coefficientk to properties of the direc
correlation functionc(r ) of the homogeneousfluid9

k5
pkBT

3 E
0

`

r 4c~r ,rc!dr. ~8!

Note that all these variables depend implicitly on t
polymer chemical potential~or equivalently the polymer res
ervoir density,rp

r ) of the corresponding coexistence poin
Due to the factorr 4 in the integrand of expression~8!, the
value ofk is mainly determined by the behavior ofc(r ) at
large r, where it is well known thatc(r )'2bV(r ). We
therefore follow Ref. 11, and setc(r ,rc) to be zero for
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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r ,2Rc and equal to2bV(r ) for r .2Rc , whereV is given
by Eqs. ~1! and ~3! for ideal and interacting polymers, re
spectively. Hence Eq.~8! reduces to

k'2
p

3 E
2Rc

`

V~r !r 4 dr. ~9!

This approximation has the further advantage that it
cumvents the conceptual difficulty of definingc(r ;rc) in the
coexistence region. Even though the approximation forc(r )
itself may not always be so reliable, we found that the val
of k still compare well with more sophisticated calculatio
of c(r ), because this simple model interpolates between
values at the two coexistence points. Similar conclusi
were reached in a paper studying Lennard-Jones system29

where the Percus–Yevick approximation for the low a
high density fluid phases was combined with a lever rule
obtainc(r ) in the coexistence region.

IV. RESULTS AND DISCUSSION

A. Phase behavior and interfacial properties

In our earlier work,13 the free energy densities for th
effective one-component system,f (rc), were calculated for
various q ratios by second order perturbation theory us
the Barker–Henderson formulation.30 The phase diagram
were determined by the common tangent construction.
resulting coexistence curves for ideal and interacting po
mers are plotted in Fig. 1, for size ratioq50.67, as a func-
tion of the colloid packing fractionhc54prcRc

3/3 and poly-
mer reservoir packing fractionhp

r 54prp
r Rg

3/3. The fluid–
fluid coexistence lines are at higher values of polym
packing fraction for interacting polymers, which implies th
polymer excluded volume effects reduce the global attrac
between colloidal particles. But not only is the position
the binodal different, so is its shape. In particular, the bino
is flatter and the separation between the critical and tr
points is smaller for interacting polymers. This effect is n
merely an artifact of the pair-potential approximation. T
qualitative difference in shape is also observed when c
paring two-component simulations of ideal and interact
polymer models.24 Although we only show results for on

FIG. 1. Phase diagrams of a colloid–polymer mixture for ideal~dashed
lines! and interacting polymers~solid lines! compared for q5Rg /Rc

50.67 ~taken from Ref. 13!. hc is the colloidal packing fraction andhp
r the

reservoir polymer packing fraction. The binodal for interacting polymers
at a higherhp than that of ideal polymers, because the latter are stron
depletants than the former.
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size ratio in Fig. 1, the differences become more pronoun
for increasingq,13,24 and are finally quite dramatic in th
so-called protein limit whereq@1.31

It should be noted that, at least within our perturbati
theory treatment, the gas–liquid binodal obtained for int
acting polymers atq50.34 is metastable with respect to th
fluid–solid coexistence. This is not, however, an obstacle
the calculation of surface tensions. Furthermore, in ma
experimental systems the fluid–solid nucleation rates
very low, allowing the observation of metastable fluid–flu
phase separation.

The free energy densities from perturbation theory w
used in Eqs.~6! and~7! to calculate first the density profile
and then the surface tensions for the coexistence points a
the fluid–fluid binodal. Two typical density profiles corre
sponding to ideal and interacting polymers are shown in F
2 for q51.05 andDhp

r 5(hp
r 2hp

r ,crit)/hp
r ,crit50.2. All pro-

files obtained using the square gradient theory share app
mately the same shape, i.e., a smooth monotonic curve w
goes from the dense to the dilute colloidal phase. Comp
son between both curves shows that the difference betw
the colloidal packing fractions in the two phases is larger
interacting polymers~a consequence of the flatter binodals!,
whereas the interfacial thickness is smaller.

The interfacial profiles can be characterized by th
width. The 10–90 width of the interface~W!, defined as the
distance along the interface over which the colloidal dens
varies from (hc

G10.1(hc
L2hc

G)) to (hc
G10.9(hc

L2hc
G)), is

plotted in Fig. 3 with respect to the deviation of the polym
reservoir packing fraction from the critical point. As ex
pected, the interface is very diffuse near the critical po
and becomes sharper upon approaching the triple point.
interfacial widths increase with increasingq, reflecting the
longer ranged attractions. For a given value ofq, the widths
are consistently lower for interacting polymers than for ide
polymers.

The resulting dimensionless surface tensions (gRc
2/kBT)

are shown in Fig. 4 versus the difference in colloidal pack
fractions between both phases for three different size rat
q50.34, 0.67, and 1.05. For both ideal and interacting po
mers, the surface tension vanishes at the critical point,

s
r

FIG. 2. Density profiles of the colloidal packing fraction for ideal and i
teracting polymers. In both cases, the size ratio isq51.05 and the relative
polymer reservoir packing fraction from the critical point is (hp

r

2hp
r ,crit)/hp

r ,crit50.2. Including polymer excluded volume interactions r
sults in sharper interfaces.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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increases withDhc5hc
L2hc

G as expected. These reduce
values are of the same order as those found for sim
liquids.9 Their absolute values depend only onRc ; typical
colloid sizes result in values ofg near the triple point on the
order of mN/m which is much smaller than the values
10–100 mN/m found for simple fluids. For a givenDhc , the
surface tension increases withq. Moreover, for a givenq the
ideal polymer surface tension is always significantly larg
than that of interacting polymers.

In view of the mean field nature of the present theo
the critical exponents are obviously classical, i.e.,g}Dhc

3

and W}Dhc
21. However, the prefactors are expected to

different for ideal and interacting polymer depletants. The
prefactors are determined in the following section. For id
polymers similar scaling laws with the reservoir densityrp

r

can also be derived, by exploiting the analogy with inve
temperature. For example,11 W}(Dhp

r )21/2. However, for in-
teracting polymers such a simple scaling withrp

r does not
follow, because the effective well-depths~i.e., the inverse
‘‘temperatures’’! do not scale in a simple way with this var
able.

B. Connection to the form of the depletion potential

The results of the preceding section show that both
10–90 width, and the interfacial tension, are lower in t

FIG. 3. The 10–90 width of the interface for ideal~white symbols! and
interacting polymers~black symbols! vs the deviation of the polymer rese
voir packing fraction from the critical point, forq50.34, 0.67, and 1.05.
Including polymer excluded volume interactions reduces the width of
interface.

FIG. 4. Dimensionless surface tensions for ideal~white symbols! and inter-
acting polymers~black symbols! as a function ofhc

L2hc
G for q50.34, 0.67,

and 1.05.
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case of interacting polymers. In this section, we will attem
to rationalize these differences on the basis of the effec
pair potentials.

Close to the critical point,C(hc) can be approximated
as the product of two quadratic potential wells cente
around the coexistence points3

C* ~hc!'
C

2
~hc2hc

G!2~hc2hc
L!2, ~10!

where C* 5(4pRc
3/3)bC is dimensionless and C

5(1/12)d4C* /dhc
4, calculated at the critical point. If we

assume thatk is independent ofrc , as we did in the preced
ing section, then inserting Eq.~10! into Eq. ~7! yields the
following expression for the reduced surface tension:

g* 5
Rc

2g

kBT
'0.0275ACAk* ~hp

r !~hc
L2hc

G!3, ~11!

wherek* 5bk/Rc
5. The dependence ofk* on the polymer

reservoir packing fraction is indicated explicitly to remind
that it is not a constant parameter but rather increases a
move away from the critical point since it depends onhp

r

throughV(r ). The same arguments lead to3

W;Ak* ~hp
r !

C
~hc

L2hc
G!21. ~12!

The values ofW and g* are determined by the param
etersk* andC. Equation~9! directly relatesk to the deple-
tion potential, whereasC is given by the shape of the fre
energy inside the van der Waals loop. Understanding how
depletion potentials govern the interfacial behavior now
duces to explaining how these two parameters depend on
potentials.

Figure 5 compares the depletion pair potential for id
and interacting polymers at their corresponding critic
points whenq50.67. Even though the depletion potential f
interacting polymers has a larger depth at contact, its rang
significantly shortened by the polymer excluded volum
interactions.12 The integrand in Eq.~9!, which determinesk,
multiplies the potential byr 4, giving extra weight to the
longer ranged parts of the potentials. Thus the ratio ofk int*

e

FIG. 5. Effective colloid–colloid depletion pair potential induced by inte
acting ~solid line! and ideal polymers~dashed line! for q50.67 at their
respective critical points, as a function of the distance between the par
surfacesx5r 22Rc . Inset: ratio between thek parameter for interacting
and ideal polymers at the critical point vs the size ratioq.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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@calculated with Eq.~3!# to k id* @calculated with the potentia
of Eq. ~1!#, is always less than 1, and decreases with incre
ing q, as shown in the inset of Fig. 5. It has been recen
shown that the reduced second virial coefficient, which
proportional to the integral ofr 2(exp@2bV(r)#21), is very
similar at the critical point for a wide class of attractiv
potentials.32 This observation remains true for the two dep
tion potentials, giving further support to our argument tha
is the large factorr 4 in the integrand fork which is respon-
sible for the differences betweenk id* andk int* .

The value of the other parameter,C, is not as easy to link
directly to the pair potential. Nevertheless, it can be de
mined numerically from our previous calculations of the s
face tension. It turns out not to depend strongly onq. We find
C585.860.5 for ideal andC576.060.3 for interacting
polymers, the small difference perhaps reflecting the fact
the free energy loop is slightly flatter for interacting pol
mers.

Compared to the large changes in the surface tension
values ofC are quite similar, so that differences in theg’s,
which scale asg;Ak* C, arise mainly fromk. Sincek in-
creases with the range of the potential, i.e., withq, this ex-
plains why, for a given type of depletant, the surface tens
grows with q. It further shows how the main differences
g* between ideal and interacting polymers are linked to
reduction of the depletion potential range induced
polymer–polymer interactions. Since this effect becom
more important for increasingq, we expect the difference
between the surface tensions induced by ideal and interac
polymers to grow withq as well, and to become more pro
nounced in the protein limit,31 as was recently pointed out b
Sear.33,34

The interfacial width scales asW;Ak* /C. Again, dif-
ferences inW are dominated byk. Thus, the net effect o
adding polymer–polymer interactions is to decrease the
terfacial width.

These results show that the decrease of the range in
depletion potential, caused by the polymer interactions, p
the dominant role in determining the differences in the int
facial properties between the two types of depletants.
change in the depth of the potential is only a secondary
fect.

In all the arguments above it should be kept in mind t
our double symmetric parabola approximation of Eq.~11! is
only valid close to the critical point. For coexistence poin
far from it, the bulk correlation length@defined asjb

5(2k/(dmc(rb)/drb))1/2, whererb is the colloidal density
in the bulk phase# does differ between the two phases, im
plying that the decay of the profile tails is different betwe
the liquid and the gas colloidal phase.29 Strictly speaking,
more sophisticated theories are needed in order to des
the interfacial properties near the triple point. DFT theor
of the fluid–fluid interface in the two-component AO mod
suggest that for ideal polymers, the square gradient appr
mation underestimates the values of the interfacial tensio16

and that it misses more subtle effects like oscillatory den
profiles. Part of the difference comes from using more ac
rate DFT’s, but some also arises from the fact that the tw
component DFT yields different phase-diagrams than the
Downloaded 04 Dec 2003 to 131.111.116.196. Redistribution subject to 
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fective one-component description.15 In particular, the two-
component theories yield a larger distance between
critical point and the triple point,17,20 which may have an
important qualitative and quantitative effect on the interfac
behavior. While it would clearly be desirable to have a tw
component theory of similar accuracy for interacting po
mers, this is not available at present. However, it is poss
to use more sophisticated DFT35 approaches to study th
one-component interacting polymer system, a direct
which we are now pursuing. In fact, we have already p
formed preliminary calculations using an accurate DFT
the HS part, and with the interaction of Eq.~3! treated as a
perturbation.36 The results for surface tensions and interfac
widths are slightly higher than those from the present tre
ment, but the trends are very similar. This suggests that
use of the square gradient theory, coupled with our rat
simple approximation forc(r ), as used in Eq.~9!, is quite
reliable.

In the longer term, it would be interesting to develo
some approximate density functional for interacting po
mers using a two-component representation, perhaps a
the lines of Ref. 18, in order to obtain accurate predictions
the interfacial properties of free fluid–fluid interfaces, a
sorption and wetting behavior at hard walls and even surf
tensions and density profiles of fluid–solid interfaces.

Although the actual values of the surface tensions fou
within the square gradient theory may only be accurate
about a factor of 2, the differences between ideal and in
acting polymers are fairly large, and follow from a simp
physical explanation which seems robust. We therefore
not expect more sophisticated theories to reverse the tre
discussed in this paper. On the other hand, whether or no
more subtle interfacial phenomena found for the tw
component AO model16,17 will be even qualitatively similar
for interacting polymers remains to be seen. For example
the latter case the differences between the triple and crit
points are less pronounced, which may lead to less w
defined oscillations in the density profiles. Clearly mo
work remains to be done.

The square gradient theory does not include the effe
of capillary fluctuations,9 but these are not expected to b
large, as shown in Ref. 11. We can therefore make comp
sons with experiments. Full two-component AO model c
culations within DFT16 lead to values of the surface tensio
that are close to those of recent experiments.4 However, our
results suggest that including polymer–polymer interactio
will lower the value of the surface tension, leading to le
agreement.

V. CONCLUSION

We have used thermodynamic perturbation theory a
the square-gradient approximation to calculate the prope
of the fluid–fluid interface for mixtures of colloids and inte
acting polymers within an effective one-component repres
tation. We find significant differences compared to the c
of ideal polymers. The main effect of polymer–polymer e
cluded volume interactions is to reduce the value of the
terfacial tensiong and the interface widthW. This effect
becomes more pronounced as the size-ratioq increases. It
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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can be rationalized by the differences in depletion potenti
at the critical point, the range for the interacting polym
case is significantly less than for the ideal case. This ha
pronounced effect on the square gradient prefactork, and
helps explain the differences between the two types of
pletants.
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