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Density profiles and surface tension of polymers near colloidal surfaces
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The surface tension of interacting polymers in a good solvent is calculated theoretically and by
computer simulations for a planar wall geometry and for the insertion of a single colloidal hard
sphere. This is achieved for the planar wall and for the larger spheres by an adsorption method, and
for smaller spheres by a direct insertion technique. Results for the dilute and semidilute regimes are
compared to results for ideal polymers, the Asakura–Oosawa penetrable-sphere model, and to
integral equations, scaling and renormalization group theories. The largest relative changes with
density are found in the dilute regime, so that theories based on noninteracting polymers rapidly
break down. A recently developed ‘‘soft colloid’’ approach to polymer–colloid mixtures is shown to
correctly describe the one-body insertion free-energy and the related surface tension. ©2002
American Institute of Physics.@DOI: 10.1063/1.1473658#
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I. INTRODUCTION

Binary mixtures of polymers and colloidal particles
various solvents are the focus of sustained experimental
theoretical efforts, both because they constitute a challen
problem in Statistical Mechanics of ‘‘soft matter,’’ and b
cause of their technological importance in many indust
processes. One of the most striking aspects of polym
colloid mixtures, namely the depletion interaction betwe
colloids induced by nonadsorbing polymer was recogni
nearly 50 years ago.1 More recently, the importance of th
polymer depletant in determining the phase behavior of
mixtures was realized,2 and much recent experimental wo
was devoted to the phase diagram,3–5 structure,6,7 interfaces,8

and to the direct measurement of the effect
interactions.9–11 On the theoretical side, most efforts ha
concentrated on impenetrable spherical colloids, while v
ous models and theoretical techniques have been investig
for the description of the nonadsorbing polymer coils. T
models include noninteracting~ideal! polymers,1,12,13 poly-
mers represented as penetrable-spheres,14–17 and interacting
polymers coarse-grained to the level of ‘‘soft colloids.’’18–21

Monomer level representations of polymer chains, like
self-avoiding walk~SAW! model, appropriate in good so
vent, have been considered within polymer scal
approaches,22–24renormalization group~RG! theory,25–29and
fluid integral equations.30,31

While many effects for the simplest case of colloi
mixed with noninteracting polymer are quantitatively und
stood, the behavior of the experimentally more relevant c
of polymers with excluded volume interactions is at b
understood on a qualitative basis; a quantitatively relia
theory is still lacking. Clearly, to construct such a theory

a!Electronic mail: aal20@cus.cam.ac.uk
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finite concentrations of colloidal particles, one must first u
derstand how interacting polymer coils distribute themsel
around a single spherical colloid of radiusRc . This problem
is addressed in the present paper using a combinatio
Monte Carlo~MC! simulations and scaling theories to dete
mine the key quantities, which are the monomer or cen
of-mass~cm! density profilesr(r ) of SAW polymers around
a single impenetrable sphere, as well as the resulting sur
tension. IfRg denotes the radius of gyration of the polyme
these quantities clearly depend on the ratioq5Rg /Rc ,
which controls the curvature effects. The limitq→0, corre-
sponding to a polymer solution near a planar wall, will
examined first, before considering the case of finiteq. The
complete theory for the opposite limit,q@1, will be the sub-
ject of a future publication, although we show some prelim
nary results here. Throughout this work we focus on
dilute and semidilute regimes22,32of the polymers, where the
monomer densityc is low enough for detailed monomer
monomer correlations to be unimportant; the melt regim
wherec becomes appreciable, will not be treated here.

The surface tension of a polymer solution surroundin
sphere is macroscopically defined by considering the imm
sion of a single hard colloidal particle into a bath of nona
sorbing polymer. Because this immersion reduces the n
ber of configurations available to the polymers, resulting
an entropically induced depletion layer around the collo
there is a free energy costF1 for adding a single sphere t
the polymer solution which naturally splits into volume an
surface terms

F15P~r! 4
3 pRc

314pRc
2gs~r!. ~1!

The first term in Eq.~1!, describes the reversible wor
needed to create a cavity of radiusRc in the polymer solu-
tion. Since the osmotic pressureP(r) of a polymer solution
7 © 2002 American Institute of Physics
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10548 J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Louis et al.
in the dilute and semidilute regimes is quantitatively kno
as a function of polymer concentrationr from RG
calculations,25 this volume term is well understood. Th
problem of a quantitative description of a single colloid in
polymer solution thus reduces to understanding the sec
term, which defines the surface tensiongs(r), i.e., the free-
energy per unit area that is directly related to the creation
the depletion layer. It is customary to relate the surface t
sion gs(r) around a sphere to the surface tensiongw(r)
near a planar wall, by expanding in powers of the ra
q5Rg /Rc

gs~r!5gw~r!1k1~r!q1k2~r!q21O~q3!, ~2!

which is expected to be most useful whenq is not too large.
The coefficientsk i(r) control the curvature corrections
They are analogous to the Tolman corrections in the ma
scopic case.33,34

The paper is organized as follows: The case of a sin
plate or hard wall immersed in a polymer solution is d
cussed in Sec. II, where we report results for density profi
r(z) at various polymer concentrations. These density p
files define the reduced adsorptionĜ(r), from which the
surface tensiongw(r) may ultimately be extracted. Thes
considerations are extended to spherical colloids in Sec.
where simulation results for the density profiles are repor
for size ratiosq50.67,1.05, and 1.68. These data are th
used to computegs(r) and thek i(r); limiting forms are
extracted for ther→0 and the semidilute regimes. The r
sults are compared to the theoretical predictions for id
polymers, for the penetrable sphere model, and whereve
plicable, to RG and integral equation predictions. The lim
of large q, where the expansion~2! becomes less useful i
also discussed. For this limit we also report on some preli
nary direct simulation results forF1 based on the Widom
insertion technique.35 Finally we show that the soft colloid
paradigm has the correct thermodynamics of the single
loid problem automatically built in.

II. DENSITY PROFILES AND SURFACE TENSION
NEAR A SINGLE WALL

A single hard wall in a bath of nonadsorbing polyme
creates an entropically induced depletion layer because
polymers have fewer possible configurations near the w
To calculate these density profiles we performed Mo
Carlo simulations of the popular self avoiding walk~SAW!
model on a cubic lattice. Even though this model ignores
chemical details of a real polymer system except the
cluded volume and polymer connectivity, it reproduces
scaling behavior and many other physical properties of at
mal polymer solutions.22,32 For N polymers of lengthL on a
lattice of M sites, the polymer density is given byr
5N/M , while the monomer density isc5LN/M . The poly-
mers are characterized by the radius of gyration, wh
scales as Rg;Ln, where n'0.588 is the Flory
exponent.22,25,32For densitiesr less than the overlap densit

r* 51/( 4
3pRg

3) the system is in the dilute regime, while fo
r>r* , andc!1, the system is in the semidilute regime. W
use L5500 SAW polymers in our simulations, which a
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expected to exhibit properties close to those correspondin
the scaling limit L→`. Further details of the simulation
method and the model can be found in Refs. 18–21. N
that a small correction to these results must be applie36

Since our models are all athermal, we setb51/(kBT)51.
Examples of the depletion layer density profiles nea

hard wall are depicted in Fig. 1 for a polymer center-of-ma
~CM! representation, as well as for a monomer represe
tion. Both profiles have, by definition, the same reduced
sorption, defined as:34

Ĝ~r!52
1

r

]~Vex/A!

]m
5E

0

`

h~z!dz, ~3!

whereVex/A is the surface excess grand potential per u
areaA. h(z)5r(z)/r21, with r(z) the cm density profile
of the polymer coils a distancez from the surface. In the
monomer representation one should replacer by c5LN/M
and h(z) by the monomer profile; the two reduced adso
tions are equal and measure the reduction in the numbe
chains near the surface.

In the low-density limit an RG calculation based on
first ordere-expansion givesĜ(0)'21.074Rg ,27,37which is
slightly less than

Ĝ id52Rg /Ap'21.128Rg , ~4!

the density independent result for an ideal polymer with
same sizeRg

26 ~but largerL due to the different scaling o
the radius of gyration!. This reflects the fact that for a give
Rg , the polymer–polymer interactions reduce the size of
depletion layer, an effect which becomes more pronoun
with increasing density; see e.g., Fig. 1.

For the semidilute regime, de Gennes has proposed
approximate expression for the monomer profile near a w
hm(z)5tanh2(z/j(r))21, wherej(r) is the correlation length
or blob size.22 If we identify j(r) with 2Ĝ(r) then, as
shown in Fig. 1, this form provides a fairly accurate fit to o
simulation results. Sincej(r);r2n/(3n21);r20.770 in the

FIG. 1. ~a! The wall–polymer cm profileh(z)5r(z)/r21 for L5500
SAW polymers at different bulk concentrations.~b! The wall-monomer pro-
file hm(z) for the same bulk concentrations. Both representations result
definition, in the same relative adsorptions. The full lines are a fit to

simple formhm(z)5tanh2(z/Ĝ(r))21.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10549J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Polymers near colloidal surfaces
semidilute regime, this implies that the density profil
should become more narrow with increasing density, a tr
clearly seen in Fig. 1.

From the density profiles of Fig. 1, we can derive t
adsorption at different densities using Eq.~3!. These are
shown in Fig. 2, together with a simple fit constrained to g
the expectedr50 value, and the correct scaling beha
ior in the semidilute regime where2Ĝ(r)'j(r);r20.770,
namely

Ĝ~r!521.074RgS 117.63
r

r*
114.56S r

r* D 3D 2(0.2565)

.

~5!

Throughout this paper the value of the radius of gyration
conventionally chosen as that appropriate for an isola
polymer, i.e.,Rg5Rg(r50). However, as the polymer con
centration increases, the measuredRg(r) will decrease with
density as shown in Fig. 2. In the semidilute regime t
scales as Rg(r)/Rg(r50);r (2n21)/(6n22)'r20.115,22

which decreases much more slowly with density than
correlation lengthj(r) or the relative adsorptionĜ(r). In
fact atr/r* 51, the crossover from the dilute to the semid
lute regimes,Ĝ(r) has dropped to 59% of itsr→0 value,
while Rg(r) has only changed by a few percent. The larg
rate of relative change in the adsorption is, therefore, fo
in the dilute regime, suggesting that theories based on
r→0 limit may start to break down well before the semid
lute regime is reached. The border between the dilute
semidilute regimes is not sharp. For the semidilute regi
the asymptotic forms derived by scaling theories appear to
reached at a lower density forĜ(r) than forRg(r).19

One route to calculate the surface tensions from the d
sity profiles is to use an extension of the Gibbs adsorp

FIG. 2. Relative adsorptionĜ(r), in units ofRg , vs density. Circles denote
direct computer simulations ofL5500 SAW polymers near a single har
wall, and the line denotes the simple fit with the correct scaling behav
given by Eq. ~5!. Also shown is the density dependence of t

radius of gyration. In the semi-dilute regimeĜ'2j;r0.770, while Rg(r)/
Rg(r50);r0.115.
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equation to express the surface tension near a single wa
terms of the relative adsorption and the equation of state

gw~r!5
]Vex

]A
52E

0

rS ]P~r8!

]r8 D Ĝ~r8!dr8. ~6!

The derivation of this equation can be found, for example
Refs. 24 and 38. By performing one integration by pa
w.r.t. density, Eq.~6! can also be expressed as

gw~r!52P~r!Ĝ~r!1E
0

r

P~r8!S ]Ĝ~r8!

]r8
D dr8. ~7!

The first term in this equation takes the form of a press
times a length. For ideal polymers, whereĜ(r) is indepen-
dent of density,1,19 this term completely describes the surfa
tension of the depletion layer. It is just the~entropic! free
energy cost per unit area of creating a cavity of volum
Ĝ(r)A. The second~positive! term is therefore only relevan
if there are polymer–polymer interactions.

We have previously calculated the equation of state
L5500 andL52000 SAW polymers,19,21 both of which are
well described by analytic RG expressions.39 Using this for
P(r) together with the fit to the relative adsorption from E
~5!, we can now use Eq.~7! to calculate the surface tensio
of a solution of polymers in good solvent near a single wa
Our results are shown in Fig. 3. In the low density limit th
surface tension reduces to the same functional form as

r,

FIG. 3. Polymer–wall surface tensiongw(r) divided by gw
id(r). The full

lines with square symbols are for interacting polymers and were calcul
with Eq. ~7!, while the dotted line with circle symbols denotes the simp
expression of Eq.~8! which is only valid in the semidilute scaling regime
where gw;r1.539. Also shown are two recent RG results~Ref. 29!: The
dashed line denotes the renormalized tree expansion, while the do
dashed line denotes the asymptotic limit for ane-expansion. The solid line is
from Eq. ~9!, a result derived from a recent PRISM calculation~Ref. 31!,
while the dotted line denotes the results when PRISM is supplemented b
effective step length, which incorporates the correct scaling behavior.
effective step length correction works well in the semidilute regime, bu
the low density limit it leads to a spurious divergence. In the dilute regim
it is therefore, better to use the simplified PRISM. The inset shows the r
of the full and simplified expressions forgw(r). They coincide for higher
densities but in the low density limit, the semidilute scaling express
overestimates the true surface tension by a factor 1.5.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ideal polymers, i.e., gw(r)52P(r)Ĝ(r), so that
limr/r* →0gw(r)'1.074Rgr. Note that for all but the lowes
densities, the surface tension is considerably larger than
ideal polymer resultgw

id(r)52rRg /Ap. The surface tension
for interacting polymers increases more rapidly with incre
ing density both becauseP(r) increases faster thanĜ(r)
decreases in the first term of Eq.~7!, and because the secon
term, which is absent for noninteracting polymers, increa
with density as well.

Further simplifications occur in the semidilute regim
For example, when the scaling forms for the osmotic pr
sure, P;r3n/(3n21), and for the reduced adsorption,Ĝ
;r2n/(3n21), are used in Eq.~7!, then the integral in the
second term can be easily performed and turns out to
exactly half the first term, a result that is independent of
value of the exponentn. The surface tension, therefore, tak
on a very simple form

gw
sd~r!52 3

2 P~r!Ĝ~r!;r2n/(3n21)'r1.539. ~8!

As shown in Fig. 3, this expression works remarkably w
for larger densities into the semidilute regime. Deviations
occur for the dilute regime where Eq.~8! overestimates the
surface tension by a factor 1.5 forr→0, as demonstrated in
the inset of Fig. 3.

In a recent publication Maassen, Eisenriegler, a
Bringer29 have used the renormalized tree approximation
derive a surface tension which compares well with our
sults, as shown in Fig. 3. A similar asymptotic R
e-expansion compares slightly less well. The difference
tween the two approximations gives an estimate of the e
in the RG approach. It should be kept in mind that our sim
lation approach also incurs small errors through the use
the fitted form ofĜ(r), and because we use polymers o
finite length.

Fuchs and Schweitzer31 recently applied the polymer ref
erence interaction site model~PRISM! approach to polymer–
colloid mixtures. In the limit of low colloid density, a num
ber of analytic results can be derived for the insertion f
energyF1 , from which the surface tension can be extrac
by using Eqs.~1! and Eq.~2!

gw
PRISM~r!51.279rRgS 111.06

r

r* D . ~9!

Here we have used the PRISM results arising from lo
packing information~see Ref. 31 for details!. As can be seen
in Fig. 3 this PRISM approach does not show the right sc
ing behavior. This is not surprising since these results
based on a simplified PRISM model with an ideal~Gaussian!
description of the internal polymer correlations. This has
advantage of being analytically solvable, but the disadv
tage of exhibiting the wrong scaling behavior. In the semi
lute regime, this can be remedied by choosing an effec
step-length,40 which sets the correct scaling behavior of t
radius of gyrationRg;r2(122n)/(2(123n)). When this correc-
tion is applied, Eq.~9! shows the right scaling behavior i
the semidilute regime, as shown in Fig. 3. In principle
fully self-consistent PRISM calculation, which includes t
correct internal polymer statistics, should result in the corr
Downloaded 30 May 2002 to 131.111.116.196. Redistribution subject to 
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scaling without the need for an effective step-length. T
would have the advantage that the surface tension would
be correctly described in the dilute regime, where the use
an effective step-length results in a spurious divergence
r→0.

III. DENSITY PROFILES AND SURFACE TENSION
AROUND A HARD SPHERE

Having described the surface tension for a polymer
lution near a single hard wall, we next investigate the rela
problem of a polymer solution near a single hard sphere~HS!
of radius Rc . As discussed in the Introduction, adding
single HS to a polymer solution reduces the number of c
figurations available to the polymers, and results in a fin
insertion free energy or chemical potential described by
~1!. Besides the configurations directly excluded by t
sphere of volume4

3pRc
3 , there are also configurations ex

cluded near the surface of the sphere, an effect which m
fests itself in an entropically driven depletion layer, just
was found for the case of a hard wall. However, the cur
ture of the sphere leads to corrections to the planar sur
tension, as described by Eq.~2!, i.e., the surface tension
gs(r) depends not only on the polymer densityr, but also on
Rc through the ratioq5Rg /Rc .

A. Ideal polymers

The free energy cost of inserting a single HS into a b
of ideal polymers is know26,41

F1
id5

r

r*
1

q3 S 11
6q

Ap
13q2D . ~10!

By combining this result with Eq.~1!, it follows that the
ideal polymer surface tension takes the form:

gs
id~r!5gw

id~r!1rRgq. ~11!

The curvature corrections defined in Eq.~2! take on a par-
ticularly simple form here, sincek1

id(r)5rRg , and k i50
for i>2. Note that this expression is not simply an expans
in q5Rg /Rc ; it is valid for all size ratios.

In 1958 Asakura and Oosawa14 ~AO! introduced a model
where the ideal polymers are approximated as in
penetrable spheres of radiusRAO . This corresponds to ap
proximating the true depletion layer by a step-function. T
free-energy of insertion of a single hard sphere into a bath
AO particles can be easily calculated to be

F1
AO5hAO

1

qAO
3 ~11qAO!3, ~12!

where hAO5 4
3prRAO

3 is analogous tor/r* , and we have
defined the size ratioqAO5RAO /Rc . The surface tension is
therefore, given by

gs
AO~r!5gw

AO~r!1rRAOqAO1
rRAO

3
~qAO!2, ~13!

wheregw
AO(r)5rRAO . In this case the curvature correction

have a very simple geometrical origin: The volume of
spherical shell of widthRAO with an inner radius ofRc has a
larger volume than that of a flat layer of widthRAO and area
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4pRc
2 . In part this is a matter of definition. For hard pa

ticles one can also find instances in the literature whereRc

1RAO is taken as the radius of the Gibbs dividing surfa
The AO model surface tension vanishes if it is defined in t
way.

If the prescriptionRAO52Rg /Ap is used to set the free
parameter in the AO model, then the surface tension for
planar wall is the same as that of ideal polymers. Howe
this prescription no longer holds for spheres immersed i
polymer solution, since the curvature corrections to the s
face tension for ideal polymers are not the same as thos
the AO model. Physically this difference arises because
AO model assumes a fixed depletion layer widthRAO while
the ~ideal! polymers can deform around a sphere, wh
leads to an effectively smaller depletion layer. This effe
becomes progressively more pronounced with decrea
size ratioRc /Rg .12 An effective AO parameter which take
this deformation effect into account can be derived by equ
ing the two surface tensions, Eqs.~11! and ~13!

RAO
eff

Rg
5

1

q S S 11
6

Ap
q13q2D 1/3

21D . ~14!

Since the pressures in the two systems are the same, i.eP
5r, this is equivalent to equating the two insertion fre
energiesF1 of Eqs.~10! and~12!, as done in Refs. 12 and 26
For q5Rg /Rc→0 this expression reduces toRAO

eff /Rg

52/Ap, the known result for a single wall. For largeq on
the other hand, the effective AO radius scales asRAO

eff /Rg

;q21/3. For fixed Rg , the effective radiusRAO
eff decreases

monotonically with decreasing sphere sizeRc , as shown in
Fig. 4.

FIG. 4. The effective AO radiusRAO
eff , given by Eq.~14!, which would result

in the same surface tension for an AO fluid around a sphere of radiusRc as
found for ideal polymers of sizeRg . For infinite sphere size~i.e., a wall!
RAO5(2/Ap)Rg . As the relative sphere sizeRc /Rg decreases this effective
parameter decreases due to the deformation of the polymers arou
sphere. The symbols denote direct simulationsL5200 ideal polymers on a
lattice, taken from Ref. 12. The small differences are due to the disc
nature of the lattice used in the simulations.
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B. Interacting polymers

1. Low density limit for interacting polymers

For interacting polymers, ther→0 limit of the curvature
corrections to the surface tension have been calculate
first order in ane-expansion by Hanke, Eisenriegler, an
Dietrich.27 For large spheres~small Rg /Rc ,! they find

lim
r→0

gs~r!

gw~r!
'110.849q20.0375q21O~q3!. ~15!

In this low density and smallq regime, the curvature correc
tions for interacting polymers are quite similar to those fou
for noninteracting polymers. Compare, for example, the fi
relative curvature correction coefficient, which is 0.849 f
interacting polymers, and 0.886 for ideal polymers. In t
opposite~small sphere! q→` limit the differences are more
pronounced:gs

id/gw
id;q, gs

AO/gw
AO;(qAO)2 while for inter-

acting polymers RG and scaling theory approaches pre
that gs /gw;(q)1/n21'q0.701.27,28,42

2. Interacting polymers at finite densities

We have calculated the density profilesh(r )5r(r )/r
21 for polymers around spheres of radiusRc51.49Rg , Rc

50.95Rg , and Rc50.59Rg from simulations of L5500
SAW polymers. These are shown in Fig. 5 in the cm rep
sentation. Just as was found for the case of a planar wall

a

te

FIG. 5. The polymer cm density profileh(r ) around a sphere for the ratio
q5Rg /Rc50.67,1.05,1.68~graphs from top to bottom!. For each sphere
size the curves are forr/r* 50.037,0.30,0.58,1.16,2.32~solid, dotted,
dashed, long-dashed, and dotted–dashed lines, respectively!. The depletion
layer narrows with increasing density, just as was found for as single
~compare with Fig. 1!. The small vertical lines denote the position of th
radius of the colloid. The polymers can wrap more easily around the sm
colloids, which explains why the cm profile penetrates further into the c
loid for smallerRc /Rg .
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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depletion layers shrink with increasing bulk densityr. Be-
cause the polymers can deform around the colloid, the d
sity profiles in the cm representation can penetrate into
HS region, an effect which becomes more pronounced
smaller colloids~largerq!. ~For an interesting proposal tha
describes the monomer density around a spherical par
we refer to Ref. 43.!

The relative adsorption around a sphere is defined a

4pRc
2Ĝs~r!52

4pRc
2

r

]~Vex/A!

]m

5E
0

`

4pr 2h~r !dr1
4

3
pRc

3 . ~16!

Hereh(r ) is defined from the center of the sphere, andĜs(r)
has the dimension of a length. The volume of a single
was subtracted off so that the adsorption only describes
effects of the depletion layer around a sphere. For low d
sity the relative adsorption of a sphere is larger than that
planar wall by a curvature correction factor term similar
those described in Eq.~15!. As the density increases, th
relative adsorption decreases and tends asymptotically to
same value as for a planar wall. This can be understood f
the simple ‘‘blob’’ picture22 in the semidilute regime: Sinc
the ratio of the blob-size to the spherej(r)/Rc decreases
with increasing density, the curvature corrections to the re
tive adsorption are also expected to become relatively
important with increasing density.

The surface tensiongs(r) can now be calculated from
Eq. ~6! using the adsorption defined in Eq.~16!. In Fig. 6, we
compare the surface tension for three different sphere s
to gw(r), the value for a planar wall. As expected from t
results for low densities,@see e.g., Eq.~15!#, for a given
densityr, the surface tension increases with decreasingRc .
The ratiogs(r)/gw(r), shown in Fig. 7, decreases with in
creasingr/r* . Again, the rate of change is largest in th

FIG. 6. Surface tension for a planar wall, and for spheres withq50.67, q
51.05, andq51.68 as a function of density. We also include the plan
surface tension of a HS fluid, withRp5Rg such thathp5r/r* . Inset:
Blowup of the graph for low densities. The planar wall surface tension
interacting polymers, ideal polymers, and the HS system are compared
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dilute regime; for increasingr/r* the two terms appear to
approach each other asymptotically. Just as we argued fo
adsorptions, the blob picture in the semidilute regime impl
that the curvature corrections should decrease with incr
ing density, which is what we observe. This also implies t
gs(r)'gw(r);r1.539 in the semidilute regime. Of cours
the smaller the HS, the higher the density one needs for
curvature corrections to become negligible. This picture
confirmed by recent scaling and RG arguments,29 which
show that the first curvature correction coefficientk1

;rn/(3n21);r0.770, implying that with increasing density
the contribution of the curvature corrections defined in E
~2! becomes relatively smaller, so thatgs approachesgw . In
the inset of Fig. 7 we compare our results to the RG cal
lations, valid to lowest order inq, i.e., gs(r)5gw(r)
1k1(r)q. Although only the results for the ratioq51.05 are
shown, they are similar to those at the other two size-rat
which also show an overestimate by the RG. The differe
may be due in part to higher orderk i(r) terms which have
not yet been calculated by RG. To confirm this picture f
ther simulations are needed since:~a! our simulations of the
adsorption are only forr/r* <2.32, and we extrapolated t
higher densities using a fit form which scales as2Ĝs(r)
;j(r);r20.770 at high densities;~b! we only examined
three different sphere sizes so that it is difficult to direc
extractk1(r), and for that matter the higher orderk i(r).

Finally, we reemphasize how much the density dep
dence of the surface tension of the interacting polymers
fers from that of ideal polymers or the related Asakur
Oosawa model, where the ratio of the wall to the sph
surface tensions is independent of density, and close to
of interacting polymers in the low-density limit@compare
Eqs.~11!, ~13!, and~15!#.

r

r

FIG. 7. Ratio of surface tension of a sphere to the surface tension of a
for spheres withq50.67, q51.05, andq51.68. Inset: Comparison of an
RG calculation~Ref. 29! valid to lowest order inq, and our direct calcula-
tion for q51.05. We also compare the ratio of the surface tension of a
fluid around a single inserted sphere to the planar HS surface tension
size-ratio is 1:1, andhp5r/r* . The value athp50 is equal to that of the
AO model, given by Eq.~13!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3. Comparison with a hard-sphere model

One might inquire what would happen if the polyme
were modeled as HS instead. By using the very accu
Rosenfeld fundamental measure density functional44 tech-
nique, an explicit form for the surface tension of a HS flu
with radius Rp around a single HS~radius Rc! has been
calculated45

gs
HS~hp!

gw~hp!
511

2~12hp!

~21hp! S Rp

Rc
D

2
2~12hp!2ln~12hp!

3hp~21hp! S Rp

Rc
D 2

, ~17!

where we have defined the packing fractionhp5 4
3prpRp

3 ,
for a number densityrp . The planar wall-surface tension
given by

gw~hp!5
3hp~21hp!

8pRp
2~12hp!2 . ~18!

We note that this result for the surface tension of a HS fl
around a sphere was also derived independently by sc
particle theory.46 Equation ~17! can be generalized to th
nonadditive HS model, for which the cross diameterRcp

Þ 1
2(Rc1Rp), so that one can smoothly interpolate betwe

the fully repulsive HS model and the fully nonadditive A
model.45,47

To lowest order in density, the surface tension of a
system near a planar wall isgw

HS'Rpr, i.e., the same as tha
of the AO model, which is close to that of interacting pol
mers in the same limit wheregw'1.074Rgr. However, the
terms of orderr2 are already significantly larger in the H
case. Therefore, as illustrated in the inset of Fig. 6, the
model gives a large relative overestimate of the surface
sion well before reaching the packing fraction at which t
system freezes.~Here we took units whereRp5Rg so thathp

is equivalent tor/r* .!
For a fixed size-ratioRp /Rc the curvature corrections fo

a HS system vary with density as

gs
HS~hp!

gw
HS~hp!

5
gs

AO

gw
AO 2S 3Rp

2Rc
1

2Rp
2

3Rc
2Dhp1O~hp

2!, ~19!

where the ratio for the AO model comes from Eq.~13! with
RAO5Rp . As illustrated for a 1:1 size ratio in the inset o
Fig. 7, for smallhp this ratio is indeed almost linear. Th
change with density is more pronounced than that found
a polymer–colloid system with a similar size-ratio, sugge
ing ~not surprisingly! that a full HS system is not such
good model of interacting polymers, even at relatively lo
densities. Making the spheres nonadditive does not fun
mentally alter this picture—the behavior of polymers fa
into the class of ‘‘mean-field fluids,’’48,49 i.e., they do not
behave like hard-core particles.

4. Direct calculation of F 1 by the Widom insertion
method

We also performed direct computer simulations of t
free energyF1 by measuring the insertion probability of
single sphere in a bath of polymers at fixed densityr/r*
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51.16. This is closely related to the so-called Widom ins
tion technique to find the chemical potential.35 Figure 8
shows thatF1 grows with increasing sphere size as expect
The same is true for the contribution due to the deplet
layer, i.e., the contribution proportional to 4pgsRc

2 in Eq.
~1!. However, the relative importance of this surface tens
term increases withdecreasingsphere size, and becomes th
dominant contribution asRc /Rg→0. The values up to
Rc /Rg50.59 were calculated by the insertion probabili
method, while those with largerRc /Rg were taken from the
adsorption method, i.e., from the density profiles, as w
done for example in Fig. 6. ForRc /Rg50.59 we used both
methods and find within the error margins identical resu
consistent with the fact that both approaches are equiva
We also compare to results for ideal polymers@Eq. ~10!# and
for PRISM.31

5. Limit of small colloids

In the limit of smallRc /Rg , scaling arguments and RG
theories predict that the free energy to insert a single part
in a bulk polymer solution takes the form28,42

F15AgRc
d21/nrRg

1/n . ~20!

Where Ag is a universal numerical pre-factor that can
calculated from an RG technique.27,28 For d53 Eq. ~20! re-
duces toF1'18.4rRc

1.30Rg
1.70. This expression is directly

compared to our simulations in Fig. 8. By comparing to E
~1! we can extract the surface tension from the insertion f
energies. This was done for theF1 at r/r* 51.16 shown Fig.
8, and also forL52000 polymers atr/r* 50.94. Using the
longer polymers allows effectively smaller colloidalRc’s to

FIG. 8. Insertion free energyF1 for spheres of various radiiRc , in a poly-
mer bath atr/r* 51.16. For smallerRc /Rg a direct insertion method was
used, while for largerRc /Rg the adsorption method was used. We al
compare 4pRc

2gs(r), the contribution toF1 due to the creation of a deple
tion layer. For smallRc /Rg this term is the dominant contribution to th
insertion free energyF1 . Comparison is also made to an expression fro
RG theory, Eq.~20!, valid in the smallRc /Rg limit ~Ref. 28!, with results
from the PRISM approach~Ref. 31! and withF1 for ideal polymers, taken
from Eq.~10!. Note that for this density, the ideal and interacting results
F1 cross each other atRc /Rg'0.5, below which it is easier to insert a
spherical colloid into an interacting polymer solution than into a nonint
acting one.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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be used in our lattice simulations. The surface tensions
depicted in Fig. 9. At smallq our computer simulation re
sults correspond reasonably well with the asymptotic
results. We expect there to be small errors due to the
creteness of out lattice simulations, similar to those depic
for ideal polymers in Fig. 4. These discretization errors
come more important as the spheres become relati
smaller. We have made some small corrections50 to take this
into account, but a more systematic study, possibly w
longer polymers, would be necessary to completely test
RG results.

When the colloids are much smaller than the polyme
one expects that they only probe the local monomer den
and not the overall number density of polymer coils. In fa
Eq. ~20! implies just that sinceF1}rRg

1/nRc
1.30;rLRc

1.30

5cRc
1.30. The reasonF1 scales linearly with the monome

densityc is that by definition this is very small (c!1) in the
dilute and semidilute regime. The small colloidal particl
probe what is effectively an ideal gas of monomers.

For ideal polymersF1}cRc in the limit of small Rc ,
which implies that for a givenRg and r, and for a small
enoughRc it is easier to insert a hard-sphere into a bath
interacting polymers than it is to insert it into a bath of no
interacting polymers. At first sight this may seem surprisi
but the reason is as follows: Inside an interacting polym
the monomer concentration scales asc;Rg

21.30 while for
ideal polymers it scales asc;Rg

21 . In other words, the in-
teractions swell a polymer and make it less dense; for a g
Rg , the monomer densityc is larger for ideal polymers than
for interaction polymers, and since the small colloids on
probe the local monomer density it is easier to insert
sphere into an interacting system than into a noninterac
system at the sameRg . This effect is illustrated in Fig. 8 for
r/r* 51.16, where the crossover is at aboutRc'0.5Rg .

FIG. 9. Surface tensiongs for spheres of different radiusRc , in a polymer
bath at r/r* 51.16, ~L5500 SAW simulations! and for r/r* 50.94 ~L
52000 SAW simulations!. The insertion and the adsorption methods ag
to within the expected statistical errors of our approach forRc50.59Rg . We
also compare to an expression from RG theory, Eq.~20!, valid in the small
Rc /Rg limit ~Ref. 28!. The arrows on the right depict the values of th
planar surface tensions, valid asRc /Rg→`.
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~This analysis should not be confused with a comparison
fixed L.! Note that the PRISM results also overestimateF1

at smallRc . This is in part because the simplified PRIS
model we compare to also includes ideal polymer statist
resulting in an overestimate of the monomer density co
pared to a true interacting system, an effect already poin
out in Ref. 31.

For large spheres, on the other hand, whereF1

' 4
3pP(r)Rc

3 which scales asF1;r2.30Rc
3 in the semidilute

regime, the spheres do directly probe the number densit
polymer coils, and the insertion free energy for interacti
polymers is always higher than that of ideal polymers at
sameRg and r. Note how differently the large and sma
Rc /Rg limits of F1 scale both withr and withRc . Signifi-
cant differences can be also found for the scaling of
surface tensions since for largeRc /Rg , gs'gw(r)(1
1O(Rg /Rc));r1.539(11O(r20.770Rg /Rc)), while for
small Rc /Rg , the RG expressions imply thatgs;cRc

20.7.

C. Surface tension for polymers as soft colloids

We have recently modeled polymers as single soft c
loids interacting with a pair potential between their cm.18–21

These pair potentials were derived by a liquid state the
based inversion procedure such that the soft colloids h
exactly the same radial distribution functiong(r ) as those
generated by a fully interacting polymer simulation. A sim
lar inversion procedure was used to derive the potential
tween the soft-colloids and a planar wall or a HS. The
wall–polymer or sphere–polymer potentials are such t
they exactly reproduce the one-body density profilesr(r ).

Since our effective polymer–polymer potentials provi
a very accurate representation of the pressureP(r),19,21

while the polymer–wall or polymer–sphere interactions a
constrained to reproduce the correct density profiles,
therefore the correct adsorptionĜ(r), Eq. ~6! implies that
our soft-colloid approach has the correct surface tensions
tomatically built in. Similarly Eq.~1! implies that this ap-
proach correctly reproducesF1 for a sphere immersed in
polymer solution.

IV. CONCLUSIONS

In summary then, we have used computer simulations
SAW polymers on a cubic lattice to calculate the dens
profiles for nonadsorbing polymers near a planar wall, a
near HS’s. From this we were able to calculate and fit
relative adsorptionĜ(r). Together with the equation of state
which is well understood for polymer solutions, this provid
the needed ingredients to calculate the surface tens
through Eq.~6!.

The surface tension of interacting polymers near a pla
wall was shown to differ significantly from that of idea
polymers, or other simple models such as the Asaku
Oosawa penetrable-sphere model, or a pure HS fluid. S
larly, a recent PRISM calculation31 also shows large qualita
tive differences with our results, which could have be
anticipated in view of its use of simplified ideal polyme
statistics. However, if an effective step-length is used,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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correct scaling behavior is obtained in the semidilute regim
On the other hand, some recent RG results29 compare very
well to our calculations. In the semidilute regime, the surfa
tension simplifies to the form given in Eq.~8!, which implies
that gw(r)}j22;r1.539.

Near a sphere with a radius of the same order or lar
than Rg , the surface tensiongs(r) of the polymer solution
can be written in an expansion in the size ratioq. For de-
creasing sphere size~increasingq!, the ratio gs(r)/gw(r)
increases. For a givenq, however,gs(r) approachesgw(r)
as the density increases. We attribute this to the decreas
the effective curvature corrections with increasing dens
since the blob size scales asj(r);r20.770 in the semidilute
regime. This is again consistent with some recent RG ca
lations of the correction coefficientk1(r),29 although further
simulations are needed to confirm the scaling and form of
coefficientsk i(r).

For smaller colloids, it is advantageous to use a dir
Widom insertion technique to calculate the free-energyF1 .
For very small colloids~largeq!, our simulations were con
sistent with asymptotic RG results which suggest thatF1

}cR1.30. This insertion free-energy is dominated by the co
tribution of the depletion layer; its behavior is qualitative
different from the behavior found at smallerq, and suggests
that the expansion of Eq.~6! breaks down for largeq.

Because our soft-colloid approach was derived to rep
duce the correct one-particle density profiles near hard w
or hard-spheres, it will automatically reproduce the corr
adsorptions, and therefore also the correct surface tens
and insertion free-energiesF1 .

The walls and spheres in this study are purely repuls
Adding a wall–polymer attraction should decrease
amount of depletion, and therefore, also lower the surf
tensions. More subtle effects could be expected if in addit
the solvent quality is decreased. New effects are also
pected for binary mixtures of polymers with selective a
sorption of one of the species. These systems will be
subject of future investigations.

The next step is to move from the one-sphere or o
wall problem to the case of a two-sphere or a two-wall s
tem, and calculate the effective interactions between the
particles. This is the subject of a forthcoming paper.51
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