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ABSTRACT: Polymer chains in colloid-polymer mixtures can be coarse-grained by replacing them with
single soft particles interacting via effective polymer-polymer and polymer-colloid pair potentials. Here
we describe in detail how Ornstein-Zernike inversion techniques, originally developed for atomic and
molecular fluids, can be generalized to complex fluids and used to derive effective potentials from computer
simulations on a microscopic level. In particular, we consider polymer solutions for which we derive
effective potentials between the centers of mass and also between mid-points or end-points from
simulations of self-avoiding walk polymers. In addition, we derive effective potentials for polymers near
a hard wall or a hard sphere. We emphasize the importance of including both structural and
thermodynamic information (through sum rules) from the underlying simulations. In addition, we develop
a simple numerical scheme to optimize the parametrization of the density-dependent polymer-polymer,
polymer-wall, and polymer-sphere potentials for dilute and semidilute polymer densities, thus opening
up the possibility of performing large-scale simulations of colloid-polymer mixtures. The methods
developed here should be applicable to a much wider range effective potentials in complex fluids.

1. Introduction

Binary mixtures of colloidal particles and nonadsorb-
ing polymers have received renewed and growing at-
tention recently, in part because they exhibit complex
and interesting structure, phase behavior, interfacial
properties, and rheology1-11 and in part because they
are excellent model systems for the study of large length
and time scale separations in complex fluids. Problems
with bridging length scales are immediately apparent
in even the simplest models of colloid-polymer mix-
tures: while the mesoscopic colloidal particles can be
modeled as hard convex bodies, the polymers are often
treated at the microscopic (Kuhn) segment level. Thus,
even though the average size of the polymer coils may
be of the same order of magnitude as that of the colloids,
the number of degrees of freedom needed to model the
former may be several orders of magnitude larger than
what is needed for the latter. This naturally provokes
the question: Can the polymers also be modeled as
single composite particles? In fact, this is exactly what
was done by Asakura and Oosawa (AO), who, in their
classic work on colloid-polymer mixtures,12,13 modeled
the polymers as ideal particles with respect to each
other and as hard spheres with respect to the colloids.
This model is strictly speaking only valid for noninter-
acting polymers or for interacting polymers in the dilute
limit, while many interesting phenomena such as
polymer-induced phase separation take place at finite
concentrations of interacting polymers. Our ultimate
goal, therefore, is to go well beyond the AO model and
describe nonideal polymers in a good solvent up to
semidilute densities. We recently extended the AO
concept to take into account polymer-polymer interac-
tions, first by rather naively adding a Gaussian repul-
sion between the polymers14 and then by carrying out
a much more sophisticated program which resulted in

density-dependent polymer-polymer and polymer-wall
pair interactions15,16 or, in a complementary approach,
density-independent many-body interactions.17

In this paper we revisit the route to the density-
dependent pair potentials in much more detail than in
our previous work.15,16 These density-dependent inter-
actions are derived by inverting structural information,
namely the center-of-mass (CM) radial distribution
function g(r) for the polymer-polymer interactions and
the wall-polymer or sphere-polymer CM density pro-
file F(r) for the polymer-wall or polymer-sphere inter-
actions, respectively. We focus here on the considerable
subtleties inherent in these inversions, in particular the
importance of using thermodynamic information or
related sum rules to achieve accurate potentials. Many
of the lessons learned should be valid for a wider set
of effective potentials. As a first example, we derive
effective potentials for polymer solutions based on mid-
point and end-point representations.

We also revisit the problem of deriving effective
potentials for a wall-polymer interaction, again empha-
sizing the subtleties involved in the inversion process.
In addition, we show how to use a method similar to
derive accurate sphere-polymer potentials, a key step
toward large-scale simulations of colloid-polymer mix-
tures. Whereas the integral over the potentials holds
the key to accurate thermodynamics in the homoge-
neous polymer case, here the relative adsorption, de-
fined as the integral over the density profile near a wall
or sphere, is the key to achieving the correct thermo-
dynamics.

We also derive a parametrization scheme for the
potentials used in the homogeneous and the inhomo-
geneous systems. To achieve this, we use a novel Monte
Carlo scheme which should be easily adaptable to a
wider class of effective potentials.

The paper is organized as follows: In section 2 we
repeat the most important aspects of the models and
simulation methods we used. In section 3 we describe
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how to derive polymer-polymer, polymer-wall, and
polymer-sphere effective potentials from self-avoiding
walk (SAW) polymer simulations and discuss the subtle-
ties involved in the inversion procedures. We also derive
other representations of the polymer-polymer potential,
such as the mid-point or end-point representation.
Section 4 contains the fitting procedures we use to
parametrize the density-dependent potentials. We end
with the customary concluding remarks.

2. Simulation Models and Methods

Simple lattice models, such as the self-avoiding walk
(SAW), are widely used to describe flexible, uncharged
polymers in a good solvent. Their popularity stems in
part from the fact that, even though they ignore all
chemical details except excluded volume and polymer
connectivity, these models can still reproduce the scaling
behavior and many other physical properties of ather-
mal polymer solutions.21,22 In addition, because of their
simplicity, these models are ideally suited for highly
efficient numerical simulation algorithms. The SAW
model consists of a cubic lattice of size M on which N
chains of L monomers are placed. Repulsion between
(monomer) segments is built in by allowing only one
segment per lattice site. The monomer concentration is
given by c ) NL/M, while the polymer chain concentra-
tion is given by F ) N/M. The size of the polymers is
determined from the radius of gyration Rg, which, for
an isolated chain, scales as Rg ∼ L0.59.

Solutions of flexible polymers in a good solvent can
be classified as a function of polymer concentration into
the dilute, semidilute, and melt regimes, each with
different scaling behavior. The density or concentration
at which, roughly speaking, the dilute regime crosses
over to the semidilute regime is called the overlap
concentration or density F*, defined as 4/3πF*Rg

3 ) 1,
and corresponding to 1 polymer per unit volume 4/3πRg

3.
In both these regimes, the monomer concentration c ,
1, and the only relevant length scale is Rg. When, upon
increasing the polymer density, the monomer concen-
tration becomes appreciable, the system crosses over to
the so-called melt regime where the monomer size
becomes an additional relevant length scale. Thus, when
modeling the semidilute regime, it is important to take
polymer chains that are long enough, to ensure that c
is still small. The monomer density c* at the overlap
concentration F* scales roughly as c* ≈ 4L-0.8 for SAW
lattice chains (see ref 16), which implies that for
polymers of finite length, there is only a limited semi-
dilute regime. We studied polymers with lengths L )
500 and L ) 2000. For an isolated L ) 500 coil the
radius of gyration40 is Rg ) 16.5 ( 0.02 so that c ) 0.027
at F ) F*, and c ) 0.23 at F/F* ) 8.70, the highest density
we study for this length. For L ) 2000 chains, Rg )
37.45 ( 0.04, so that c ) 0.009 at F ) F*, and c ) 0.064
at F/F* ) 7.04, the highest density studied for L ) 2000
polymers. This suggests that while we do not expect the
L ) 2000 polymers to exhibit any significant corrections
to scaling behavior for the densities studied, the L )
500 polymers may begin to deviate slightly from the true
semidilute regime at the highest densities. We estab-
lished previously that the second virial coefficient for
two L ) 500 polymers is close to the scaling limit.16 This
indicates that for low densities the effective potentials,
obtained by the coarse graining procedure, are very near
the scaling limit where properties only depend on Rg
and not on L.

The SAW simulations were performed by employing
the Monte Carlo pivot algorithm23,24 together with
translational moves. This simple algorithm is sufficient
to sample the configuration space at low concentration.
In the semidilute regime, i.e., for concentrations F > F*,
we use configurational bias Monte Carlo algorithms.25,26

3. Deriving Effective Pair Potentials

The central theme of the coarse graining procedure
advocated here and in previous work15,16 is to replace
each polymer by a single particle, interacting with the
other polymer particles via an effective (pair) potential.
For complex particles like polymers, there is some
freedom in the choice of coordinate for the single
“particle”. We have mainly used the CM, but one could
also use the average monomer, the end-points, or the
mid-point as a monomer-based representation (see for
example the appendix of ref 16 or 27). We therefore
discuss the mid-point and end-point representations in
section 3.2; a more complete analysis is planned for a
future publication.28

3.1. CM-CM Potentials for Homogeneous Poly-
mer Solutions. In the F f 0, or low-density, limit, the
effective potentials can be derived from the logarithm
of probability of overlap of the CM of two polymer
coils.10,17 Calculating this overlap probability involves
integrating over the polymer degrees of freedom by the
Monte Carlo procedures described in section 2. We
sample the configurations of two polymers an infinite
distance apart with the pivot algorithm, and after every
1000 pivot moves we accumulate an overlap probability
histogram by testing for segment overlap as a function
of the CM distance. The effective potential determined
in this manner is approximately Gaussian in shape,
with a range of the order Rg for all lengths. When the
CM’s completely overlap, the potential has a maximum
of v(r)0) ) 1.88 ( 0.01 for the L ) 500 polymers and
v(r)0) ) 1.82 ( 0.02 for the L ) 2000 polymers, which
is very close to the scaling limit estimate v(r)0) ) 1.80
( 0.05.16 (Since all interactions are of entropic origin,
we set â ) 1/kBT ) 1 throughout this paper.) In the
scaling limit the potentials depend only on Rg, so that
the probability for complete overlap of the CM’s of two
polymers will be independent of their length L.

At finite densities there is no longer a simple loga-
rithmic relationship between overlap probabilities and
the effective potentials.10,17 Instead, we use the one-to-
one mapping19,20 between g(r) and v(r) to find, for each
density, the unique effective potential that exactly
reproduces the two-body correlations. To generate
the pair correlations, we performed MC simulations of
L ) 500 polymers on a 240 × 240 × 240 cubic lattice,
for several different number of polymers ranging from
N ) 50 (F/F* ) 0.07) to N ) 6400 (F/F* ) 8.70). For L )
2000 polymers we used a lattice of 500 × 500 × 500
units, and the number of polymers ranged from N )
200 (F/F* ) 0.35) to N ) 4000 (F/F* ) 7.04). During the
simulations we collected the radial distribution func-
tions between the CM of the polymers. We typically
needed on the order of 107 Monte Carlo moves to achieve
sufficient accuracy.

The effective potentials v(r;F) were constructed using
the one-component OZ equation, supplemented by the
hypernetted chain closure,29 which is nearly exact for
the type of potentials we generate.30 The resulting
effective pair interactions are plotted in Figure 1 and
Figure 2 for the L ) 500 and L ) 2000 polymers,
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respectively, and show a clear though surprisingly small
density dependence. This density dependence can be
understood from the effect of the density-independent
many-body interactions17 which, for F/F* e 1, are
dominated by the three-body interactions.

The basic principles of the inversion procedure were
already described in ref 16, but here we want to point
out some important subtleties that must be kept in mind
when performing such inversions.

(1) First of all, it is important to generate accurate
g(r)’s. This is illustrated in Figure 3, where two different
potentials from Figure 1, namely the potential at F ) 0
and the potential at F/F* ) 1.09, were used at the same
density F/F* ) 1.09 to generate the radial distribution

function g(r). These g(r)’s are then compared to the true
SAW g(r) at that density. Even though the potentials
seem quite different (see Figure 1), the differences in
the radial distribution functions are small, implying
that the process which generates the g(r) must be
significantly more accurate than the difference between
the radial distribution functions in Figure 3 if one is to
obtain accurate effective potentials.

(2) Second, because polymers do not have a hard core,
one can achieve much higher number densities than is
normally found for simple fluids.18,19 This also puts extra
demands on the accuracy of the correlation functions,
since at high densities very small errors tend to desta-
bilize the OZ inversion procedure, making convergence
difficult to achieve.

(3) Third, g(r) is only known up to half the simulation
box size, rendering the inversion problem underdeter-
mined. If the potential is known for all r, OZ techniques
can be used to extend g(r) beyond the box size,31 but
when one is trying to find g(r) from simulations with
an unknown v(r), some assumption for the large r
behavior of v(r) must be made. We assume that v(r,F)
) 0 beyond half the box size, but this is not necessarily
obvious at high density, and one needs large simulation
boxes to achieve proper convergence of the effective
potentials. We used boxes with sides of approximately
14Rg. Although it may seem that the potentials have
vanished already at shorter distances, this is still near
the minimum length necessary to ensure that there are
no cutoff effects in the potentials, especially for higher
densities. Note that our new Monte Carlo fitting pro-
cedure, described in section 4, partially helps overcome
this problem.

An effective potential that correctly reproduces pair-
correlations should, in principle, also predict the correct
thermodynamics through the compressibility equation.29

But we stress that correctly determining the equation
of state (EOS) Z ) Π/F (here Π is the polymer osmotic
pressure) or other thermodynamic properties from ef-
fective potentials can also be quite subtle. We illustrate
this in Figure 4 where we compare a typical potential
and its fit to a single Gaussian. Although these poten-
tials do not seem that different, and generate almost
identical radial distribution functions g(r), they result

Figure 1. Effective polymer CM pair potential v(r;F) for L )
500 derived from an OZ-HNC inversion of g(r) for different
densities. The x-axis denotes r/Rg, where Rg is the radius of
gyration of an isolated SAW polymer. Inset: the value of the
effective polymer CM pair potential at r ) 0 as a function of
density F/F*. The maximum of the potential initially increases
before decreasing at high concentration. For clarity, we left
out the lowest densities.

Figure 2. Effective polymer CM pair potential v(r;F) for L )
2000. Inset: a comparison with Figure 1 for F/F* ) 0 (solid
lines) shows that we are very near the scaling limit. This is
similar for finite density, e.g., the effective potential for F/F*
) 1.76; L ) 2000 (dotted line) is very close to the F/F* ) 2.18,
L ) 500 potential (dashed line).

Figure 3. Comparison of g(r)’s generated at density F ) F*
by the low-density potential v(r;F)0) and the higher density
potential v(r;F/F*)2.18) compared to the true g(r) at that
density. Note how small the differences are.
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in pressures which differ by about 10%. The origin of
this difference is clear from the inset, where we plot
r 2v(r;F), which is in fact a better measure of the relevant
differences between the potentials than v(r;F) itself. That
r 2v(r;F) is a better indicator for the accuracy of the
predicted pressure follows from the fact that potentials
such as those shown in Figure 1, 2, or 4 lead to mean-
field fluids,30,32 so named because their equation of state
approximately follows the simple mean-field form:

for a wide range of densities. Here, v̂(0;F) is the k ) 0
component of the Fourier transform of the pair interac-
tion, which for spherical symmetric functions involves
the integral over r 2v(r;F).

Keeping these subtleties in mind, we found very good
agreement between the EOS generated by applying the
compressibility equation to the effective potentials in
Figures 1 and 2 and the EOS of the underlying SAW
polymer solutions. The compressibility was calculated
with the accurate HNC equation. The L ) 2000 results
almost exactly fall onto the L ) 2000 EOS computed
directly by the method of Dickman.33 For F/F* < 5, the
L ) 500 EOS calculated with the effective potentials is
very close to the directly computed one, but at higher
densities some small differences develop. We attribute
these to the difficulties in achieving high accuracy for
the tails of the potentials when the inversions are
performed at these higher densities. We expect the L )
500 EOS to be slightly higher than the L ) 2000 one at
higher F/F* because the monomer density c is higher for
the shorter polymers, which induces L-dependent cor-
rections to the scaling limit at the higher densities. Both
the L ) 500 and the L ) 2000 EOS, where c remains
very small at the densities probed, are slightly higher
than the EOS derived by renormalization group (RG)
calculations.34,22 They approximately follow the correct
Π/F ∼ F1.3 scaling expected for the semidilute regime21

up to the highest densities. In contrast, if one were to

use the v(r;F)0) potential at all densities, the EOS
would be underestimated and would follow mean-field
fluid behavior with the incorrect Π/F ∼ F scaling at large
F instead. So, even though Figure 3 shows that the F )
0 potential results in pair correlations g2(r) that are
similar to the true g2(r)’s, the effective thermodynamics
can differ significantly. Since the density dependence
of the effective pair potentials was shown to arise from
the many-body interactions,17 this immediately suggests
that the corrections to the simple linear F scaling of the
EOS are due to the three- and higher-body interactions.

3.2. Other Representations of Potentials for
Homogeneous Polymer Solutions. As mentioned at
the beginning of this section, one could also use other
representations for effective pair potentials between
polymers. For star polymers, for example, the mid-point
is a more natural coordinate.36 The f ) 2 arm limit of a
star polymer would correspond to a normal linear
polymer, but in the mid-point representation.

In Figure 6 we compare the mid-point, end-point, and
CM representations of the interaction between two
isolated polymer coils, all calculated in the usual way
by taking the logarithm of the overlap probability for L
) 500 SAW polymers on a lattice. We also compare the
f ) 2 arm limit of the star polymer interaction derived
by Likos et al.36 as well as an improvement, especially
tailored for linear polymers.37 The mid-point and end-
point representations have a divergence at full overlap
that scales as limrf0 v(r) ∝ ln(r/Rg), so that they appear
to be quite different from the CM representation.
However, because the divergence is integrable in 3
dimensions, these potentials still result in mean-field
fluids.10 This is illustrated in Figure 7 where we plot
4πr 2v(r). The divergence has disappeared, and we see
once again that it is the tails of the potentials, and not
the small r behavior, which matters for the thermody-
namics. While in Figure 6 the differences between the
two-arm limit of the star polymer potential and the true
mid-point potential are quite small (just fractions of
kBT), Figure 7, together with eq 1, shows that they will

Figure 4. Comparison between the effective potential v(r;F)F*)
(solid line) and its fit to a single Gaussian (dotted line).
Although the fit may appear to be quite good to the eye, the
pressures obtained from these potentials differ by about 10%.
The reason for this is illustrated in the inset where the
potential is multiplied by r 2, and the differences become more
visible.

Z ≡ P/F ≈ 1 + 1
2

v̂(0;F)F (1)

Figure 5. Linear plot of the EOS Z ) Π/F for L ) 500 and L
) 2000 polymers, here determined from the effective potentials
through the compressibility route and by direct simulations
of the underlying SAW polymer system. The slight deviations
for the L ) 500 case at the higher densities are most likely
due to small inaccuracies in the inversion procedure used to
generate the effective potentials. We also show the EOS
derived from an RG34 approach. Using only the limFf0 form of
v(r;F/F*) strongly underestimates the EOS.
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generate dramatically different EOS. But even the
specially tailored mid-point potential, which appears to
almost perfectly follow the simulations in Figure 6,
differs visibly when plotted as r 2v(r). In contrast, for
the SAW simulation, the three different representations,
mid-point, end-point, and CM, should all lead to the
same EOS, provided that, as expected, the volume terms
are similar and small.10,16

These observations demonstrate a more general point,
also mentioned in the previous section: Just because a
fit to a potential appears to be very close to the original
potential does not necessarily mean it will generate the
correct thermodynamic behavior; great care must be
taken to ensure that the fit conserves the right quanti-
ties. (Note that the fit in ref 37 was indeed constrained
to give the correct second virial coefficient, which will
result in the correct low density thermodynamics.)

In principle, one can also derive density-dependent
potentials for the mid-point or end-point representa-
tions, just as was done for the CM representation. In

Figure 8, we show the mid-point potentials which re-
produce the mid-point g(r)’s generated from direct SAW
polymer simulations. We used the same HNC inversion
techniques used earlier for the CM representation and
expect similar accuracy. In summary then, while there
is some flexibility in the choice of coordinates, many of
the lessons learned for the CM representation carry
right through to the other representations.28

3.3. Colloid-Polymer Potentials from Wall-OZ
and Sphere-OZ Inversions. So far, we have only
considered effective polymer-polymer pair potentials,
but a full coarse grained description of a colloid-
polymer mixture, or, more generally, of polymers in
confined geometry, requires effective potentials between
polymers and (colloidal) surfaces as well. We focus here
on nonadsorbing surfaces and calculate the effective
interaction between polymers and a hard wall and
between polymers and a hard sphere (HS). The former
is important for such systems as mixtures of polymers
and platelets or mixtures of polymers and very large
spheres; the latter helps provide a model for mixtures
of spherical colloids and larger polymers.

Near a hard nonadsorbing surface, entropic effects
create a polymer depletion layer, even if the chains
themselves are noninteracting. Although there is no
polymer-polymer interaction when modeling such ideal
chains, there will still be a finite wall-polymer potential
φ(z). This interaction can be found for ideal polymers
near a wall by the simple result φ(z) ) -ln(F(z)/F), where
F(z) is the polymer density at a distance z from the
surface and F is the uniform bulk density. For polymers
in an end-point representation, the interaction reduces
to φ(z) ) -ln(erf(z/2Rg)), while for polymers in the mid-
point representation φ(z) ) -2 ln(erf(z/x2Rg)).16 A
similar result should follow in the CM representation,
but we have not yet succeeded in obtaining an analytic
form.

Asakura and Oosawa12,13 modeled polymers as ideal
with respect to each other and with a hard-sphere
potential φ(z) of range Rg with respect to spheres or
walls. Here we extend their work and calculate the
φ(z) that exactly reproduces the density profiles F(z)
measured by direct simulations of SAW polymers near
walls or spheres.

Figure 6. End-point, mid-point, and CM representations of
the interaction v(r) between two isolated polymers. Also
included are two fits to the mid-point potentials taken from
refs 36 and 37, as explained in the text.

Figure 7. End-point, mid-point, and CM representations of
the interaction 4πr 2v(r) between two isolated polymers. Plot-
ting the potentials in this way accentuates the differences.
Note in particular how poor the f ) 2 limit of the star polymer
potential36 performs.

Figure 8. Mid-point v(r) that exactly reproduces the mid-
point-mid-point g(r) for different bulk polymer densities.
Inset: 4πr 2v(r) shows that the more significant change is in
the tails of the potentials.
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First we consider SAW polymers near a hard wall.
The effective polymer-wall potentials φ(z;F) can be
derived from the F(z) by combining the wall-Ornstein-
Zernike equation with the HNC closure, leading to

Here, cb(r) is the bulk polymer direct correlation func-
tion. The details of this inversion procedure are given
in ref 16. In contrast to the homogeneous case, the
inversion involves only one iteration, because the bulk
polymer-polymer potentials and hence cb(r) are already
known.

Using the same explicit SAW polymer model as in
section 2, we performed MC simulations of polymers of
length L ) 500 on a lattice of size M ) 240 × 240 ×
240 with hard planar walls at x ) 0 and x ) 240. The
polymer segments were not allowed to penetrate the
walls. The simulations were done for N ) 0, 100, 200,
400, 800, 1600, and 3200. During each simulation, we
computed the density profiles F(z), where z denotes the
distance between the polymer CM and the wall. The
normalized profiles h(z) ) F(z)/F - 1, for different bulk
concentrations F, are shown in Figure 9. The wall-
polymer potentials φ(z;F) were obtained using the wall-
OZ-HNC inversion procedure and are plotted in Figure
10. The wall is essentially still hard but is now softened
by an additional exponentially decaying repulsion. The
density dependence is more pronounced than in the case
of the effective potentials for bulk polymer solutions.

The potential for a polymer coil interacting with a
colloidal HS of diameter σ can be found from the density
profile F(r) around the sphere. Here r is the distance
from the center of the colloidal HS. The inversion
procedure is very similar to that of the wall-polymer
potential geometry. For a binary mixture of two com-
ponents labeled c and p, in which colloidal component c
is infinitely dilute (Fc f 0), the binary OZ equations
decouple and reduce to

where hcp(r) ) F(r)/F - 1, and cb(r) is again the bulk
polymer direct correlation function which is determined
independently. The above equation can be combined
with the HNC closure to yield

which can be solved in one step by Fourier transforma-
tion. Figure 11 shows the polymer density profiles hcp(r)
around a single colloidal HS particle with a diameter
of σ ) 2Rg. The effective potentials are plotted in Figure
12. The interaction appears to be somewhat softer than
for the planar wall case, at least in the sense that it is
still finite at distances that correspond to the CM being
“inside” the hard colloidal particle. This happens more
readily for smaller size ratios σ/(2Rg) because the
polymers can deform around the colloids. Note that this
penetration into the colloidal HS will not occur in the
mid- or end-point representations.

3.4. Connection to Scaling Theory Approaches.
Polymers in the semidilute regime have traditionally

Figure 9. Measured h(z) (solid lines) next to a wall obtained
from SAW simulation compared with the hf(z) which follows
from the optimized fitted potential φf(z;F) (dashed lines). From
left to right the curves correspond to bulk polymer densities
F/F* ) 2.27, 1.16, 0.59, 0.30, 0.16, 0.08, and 0. Note that the
densities differ slightly from the corresponding bulk density
due to the depletion at the wall.

Figure 10. Wall-polymer potential φ(z;F) as obtained from
the inversion of density profile F(z).

Figure 11. Polymer density profile h(r) ) F(r)/F around a
colloidal HS of diameter σ ) 2Rg. From left to right the curves
correspond to a bulk polymer density F/F* ) 2.18, 1.09, 0.54,
0.27, 0.14, and 0. The solid lines represent the SAW simulation
results, whereas the dashed lines correspond to the h(r) that
results from an optimized fit to the effective potential φ(r;F).

φ(r;F) ) -ln(F(r)/F) + F∫dr′ hcp(r′) cb(|r - r′|) (4)

φ(z;F) ) -ln(F(z)/F) + F∫dr′ (F(z′)/F - 1)cb(|r - r′|) (2)

hcp(r) ) ccp(r) + F∫dr′ hcp(r′) cb(|r - r′|) (3)
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been very successfully understood with scaling theo-
ries.21 There the fundamental unit is no longer the
radius of gyration Rg at zero density, but the blob size
ê(F),21,22 which appears both in the EOS, where Πb ∼
ê(F)-3, and in the relative adsorption Γ/F ∼ ê(F). For the
homogeneous polymer solutions, it is not clear from
either the g(r) or from the effective potentials where the
blob size comes in. The reason the effective potentials
correctly reproduce the EOS is because they correctly
reproduce the pair correlations, which, through the
compressibility theorem,29 give the correct thermody-
namics. This blob size only appears in the potentials if
one attempts to parametrize them for F/F* > 2 (roughly
speaking, the density at which the scaling sets in), since
the integral over r 2v(r) should scale as F-2ê(F)-3. Since
we only parametrize the potentials for lower densities,
this scaling does not apply to the functional form we
use.

For polymers near a wall the width of density profile
of the monomers scales with ê(F) in the semidilute
regime.21 A similar scaling is expected to hold for the
width of the CM density profile. So even though ê(F) is
not immediately evident in the effective wall-polymer
potentials, it is present in the induced density profiles.
Nevertheless, many questions as to the direct relation-
ship between the scaling theories, and our soft-colloid
approach remains to be worked out. Partially for that
reason, some care must be taken when applying the soft-
colloid picture deep in the semidilute regime.

The semidilute regime scaling theories are not nor-
mally valid in the dilute regime, where we expect our
soft-colloid approach to be robust.

4. Fitting Effective Pair Potentials
4.1. CM-CM Potentials for Bulk Polymer Solu-

tions. When applying effective potentials in coarse-
grained simulations or in theoretical analysis, it is
convenient to have an explicit expression or parametri-
zation of the potentials. In ref 16 we fitted the effective
pair potentials we obtained by inversion of the g(r) to a
single Gaussian and described the remainder by means
of a spline fit. However, for practical use in simulation
or for a theoretical analysis, one would like to use an
analytic expression without the complication of a multi-
node spline fit. Moreover, it would be very useful to be

able to explicitly model the density dependence of
the potentials as well. Since we are dealing with an
approximately Gaussian form, the simplest analytical
expression is a sum of Gaussians with density-depend-
ent coefficients:

where we introduced F̃ ≡ F/F* for clarity. Here, the
Gaussians are centered at r ) 0, because the maximum
of the potential is located at the origin. The density
dependence comes in through the coefficients ai(F̃) and
bi(F̃). In the first instance, we take the coefficients to be
linear in density, i.e., ai(F̃) ) ai0 + ai1F̃ and bi(F̃) ) bi0 +
bi1F̃.

Note that an expression of this form cannot describe
the slightly negative tails in the potential that were
found in ref 16. However, as was argued in the previous
section, the structure is not very sensitive to small
changes in v(r;F̃). A more important aspect of the fitting
procedure is to make sure that the fitted potentials lead
to the correct EOS. To do this, we make use of the
accurate mean-field approximation in eq 1. Because this
is such a good approximation, keeping the k ) 0 Fourier
component v̂(0;F̃) ) 4π∫r 2v(r;F̃) for the fitted potential
vf(r;F̃) equal to that of the original potential v(r;F̃)
ensures that the pressures will also be (almost) equal.
A fitting procedure should therefore include the con-
straint

which results in one of the coefficients being fixed by
the constraint. The v̂(0;F̃) itself is a smooth function of
the bulk density F̃; we fit it to a cubic polynomial.

The inverted potentials v(r,F̃) were fitted to eq 5 by
applying a standard least-squares nonlinear fitting
procedure,38 including the above constraint. To obtain
a good fit of all the potentials for F/F* < 2, we needed at
least three Gaussian terms, particularly to correctly
describe vf(r)0;F̃). For higher densities, the linear
density dependence in eq 5 broke down. This can partly
be understood from the fact that the potential at r ) 0
increases almost linearly for F/F* < 2 but decreases for
higher concentration (see inset of Figure 1). Clearly, a
linear fit in the density cannot cope with this behavior.
Higher-order polynomials for the coefficients were not
very successful either. A better option would be to fit
the potentials for high densities independently and then
ensure continuity at the crossover.

After using the nonlinear fitting procedure to directly
fit the potentials, the best fit coefficients in eq 5 can be
further fine-tuned by minimizing the difference between
the radial distribution function g(r) of the SAW poly-
mers and the gf(r) generated from the fitted potential
vf(r). This minimization procedure works as follows. For
a certain density F̃ ) F/F*, we first calculated gf(r) for
vf(r;F̃) with the best fit coefficients using the HNC
approximation. We then compare this gf(r) to the
original radial distribution function gSAW(r), measured
in the explicit SAW simulation at the same density,
by determining the least-squares difference: ∆(F̃) )
∆(gf(r) - gSAW(r))2r 2 dr. We performed this calculation
for every density F̃i we have SAW data for, summing

Figure 12. Colloid-polymer effective potential φ(r) for a
colloidal diameter of σ ) 2Rg.

vf(r;F̃) ) ∑
i)0

n

ai(F̃)e- (r/bi(F̃))2
(5)

v̂(0;F̃) ) v̂f(0;F̃) ) π3/2 ∑
i)0

n

ai(F̃)(bi(F̃))3 (6)
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up to ∆total ) ∑i∆(F̃i). Subsequently, we changed one of
the coefficients by a small amount and determined the
difference ∆total again. If the difference between the
fitted gf(r) and the SAW data gSAW becomes smaller, the
new coefficient was accepted; otherwise, the old coef-
ficient was restored. These steps were repeated until
the difference reached a minimum value, and changes
in the coefficients were no longer accepted. The final
coefficients only represent a local minimum, so this
Monte Carlo type minimization procedure cannot be
applied without a good initial estimate for the fit
coefficients.. On the contrary, it depends strongly on the
quality of the original nonlinear fit described above.
Note that by using this optimization we skip one step,
namely the inversion of the original g(r). If a small error
was made in the inversion, for example by our assump-
tion that v(r) ) 0 for r > rcutoff, it should be corrected
during the optimization. However, one must keep in
mind that the minimization procedure only finds a local
minimum. Larger errors may not be corrected.

We applied the above fitting procedure to the bulk
polymer results for L ) 500 and L ) 2000. The
coefficients are given in Table 1 and Table 2, respec-
tively. One of the coefficients, b3(F̃), is fixed by the
constraint of eq 6:

Note that this implies that, in contrast to the other
coefficients, b3(F̃) is no longer linear in density. The best
fit coefficients for both lengths are not far from each
other, again indicating that the results are close to the
scaling limit.

To illustrate the importance of explicitly including the
constraint of eq 6, we applied the same nonlinear fitting
procedure, including the Monte Carlo optimization, but
without the constraint. In Figure 13 we compare v̂(0;F̃),
which is a good measure for the EOS, for the con-
strained and the unconstrained case. Clearly, including
the constraint is essential for reproducing the correct
thermodynamic behavior. At this point we would like
to return to a statement made in an earlier paper,16

where we emphasized the importance of the very small
negative tails we found from our inversion procedure.
Because the tails are so small, their effect on the radial
distribution functions is almost imperceptible. It is only

when they are multiplied by r 2 that they become
important for the EOS. Our current fitting procedure
ignores the negative tails, but because we force the sum
rule on r 2v(r), the thermodynamics are still correctly
reproduced. Therefore, our previous statements on the
importance of the tails should be tempered. It is actually
the sum rule on the pair potential which is critical to
achieving the correct thermodynamics.

4.2. Colloid-Polymer Potentials. A similar fitting
procedure as in the previous section can be applied to
the effective wall-polymer potentials. In ref 16 we
showed that the effective wall-polymer potential φ(z,F̃)
can be fitted reasonably by the cubic exponential func-
tion

As before, the density dependence can be introduced
through the coefficients ai(F̃) ) ai0 + ai1F̃ + ai2F̃2. Here
we chose a quadratic density dependence, because a
linear expression yielded a poor fit. We fitted the
potentials φ(z;F̃) using the nonlinear fit method of the
previous section but without any constraint. Subse-
quently, the coefficients were optimized using the
minimization procedure mentioned above. The opti-
mized best fit coefficients are given in Table 3, and the
hf(z) generated by these fitted potentials are shown in
Figure 9. The fit seems to be reliable for F < F* but,
unfortunately, begins to break down in the semidilute
regime. For the highest densities, the reproduced hf(z)
shows more structure than the density profile obtained
from the SAW simulations. Clearly, eq 8 cannot com-
pletely capture all the wall-polymer effects in the
semidilute regime. The functional form of eq 8 is rather
ad hoc, and the fit would probably be better if one had
access to a more accurate analytical expression based
on physical arguments.

Similarly to the bulk polymer case, one needs to
compare surface thermodynamic properties to ensure
the quality of the fit. We focus on the polymer adsorption
at the wall, Γ, defined as the partial derivative of the
excess grand potential Ωex per unit area with respect
to the chemical potential µ,

where A is the surface area. In Figure 14 we show that
the adsorption Γ is indeed well represented by the fits.
So, even though for high densities the structure next to
the wall is not well described by eq 8, the integral over
h(z) is still accurately represented. Since the adsorption
Γ is given by the integral over h(z), instead of an integral
weighted by z2, the tails of the potentials are less
important to the correct thermodynamics than in the
case of the bulk polymer potentials. In fact, if the
adsorption Γ and the EOS are known as a function of
the density, then the surface tension of the polymer
solution can be calculated with the Gibbs adsorption
equation.35 Therefore, since the fitted wall-polymer

Table 1. Best Fit Coefficients for v(r;G̃) As Defined in Eq 5
for L ) 500 Polymersa

i ai0 ai1 bi0 bi1

1 1.474 09 -0.076 89 0.981 368 -0.056 808
2 -0.232 096 0.031 321 0.421 23 -0.026 278
3 0.638 974 0.241 93

a Coefficients for b3(F̃) are fixed by the constraint eq 7. The v̂(0;F̃)
in eq 7 is approximated by the cubic polynomial v̂(0;F̃)/4π ) 1.2902
+ 0.28132F̃ + 0.136761F̃2 - 0.040892F̃3.

Table 2. Best Fit Coefficients for v(r;G̃) As Defined in Eq 5
for L ) 2000 Polymersa

i ai0 ai1 bi0 bi1

1 1.418 08 -0.081 969 0.979 493 -0.057 796
2 -0.224 377 0.030 647 0.440 907 -0.024 327
3 0.630 219 0.211 378

a Coefficients for b3(F̃) are fixed by the constraint eq 7. The v̂(0;F̃)
in eq 7 is approximated by the cubic polynomial v̂(0;F̃)/4π ) 1.245
+ 0.3564275F̃ - 0.02443297F̃2 + 0.0018028F̃3.

(b3(F̃))3 ) a3(F̃)-1[π-3/2v̂(0;F̃) - ∑
i)0

2

ai(F̃)(bi(F̃))3] (7)

Table 3. Best Fit Coefficients for O(z;G̃) As Defined in Eq 8
for L ) 500 Polymers Next to a Wall

i ai0 ai1 ai2

0 62.724 2 56.459 5 -29.928 25
1 -6.409 38 -3.887 95 2.0442 02
2 2.508 12 5.156 190 -2.133 56
3 -0.690 42 -1.551 91 0.597 25

φf(z,F̃) ) a0(F̃) exp[a1(F̃)z + a2(F̃)z2 + a3(F̃)z3] (8)

Γ ) -
∂(Ωex/A)

∂µ
) F∫0

∞
h(z) dz (9)

Macromolecules, Vol. 35, No. 5, 2002 Colloid-Polymer Mixtures 1867



potentials give the correct Γ and the polymer-polymer
potentials give the correct Πb/F, when used together they
should provide an accurate representation of surface
tensions and related surface thermodynamic quantities.

In the case of a spherical particle, the fit to the
sphere-polymer potential is more straightforward.
Once again we can use a sum of Gaussians to estimate
the potential

Here, because of the size difference between the colloidal
particle and the polymer coil, we allow the Gaussians
to be off center. In the nonlinear fit for the σ ) 2Rg
data, we set n ) 2 and c1(F̃) ) 0 and assumed a linear
density dependence of the coefficients. Subsequently,
the coefficients were optimized using the minimization
procedure. The results are given in Figure 11 and Table
4. The hf(r) reproduces the measured h(r) quite well. To

check the quality of the fit, we compared in Figure 15
the adsorption of the SAW polymers around the sphere
with the optimized potentials. Here, in contrast to the
planar wall case, we do have to integrate over h(r)r 2.
We would therefore expect that the deviations are larger
than for the wall. However, although the agreement is
not as good as in the wall case, the adsorptions are still
well represented, thus giving us confidence that the fits
are adequate.

5. Conclusion

In this paper we have shown in detail how to use OZ
techniques to derive effective potentials potentials for
polymer solutions from direct simulations of SAW
polymers. Just as many subtleties were found in the
original application of OZ inversion techniques to simple
atomic and molecular fluids, so we find that great care
must be taken to correctly invert and fit our effective
potentials.

We found that g(r) is not very sensitive to differences
in v(r), which is very similar to the situation for atomic
and molecular fluids.29 This insensitivity places strong
demands on the accuracy of the original g(r)’s needed
as input for our inversion procedures.

For the polymer-polymer potentials, it is crucial that
the integral over r 2v(r;F) is correctly represented. Seem-
ingly very small differences in the tails of v(r), which
in turn result in almost imperceptible changes in g(r),
can nevertheless result in large differences in the EOS.
This principle should hold not only for linear polymers
in the CM, end-point, or mid-point representations but

Figure 13. When the explicit constraint of eq 6 is not
included, the value of v̂(k)0;F) ) 4π∫r 2v(r;F) (dotted line)
begins to deviate significantly from the correct value (solid
line). This will have an important effect on the EOS.

Figure 14. Relative adsorption Γ/F (in units of Rg
-2) given

by direct SAW simulations of L ) 500 polymers next to wall
(open circles) compares well to the adsorption calculated from
the fitted wall-polymer potentials (open squares).

φf(r) ) ∑
i)0

n

ai(F̃)e-((r-ci(F̃))/bi(F̃))2
(10)

Figure 15. Relative adsorption Γ/F (in units of Rg
-2) given

by direct SAW simulations of L ) 500 polymers around a
colloidal sphere of diameter σ ) 2Rg (open circles) compared
to the adsorption from the fitted colloid-polymer potentials
(open squares). Note that the agreement is not as good as in
the polymer wall case, because of the integration over h(r)r 2.

Table 4. Best Fit Coefficients for O(r;G̃) As Defined in
Eq 10 for L ) 500 Polymers around a Sphere of Diameter

σ ) 2Rg

i 0 1

ai0 5.5610 1.8477
ai1 -0.8042 1.4759
bi0 0.7751 1.2720
bi1 -0.1151 0.1052
ci0 0.4082 0.0
ci1 0.14104 0.0
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also for low arm-number star polymers,36 dendrimers,39

and other mean-field fluids.
We also derived density-dependent wall-polymer and

sphere-polymer potentials by directly inverting the one-
particle density profile F(r) calculated by direct simula-
tions of L ) 500 SAW polymers. Here, the important
thermodynamic parameter is the adsorption Γ, which
is quite well reproduced by our fitted potentials. Since
our effective potentials provide a good representation
of the EOS and of the adsorption, they should lead to
an accurate representation of the surface tension and
other related surface thermodynamic properties of
polymer-colloid mixtures.

And finally, while one might think that most of the
hard work is done once effective potentials have been
inverted from direct simulations, fitting these potentials
for their use in large-scale simulations of colloid-
polymer mixtures is far from trivial. We showed how to
use a numerical optimization procedure to ensure the
accuracy of our fits. Because this optimization procedure
skips the direct inversion step, it can remove residual
errors in the inversions, guarantee that the fits conserve
the right sum rules, and lead to the correct thermody-
namics. We emphasize that these conclusions should
hold for a much broader class of effective potentials than
the ones we discussed here.

The ultimate goal of our research project15-17 is to
model large-scale mixtures of polymers and colloids. The
coarse-graining of the polymers from the “microscopic”
SAW chains to single composite entities interacting via
effective density-dependent pair potentials is a crucial
step toward that goal. The next step will be to use the
accurate fits derived in this paper to perform direct
simulations of many spherical colloids interacting with
many polymers.
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