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Abstract

We show how to coarse-grain polymers in a good solvent as single particles, interacting
with density-independent or density-dependent interactions. These interactions can be between
the centres of mass, the mid- or end-points of the polymers. We also show how to extend
these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as
soft colloids can greatly speed up the simulation of complex many-polymer systems, including
polymer–colloid mixtures. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Binary mixtures of colloidal particles and non-adsorbing polymers have received
renewed and growing attention recently, in part because they exhibit complex and
interesting structure, phase behaviour, interfacial properties, and rheologyk [1–6], and in
part because they are excellent model systems for the study of large length
and time-scale separations in complex >uids. Problems with bridging length-scales are
immediately apparent in even the simplest models of colloid–polymer mixtures: while
the mesoscopic colloidal particles can be modeled as hard convex bodies, the polymers
are generally treated at the microscopic (Kuhn) segment level. Thus, even though the
average size of the polymer coils may be of the same order of magnitude as that of
the colloids, the number of degrees of freedom needed to model the former may be
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Fig. 1. Schematic picture of our coarse-graining scheme: The polymers in a polymer–colloid mixture are
treated as single entities, on the same footing as the colloidal particles.

several orders of magnitude larger than what is needed for the latter. This naturally
provokes the question: Can the polymers also be modelled as single particles? In fact,
this is exactly what was done by Asakura and Oosawa (AO) who, in their classic
work on colloid–polymer mixtures [7], modelled the polymers as ideal particles with
respect to each other, and as hard-spheres with respect to the colloids. This model is
strictly speaking only valid for non-interacting polymers, or for interacting polymers
in the dilute limit, while many interesting phenomena, such as polymer-induced phase
separation, take place at Inite concentration of interacting polymers. Our ultimate goal,
therefore, is to go well beyond the AO model and describe non-ideal polymers in a
good solvent up to semi-dilute concentrations. We recently extended the AO concept
to take into account polymer–polymer interactions, Irst by rather naively assuming a
Gaussian repulsion between polymers [8] to account for the penetrable nature of poly-
mer coils, and then by carrying out a more sophisticated programme which resulted in
density-dependent [9–11] and density-independent [12] interactions between polymer
coils (Fig. 1).
The next sections will examine these e;ective potentials in more detail.

2. Coarse-graining homogeneous polymer solutions

Polymers made of L segments are characterized by their radius of gyration, Rg ∼
L�, where � ≈ 0:59, i.e., polymers are fractal objects. Much of our understanding of
polymer solutions comes from the scaling arguments pioneered by de Gennes [13].
These arguments suggest that the behaviour of a polymer solution di;ers in the dilute
regime, where the polymer coil density �¡�∗=(43�R

3
g)

−1, from the semi-dilute regime,
where �=�∗�1. Both these regimes presume that the actual monomer concentration c
remains very low. Once c becomes appreciable, one enters the so-called melt regime
which will not be treated here, and for which di;erent kinds of coarse-graining methods
are necessary.
A standard scaling argument suggest that the radius of gyration Rg is the only

relevant lengthscale for the dilute and semi-dilute regimes of polymers in a good solvent
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[13]. This immediately implies that the second-virial coeLcient should scale as B2 ∼
R3
g. If we set x = r=Rg then the second-virial coeLcient is proportional to

B2 ∼ R3
g

∫
{1− exp[− �V (x)]} dx ; (1)

where �V (x) is the interaction between two separate polymers, deIned w.r.t. some yet
to be speciIed coordinate. Since this must hold for all Rg, the interaction �V (r=Rg)
should not depend on the length L for suLciently long L (scaling limit). A more
sophisticated version of this argument was put forward by Grosberg et al. [14], see
also the review by Likos [6] for a historical overview.
To coarse-grain each polymer as a single entity, one must still choose an interaction

centre, which may be the centre of mass (CM), the mid-point, the end-points, or some
average monomer. For the mid- or end-point representation, �V (x) should diverge at
the origin, since the actual segments of two di;erent polymers cannot overlap. For the
CM, we expect a Inite value of �V (x = 0), since it is possible for two polymers to
deform around each other in such a way that their CM coincide without any mutually
avoiding monomers overlapping.

2.1. Density-independent polymer–polymer interactions

In the description of atomic and molecular liquids and solids it is common to
replace the full quantum mechanical treatment of the interactions by a simpliIed e;ec-
tive potential. Well-known examples include the Lennard Jones pair potential and the
Axilrod–Teller three-body potential [15]. Here, we attempt a similar coarse-graining for
polymer solutions and choose the constituents to be single polymers, with a speciIed
interaction centre for each polymer. Then, following for example Refs. [5,6] or more
speciIcally [12], the coarse-grained Helmholtz free energy F of a set of N polymers
with their interaction centres Ixed at the coordinates {ri}, in a volume V , can be
written as the following expansion:

F(N; V; {ri}) = F(0)(N; V ) +
N∑

i1¡i2

w(2)(ri1 ; ri2 ) +
N∑

i1¡i2¡i3

w(3)(ri1 ; ri2 ; ri3 )

+ · · ·+ w(N )(ri1 ; ri2 : : : riN ) ; (2)

where the coordinates of the interaction centres of the polymers, {ri1 ; ri2 : : : rin}, are
expressed in units of Rg, the radius of gyration at zero density. Each term in this
coarse-grained free energy includes an implicit statistical average over all the inter-
nal monomeric degrees of freedom for a Ixed conIguration {ri}. F(0)(N; V ) is the
so-called volume term [6], the contribution to the free energy that is independent of
the conIguration {ri}, and includes the internal free-energy of an isolated polymer. For
a homogeneous solution, translational invariance implies that there is no one-body term
in the expansion. Each subsequent term w(n)(ri1 ; ri2 : : : rin) is deIned as the free energy
of n polymers with their interaction positions at {ri1 ; ri2 : : : rin}, minus the contribu-
tions of all lower order terms. This procedure may in principle be followed to derive
higher and higher order interactions, until, for a system with N polymers, the N th
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Fig. 2. w(2)(r) and r2w(2)(r) for the interaction between two isolated polymers in the CM, end- and mid-point
representations. The end and mid-point potentials diverge at the origin, but the CM representation gives a
Inite value. All three potentials result in the same second virial coeLcient B2 deIned in Eq. (1).

term determines the total coarse-grained free energy. The thermodynamic free energy
of the polymer solution Inally follows from a statistical average over the interaction
coordinates:

�F(N; V ) =−ln
∑
{ri}

exp[− �F(N; V; {ri})] : (3)

But in practice, this approach is not often feasible because the number of n-tuple
coordinates and related complexity of each higher order term increases rapidly with n,
so that the series in Eq. (2) and the full average in Eq. (3) quickly become intractable.
Instead, one hopes to show that the series converges fast enough that only a few
low-order terms are needed to obtain a desired accuracy.
The Irst important term in the series expansion is the pair interaction w(2)(r), which

can be determined by calculating the logarithm of the probability that two polymers
have their interaction centres a distance r apart. Details of our computer simulation tech-
nique are described elsewhere [10–12]. 1 In brief, by simulating L= 500 self-avoiding
walk (SAW) polymers on a cubic lattice, we determined w(2)(r) for three di;erent
interaction centres: the end-points, mid-point, and CM of each polymer, as depicted in
Fig. 2. The end- and mid-point representations diverge at the origin as limr→0 w(2)(r) ∼
ln(r=Rg) [6], while the CM representation has a Inite value which we estimate to be
w(2)(0)=1:80±0:05 in the scaling limit L → ∞ [10]. By plotting r2w2(r) we see that
the CM representation has the shortest range, which is one reason why it is easier to
use than the other two representations.
In a similar fashion, the higher order interactions can be calculated from higher order

probability distributions [5,12]. We calculated the relative strength of the many-body
terms up to Ifth order by computer simulations, and to arbitrary order by a scaling

1 In our earlier work [10–12] we used Rg = 16:5 instead of the correct Rg = 16:83 value for the L = 500
SAW polymers. This means a slight adjustment in the values of Rg and in �=�∗ quoted in our papers. For
example, the values quoted for �=�∗ should increase by a factor 1:06.
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theory [12]. The simulations and the scaling theory agree well, and suggest that at
full overlap the nth order many-body term alternates in sign as (−1)n, and decreases
(slowly) in absolute magnitude with increasing n. But, as mentioned before, a descrip-
tion based on three and higher order interactions rapidly becomes too unwieldy to use.
Instead, we show in the next section how to derive a pair potential approach which
includes these higher order (n¿ 2) interactions in an average way.

2.2. Density-dependent polymer–polymer interactions

An alternative coarse-graining approach to the many-body expansion of the previ-
ous section is to Ind pair potentials which reproduce known structural information.
We are aided in this by a theorem which states that at a given density �, there is
a one-to-one mapping between the pair distribution function g(r) and a unique pair
potential v(r; �) that will exactly reproduce the correct pair correlations [16]. We gen-
erate the pair correlations with simulations of SAW polymers, and at each density �,
use the Ornstein–Zernike equations [15], coupled with the hypernetted-chain closure
(HNC) [15], to invert the CM g(r) and Ind v(r; �). While the HNC closure is gener-
ally not accurate enough for inversions in simple liquids, it is nearly exact for the soft
potentials we are investigating here [5,6,17]. Nevertheless, there are a number of sub-
tleties, both in the simulations and in the inversions, which must be carefully examined
[10,11].
Density-dependent e;ective potentials v(r; �), inverted from the g(r) produced by

L= 500 SAW simulations are shown in Fig. 3. The potential changes with increasing
density, but approximately retains the shape found at �= 0. We have recently shown
that these potentials can be very accurately parameterized for �=�∗¡ 2 by sums of
three Gaussians with density-dependent coeLcients [11].
Within the HNC approximation, the density dependence of an e;ective pair potential

that reproduces the true g(r) is given to lowest order in � and the w(n)({ri}) by
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Fig. 3. The e;ective polymer pair potentials v(r; �), derived at di;erent densities from an HNC inversion of
the CM pair distribution functions g(r) of L = 500 SAW polymer coils (from Ref. [12]).
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Fig. 4. EOS for polymers in good solvent. Direct results and the EOS arising from the e;ective potentials
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van der Hoef and Madden (see e.g. Ref. [18])

v(r12; �) = w(2)(r12)− �
∫
(e−�w(3)(r12 ;r13 ;r23) − 1)g(r13; �)g(r23; �) dr3 : (4)

We found that this expression describes the density dependence quite well for �=�∗¡ 1,
and even works qualitatively for higher densities, where we expect higher order � and
w(n)({ri}) e;ects to become signiIcant [12]. This demonstrates the connection between
the density-independent and density-dependent approaches, showing explicitly that the
density dependence in the e;ective pair-potentials v(r; �) arises from the many-body
interactions.
One advantage of the structure-based route to the potentials is that one can use

the compressibility equation [15] to derive the equation of state (EOS) from the pair
correlations. We have done this for both L = 500 and 2000 SAW simulations. We
directly measured the EOS and compared this to the EOS derived from the e;ective
potentials through the compressibility equation [10,11]. The two routes are compared
in Fig. 4, where the agreement is shown to be excellent.
All three e;ective potentials shown in Fig. 2 result in “mean-Ield >uids” [5,6,17], so

named because the EOS takes on the mean-Ield form ��=� ∼ 1 + 1
2�v̂(k = 0) at high

enough densities. Here v̂(k) is the Fourier transform (FT) of the potential. This implies
that if we only use the �=0 (Fig. 5) potential, then the EOS at higher density would
scale as ��=� ∼ � instead of the correct � ∼ �1:3 scaling found for the semi-dilute
regime [13]. It is therefore the many-body interactions, expressed through the density
dependence of v(r; �), which cause the EOS to be super-linear.
We add a caveat here about the route to thermodynamics with density-dependent

potentials. The potentials derived here can be used to derive the correct thermodynamics
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Fig. 5. (a) CM–CM interaction for polymers in a poor solvent, modeled by L = 100 SAW polymers on
a cubic lattice with nearest neighbour attractions of strength −��. (b) CM–CM interaction for mixtures of
di;erent length SAW polymers.

through the compressibility route. Di;erent (but related) density-dependent potentials,
which do not reproduce the correct structure, would be needed to derive the correct
thermodynamics through the virial route [18]. In other words, there is no unique density-
dependent pair potential: when specifying such a potential, one must also specify which
route to thermodynamics should be used [19].

3. Polymers near walls and spheres

Polymers form a depletion layer near a hard non-adsorbing wall because the num-
ber of possible conformations is restricted there. This is illustrated in Fig. 6 for the
CM and for a monomer representation near a planar wall. We have used an inversion
method similar to that used in the previous sections to derive e;ective wall–polymer
potentials for interacting polymers near walls and spheres [9–11]. These potentials
are constrained to give the correct density proIle �(r) which in turn determines the
adsorption �. One can show, for example, that the surface tension is completely
determined if one knows the EOS and � as a function of � [20]. Our e;ective polymer–
polymer pair potentials correctly determine the EOS, while the wall–polymer potentials
correctly determine �, implying that our formulation will reproduce the correct surface
thermodynamics.
We show this adsorption �=� in Fig. 7, together with a simple It constrained to

give the correct scaling �=� ≈ �(�) ∼ �−0:77 in the semi-dilute regime. Note that the
largest relative change in the adsorption is actually in the dilute regime, suggesting
that even there descriptions based on the low-density or non-interacting polymer limit
rapidly become inadequate.



258 A.A. Louis et al. / Physica A 306 (2002) 251–261

0      1    2 
z/Rg

−1

−0.5

0

0.5

h(
z)

ρ/ρ∗  = 0.0
ρ/ρ∗  = 0.71
ρ/ρ∗  = 1.36
ρ/ρ∗  = 2.65
ρ/ρ∗  = 6.46

0      1  
z/R g

−1

−0.5

0

0.5

h m
(z

)

(a) (b)

3 32

Fig. 6. (a) The wall-polymer CM proIle h(z) = �(z)=� − 1 for L = 500 SAW polymers at di;erent bulk
concentrations. (b) The wall–polymer monomer proIle hm(z) for the same bulk concentrations. Both repre-
sentations result, by deInition, in the same relative adsorptions �=�. The straight lines in (b) are a It to the
simple form hm(z) = tanh2(−z�=�(�))− 1 [13].

0   2     4      6        8 10
ρ/ρ∗

−1.5

−1

−0.5

0

Γ/
ρ

L=500 SAW simulations
analytic fit to data
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are direct simulations and the line denotes the simple It with the correct scaling behaviour, given by
�=� =−1:074Rg(1 + 7:63�=�∗ + 14:56(�=�∗)3)−(0:2565).

4. Connection with scaling theory

Most successful theories of polymers start from a monomer-based description and
use scaling or RG approaches to derive properties of polymer solutions [13]. How
does our CM-based description compare with these scaling approaches? For example,
in the semi-dilute regime, scaling theories predict that the important length-scale is
the correlation length �(�), which decreases with increasing density as �(�) ∼ �−0:77.
It is not a priori clear how this lengthscale enters into the g(r) or the v(r) in our
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description of homogeneous polymer solutions. The EOS scales as ��=� ∼ �−3=� in
the semi-dilute regime, a behaviour which is reproduced by our description through
the compressibility equation. Since these potentials result in “mean-Ield >uids”, this
suggests that

∫
dr r2v(r; �) ∼ �−3=�2 in the semi-dilute regime. For inhomogeneous

systems in the semi-dilute regime, � enters more directly through the density proIles
shown in Fig. 6, but again the direct connection to the potentials is more opaque. So
the exact connection with the scaling theory still remains to be worked out. We expect
our approach to be most robust in the dilute regime and into the crossover region of
the semi-dilute regime. Luckily this is also where much of the interesting physics of
the colloid–polymer systems lies. How well our “soft colloids” approach will work
deep into the semi-dilute regime still remains to be established.

5. Extensions to poor solvents and mixtures

The considerations in the previous sections focused on equal length polymers in a
good solvent, where the temperature plays no role. However, the techniques used for
polymers in a good solvent should still apply to other types of polymers solutions.

5.1. Poor solvents

We Irst examine brie>y what happens for polymers in a poor solvent, using as
a model SAW polymers with a nearest neighbour attraction of strength −��. It is
known that as the temperature decreases, there is a temperature Tcol below which
the polymer collapses into a compact globule and loses its fractal nature [13]. The
e;ective potentials will then be fundamentally di;erent of course. But as long as we
stay above this temperature, we expect that the interaction should become less strong
with decreasing temperature, as shown in Fig. 5.

5.2. Mixtures

Renormalization group (RG) calculations for the interaction between the CM of two
polymers of di;ering lengths Rg1 and Rg2 suggest that the interaction strength at full
overlap should weaken with increasing size asymmetry, and that the interaction range

should approximately scale as R12 = 1
2

√
R2
g1 + R2

g2 [21]. We conIrm this behaviour for

simulations of a number of di;erent length SAW polymers at �= 0 in Fig. 5.

5.3. Phase separation?

An interesting prediction is that binary mixtures of Gaussian core particles interact-
ing via the pair potentials V!�(r) = �!� exp{−(r=R!�)2} will phase-separate over broad
ranges of the coupling constant ratio |�12|=√�11�22. Semi-quantitatively correct phase
diagrams follow already from an analytic mean-Ield calculation [17,22], and suggest
that polymers in a good solvent will not phase separate at low densities.
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5.4. Relationship with PRISM

Each time the present coarse-graining methods are applied to a new type of poly-
mer solution, we need a new set of computer simulations at the monomer level
for the parameters of interest. It would be very helpful to Ind other, semi-analytic,
ways of providing input information that are faster and more >exible. One candi-
date would be PRISM [23], an integral equation method which has been applied to
a wide variety of polymeric systems. This requires a way of deriving CM–CM cor-
relations from the monomer-based correlations provided by PRISM. As a Irst step
in this direction, we have derived an approximate relationship which is much more
accurate than earlier, heuristic approaches [24]. This could form the basis for using
PRISM or other monomer-based methods as input to our “polymers as soft colloids”
approach.

6. Conclusions

In summary then, we have shown how to coarse-grain polymers as single “soft
colloids”, with just three degrees of freedom each, interacting via density-independent
pair, triplet, and higher body potentials. These, however, become rapidly intractable.
In parallel, we also derived density-dependent pair potentials which include, in an
average way, the e;ect of the higher n-body interactions. These e;ective pair potentials
exactly reproduce the two-body correlations of the underlying polymer solution, and,
through the compressibility equation, they reproduce the EOS as well. In a similar
way, the e;ective one-body potentials which exactly reproduce the one-body density
proIles near walls and spheres can also be derived. Because these reproduce the correct
adsorptions, the thermodynamics of a polymer solution near a non-adsorbing surfaces
are also correctly reproduced by our formulation.
We also showed how to extend these methods to derive e;ective potentials for

polymers in a poor solvent and for mixtures of di;erent length polymers. We sketched
some ways in which other monomer-based methods such as PRISM could be used as
the source of input to derive our potentials.
At this point one might ask what has been gained, since at each point direct com-

puter simulations were needed as input to derive the potentials. This question brings
us back to the aim stated at the outset: to describe mixtures of many polymers and
many colloids. Here our coarse-graining of polymers as soft colloids does result in
important simpliIcations. For example, we have performed such simulations for mix-
tures of spheres of radius Rc and polymers with sizes ranging from Rg=Rc ≈ 0:3
to Rg=Rc ≈ 1, and determined the polymer induced phase-separation of the colloids
[25]. The e;ective polymer density �=�∗ at the critical point increases with increas-
ing polymer size, but even for the largest polymers it is still in the regime �=�∗6 1,
where we expect our formulation to work best. Simulations with a full polymer model
would be about two orders of magnitude slower. Without coarse-graining the poly-
mers as soft colloids, such a simulation would have been virtually impossible to
perform.
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