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Influence of Polymer-Excluded Volume on the Phase-Behavior of Colloid-Polymer Mixtures
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We determine the depletion-induced phase-behavior of hard-sphere colloids and interacting polymers
by large-scale Monte Carlo simulations using very accurate coarse-graining techniques. A comparison
with standard Asakura-Oosawa model theories and simulations shows that including excluded-volume
interactions between polymers leads to qualitative differences in the phase diagrams. These effects
become increasingly important for larger relative polymer size. Our simulation results agree quanti-
tatively with recent experiments.
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to recent experimental data [3–7]. semidilute regime [19]. The concentration-dependent
Adding a sufficient amount of nonadsorbing polymer
chains to a stable colloidal dispersion can cause a deple-
tion-induced separation of the dispersion into colloid-
rich and colloid-poor phases, a striking effect which
has been extensively investigated experimentally [1–8]
and which has important industrial [9] and biological [10]
implications. The entropy-driven depletion attraction be-
tween colloidal particles can be tuned by varying the
polymer-to-colloid size ratio q � Rg=Rc (where Rg is
the polymer radius of gyration and Rc the radius of the
spherical colloids) and the polymer concentration, thus
providing a unique opportunity of generating rich phase
behavior. A theoretical description of colloid-polymer
mixtures is a challenging statistical mechanical problem
because of the large length scale differences between the
size of the colloids and the polymer segments. The sim-
plest and most widely made assumption is to consider
ideal (noninteracting) polymers obeying Gaussian or ran-
dom walk statistics [11]. A further simplification is pro-
vided by the Asakura-Oosawa (AO) model [12] whereby
polymer coils are treated as mutually penetrable spheres,
which are excluded from a sphere of radius �Rc � Rg�
around each colloid. Gast et al. [13] and Lekkerkerker
et al. [14] used this model to calculate the phase diagrams
of colloid-polymer systems. Computer simulations of
hard-sphere (HS) colloids and ideal lattice polymers
[15] yielded results in good agreement with predictions
based on the simpler AO model. Thus the phase behavior
of mixtures of HS colloids and ideal polymers is well
understood, at least for size ratios q � 1. However, poly-
mers rarely behave as ideal, except perhaps near the �
point [11]. The more general problem involving interact-
ing polymer chains is much more difficult and over half a
century of theoretical work has shown that excluded-
volume interactions between monomers lead to important
qualitative and quantitative differences in the properties
of polymer solutions [11]. This Letter presents the first
large-scale systematic simulations of the phase behavior
of mixtures of colloids and interacting polymers for three
size ratios q and compares the calculated phase diagrams
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Some earlier attempts to account for polymer interac-
tions in colloid-polymer mixtures were based on a
perturbation theory around �-point conditions [16] or
on integral equations [17]. In the present work, the
self-avoiding walk (SAW) model is adopted for the in-
teracting polymers, which is known to be a very good
representation of polymers in good solvent [11]. A full
scale simulation of Nc colloidal hard-sphere particles and
Np polymer chains, each made up of L � 1 monomers or
Kuhn segments, would be a daunting task. However,
large-scale simulations become feasible within a coarse-
grained description of the polymers, whereby the latter
are represented as single particles interacting via an
effective pair potential between their centers of mass
(CM). Such effective pair potentials can be calculated
by tracing out of the individual monomer degrees of
freedom along the ‘‘polymer as soft colloids’’ approach
we have recently put forward [18–21]. This approach was
shown to reproduce, within statistical simulation uncer-
tainties, the correct equation of state of interacting poly-
mer solutions [19,21], as well as the correct one-body free
energy of inserting a single colloid into a polymer solu-
tion, and the related polymer surface tension [22].
Compared to very time-consuming monomer-level sim-
ulations, the coarse-graining method moreover yields
accurate depletion potentials between two plates [19] or
between two colloidal spheres [23] for polymer volume
fractions up to 
p � 4

3�R
3
gNp=V � 2. The success with

the two-colloid problem suggests that the coarse-graining
procedure may be fruitfully extended to the full many-
body problem of the phase behavior of polymer-colloid
mixtures as long as 
p is not much greater than 1 (the
crossover to the semidilute regime).

First, as described in our previous publications, the
effective potentials for the polymer-polymer interaction
were obtained from simulations of a bulk system of self-
avoiding walks at various concentrations. All simulations
were for polymer chains of length L � 500 segments,
with Rg � 16:83 lattice units at zero concentration. This
length is sufficient to show proper scaling behavior in the
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effective interactions vpp�r;
p� were obtained by inver-
sion of the CM radial distribution function g�r� using the
hypernetted chain (HNC) integral equation [19] and were
accurately parametrized by sums of Gaussians [21]. The
concentration-dependent potentials vcp�r;
p� for the
colloid-polymer interaction at each q and 
p were ob-
tained from simulations of a single hard sphere in a
solution of SAW polymers. The CM concentration profile
was inverted by using a two-component version of the
HNC equation, and the resulting vcp�r;
p� was fitted to
an exponential form [21].

With these effective interactions, each polymer is re-
duced to a single effective particle, opening the way to
large-scale simulations of a binary mixture of polymers
and colloids. It is important to note that, in a system with
a finite density of colloids, the polymer concentration
parameter 
p in the effective potentials vpp�r;
p� and
vcp�r;
p� must be chosen to be that in a reservoir of a
pure polymer system in osmotic equilibrium with the
two-component system of interest. In other words, as
discussed in detail by other authors [14,24,25], the effec-
tive interactions should be taken at the chemical potential
�p of the polymers in an osmotic reservoir.

The Gibbs-ensemble Monte Carlo (GEMC) technique
[26,27] is naturally suited for studying fluid-fluid phase
separation. The chemical potential �p was fixed by a
standard grand canonical prescription [28] and the num-
ber of colloidal particles was fixed at Nc � 108, Nc �
150, and Nc � 200 for polymer-colloid size ratios of q �
0:34, q � 0:67, and q � 1:05, respectively. The GEMC
simulations yielded histograms for the polymer and col-
loid densities in both boxes. At chemical potentials above
a critical value, the two boxes show different colloid
densities, corresponding to phase separation.
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FIG. 1 (color online). Phase diagrams in the polymer reservoir c
symbols denote the fluid-fluid and the dashed lines with error bars
solid symbols denote the fluid-fluid phase-lines for the two-compon
and closed symbol for the interacting polymers and AO mode
perturbation theory phase diagrams, with a cross denoting the loc
the free-volume theoretical metastable fluid-fluid binodal.
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Besides fluid-fluid phase separation, colloid crystalli-
zation can also occur in colloid-polymer mixtures. At
zero polymer concentration, fluid-solid coexistence oc-
curs at colloid volume fractions of 
c � 0:494 and 
c �
0:545, as expected for a pure HS system. The effect of the
added polymer is initially to widen the coexistence re-
gion. At very high polymer concentration, a dense colloi-
dal crystal can be in equilibrium with a very dilute
colloidal ‘‘gas’’ (see, e.g., Ref. [29]). Experiments and
previous approximate theoretical work show that if q &

0:3 the fluid-fluid critical point becomes metastable with
respect to the crystallization phase-line. For this reason,
it is important to also calculate the fluid-solid phase-
lines, which was done using Kofke’s Gibbs-Duhem inte-
gration technique [26,30]. Starting with zero polymer
activity at HS fluid-solid coexistence, we performed a
series of N�pPT ensemble simulations, integrating the
Clausius-Clapeyron equation dP=d�p � �Np=�V along
the coexistence line, where �Np and �V are the differ-
ences in the number of polymers and in the volume
between the two phases, respectively.

To compare with ideal polymer theories, full GEMC
simulations were also performed for the AO penetrable
sphere model of polymers [12], with the same numbers of
colloids and size ratios as for the interacting polymer
systems. These simulations should provide an accurate
representation of a true ideal polymer system [15]. For
comparison, we also calculated the phase diagrams
within the free-volume theory of Lekkerkerker et al. [14].

The complete phase diagrams for the ideal and inter-
acting polymer models at all three size ratios are plotted
in Fig. 1, in the polymer reservoir concentration-colloid
volume fraction representation. Although the polymer
chemical potential is the natural control variable in the
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FIG. 2 (color online). Phase diagram in the polymer volume
fraction-colloid volume fraction representation for q � 0:67.
Symbols as in Fig. 1. The large triangular areas denote the
estimates for the triple point: the shaded area corresponds to
the experimental data [3]. The simulated binodal agrees quan-
titatively with the experimental data of Ref. [7].
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FIG. 3 (color online). Fluid-fluid binodals in the polymer
volume fraction-colloid volume fraction plane. Symbols as in
Fig. 1. The crosses indicate the estimated position of the critical
point. Note the qualitative differences in the effect of increas-
ing q on the critical points as indicated by the arrows.
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simulations, the reservoir polymer concentration 
�r�
p ,

directly obtainable from �p through the SAW equation
of state [19,21], is a more suitable variable because this
brings the interacting and noninteracting polymer phase-
lines much closer to each other than a direct comparison
of the chemical potentials would.

For q � 0:34 the fluid-fluid binodal has just become
metastable. This result is consistent with experiments [3]
and close to the prediction of the AO model and other
noninteracting polymer theories [14,15]. The direct AO
model simulations show fairly good agreement with the
interacting polymer simulations and are in good qualita-
tive agreement with the free-volume perturbation theory,
although the latter overestimates the critical colloid vol-
ume fraction 
�cp�

c . Although we did not explicitly cal-
culate the triple point for the two-component AO system,
it is expected to be fairly well located by the simpler free-
volume theory shown in the figure [14,15]. For q � 0:67
and q � 1:05, larger differences are seen between the
interacting polymers and the noninteracting AO model
system. The triple point predicted by the latter moves to
much higher polymer reservoir concentration than that
found for interacting polymers. Whereas the critical point
for interacting polymers stays near 
c � 0:2, the ideal
polymer critical point moves to lower colloid densities, an
effect that was predicted in the literature [31]. Finally, we
point out that since 
�r�

p < 2 , i.e., in the regime where we
previously found good agreement for the two-body prob-
lem, we expect our coarse-graining model to provide a
very accurate representation of the fully interacting poly-
mer-colloid system.

Experiments are usually done at fixed polymer concen-
tration, so that the tie-lines are no longer horizontal. This
representation is shown in Fig. 2 for q � 0:67. Triple
points turn into triangular areas in which three phases
coexist. These have been measured experimentally using
a mixture of latex and polystyrene [3,6]. We compare
the experimental triple point results for q � 0:57 to
the theoretical q � 0:67 diagram. Although the systems
are not entirely equivalent, a much better agreement is
found with the interacting polymer simulations than with
the AO model estimates. The simulations also agree
quantitatively with the fluid-fluid binodal which was
accurately measured for q � 0:677 in recent experiments
on silica particles in toluene [7]. Similar quantitative
agreement (not shown) was also found between
the q � 0:34 simulations and q � 0:377 experimental
binodals [7].

It is also instructive to compare the fluid-fluid binodals
for different size ratios, as done in Fig. 3. For a small size
ratio, the AO and the interacting polymer estimates are
close, as also seen in Fig. 1. This is not surprising, since
we have shown previously that a cancellation of errors in
the AO model leads to fairly good effective pair poten-
tials for small q and 
p [23]. But the simulations for q >
0:34 exhibit qualitatively different behavior: within the
AO model, 
�cp�

c decreases with q, whereas the critical
128302-3
polymer concentration 
�cp�
p does not change much.

Including polymer interactions has the opposite effect:

�cp�

p increases and the colloid density hardly changes.
Recent integral equation calculations [7,17] of the spino-
dal phase-lines also show an increase in the polymer
concentration with increasing q.

The behavior of the critical point is summarized in
Fig. 4, where the predicted trend for the critical colloid
density is shown to agree very well with another set of
experiments [4,5]. We have recently performed direct
simulations for much larger size ratios �q > 5� and found
128302-3
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FIG. 4. The behavior of the critical concentrations as a func-
tion of size ratio q. Left: The interacting polymer predictions
for 
�cp�

c agree with experimentally determined critical con-
centrations. The free-volume theory overestimates 
�cp�

c for a
small size ratio but underestimates it for a large size ratio.
Right: The interacting polymer results for 
�cp�

p are in reason-
able agreement with the experiments of Refs. [3,6] but compare
less favorably to those of Refs. [4,5].
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that the colloid critical point is near the same density as
found here [32]. This suggests that even in the so-called
‘‘protein limit,’’ q ! 1, 
�cp�

c is finite. The situation
for 
�cp�

p is less clear. The present simulations seem to
agree fairly well with the experimental estimates from
Refs. [3,6], although we should stress that the critical
point was not determined accurately. Two other experi-
mental results based on mixtures of silica and poly(di-
methylsiloxane) are also included [4,5]. These studies
determined the critical point accurately, and the colloid
density agrees well with our simulations. However, the
polymer concentrations are twice as large, which might
be due to the highly polydisperse polymers used by these
authors.

In summary, this Letter presents the first large-scale
computer simulations of the full equilibrium phase-
diagram of a binary mixture of colloids and interacting
polymers. These simulations would not have been possible
without using the accurate polymers as soft colloids
coarse-graining approach. Even though the phase separa-
tion happens mainly in the dilute regime of the polymer
solution, we find important qualitative differences with
ideal polymer behavior. In particular, the absolute
polymer concentration 
p at the critical point increases
with increasing q for interacting polymers, while it de-
creases with increasing q for noninteracting polymers.
Similarly, the critical colloid packing fraction 
�cp�

c re-
mains nearly constant for interacting polymers, while it
decreases with increasing q for noninteracting polymers.
We also showed that by including excluded-volume inter-
actions we find quantitative agreement with experiments.
In conclusion then, just as excluded-volume interactions
are known to strongly influence the behavior of polymer
solutions, we find that these interactions have important
qualitative effects on the behavior of polymer-colloid
mixtures.

We thank C. F. Zukoski and S. Ramakrishnan for send-
ing a copy of their data.
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