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Density profiles and surface tension of polymers near colloidal surfaces
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The surface tension of interacting polymers in a good solvent is calculated theoretically and by
computer simulations for a planar wall geometry and for the insertion of a single colloidal hard
sphere. This is achieved for the planar wall and for the larger spheres by an adsorption method, and
for smaller spheres by a direct insertion technique. Results for the dilute and semidilute regimes are
compared to results for ideal polymers, the Asakura—Oosawa penetrable-sphere model, and to
integral equations, scaling and renormalization group theories. The largest relative changes with
density are found in the dilute regime, so that theories based on noninteracting polymers rapidly
break down. A recently developed “soft colloid” approach to polymer—colloid mixtures is shown to
correctly describe the one-body insertion free-energy and the related surface tensi@2©
American Institute of Physics[DOI: 10.1063/1.1473658

I. INTRODUCTION finite concentrations of colloidal particles, one must first un-
derstand how interacting polymer coils distribute themselves
Binary mixtures of polymers and colloidal particles in around a single spherical colloid of radiRs. This problem
various solvents are the focus of sustained experimental ang addressed in the present paper using a combination of
theoretical efforts, both because they constitute a challenginglonte Carlo(MC) simulations and scaling theories to deter-
problem in Statistical Mechanics of “soft matter,” and be- mine the key quantities’ which are the monomer or center-
cause of their technological importance in many indUStrialof_mass(cm) density prof"esp(r) of SAW po|ymers around
processes. One of the most striking aspects of polymery single impenetrable sphere, as well as the resulting surface
colloid mixtures, namely the depletion interaction betweenension. IfR, denotes the radius of gyration of the polymers,
colloids induced by nonadsorbing polymer was recognizedhese quantities clearly depend on the ratje Ry/Re,
nearly 50 years agbMore recently, the importance of the which controls the curvature effects. The limjt-0, corre-
polymer depletant in determining the phase behavior of thgponding to a polymer solution near a planar wall, will be
mixtures was realizetland much recent experimental work examined first, before considering the case of figjteThe
was devoted to the phase diagramstructure’’ interfaces]  complete theory for the opposite limigs 1, will be the sub-
and to the direct measurement of the effectiveject of a future publication, although we show some prelimi-
interactions’™! On the theoretical side, most efforts have nary results here. Throughout this work we focus on the
concentrated on impenetrable Spherical CO”OidS, while Val’id”ute and semidilute regimé?sszof the po|ymer3’ where the
ous models and theoretical techniques have been investigatggbnomer densityc is low enough for detailed monomer—
for the description of the nonadsorbing polymer coils. Themonomer correlations to be unimportant; the melt regime,
models include noninteractinfdea) polymers;****poly-  wherec becomes appreciable, will not be treated here.
mers represented as penetrable-sphérédand interacting The surface tension of a polymer solution surrounding a
polymers coarse-grained to the level of “soft colloid&®™**  gphere is macroscopically defined by considering the immer-
Monomer level representations of polymer chains, like thesion of a single hard colloidal particle into a bath of nonad-
self-avoiding walk(SAW) model, appropriate in good sol- sorbing polymer. Because this immersion reduces the num-
vent, have been considered within polymer scalingber of configurations available to the polymers, resulting in
approache&’**renormalization groupRG) theory?>**and  an entropically induced depletion layer around the colloid,
fluid integral equationd>! there is a free energy coBt, for adding a single sphere to

While many effects for the simplest case of colloids the polymer solution which naturally splits into volume and
mixed with noninteracting polymer are quantitatively under-syrface terms

stood, the behavior of the experimentally more relevant case

of polymers with excluded volume interactions is at best F,=TI(p) ‘3—‘77R§+47TR§ys(p). 1)
understood on a qualitative basis; a quantitatively reliable

theory is still lacking. Clearly, to construct such a theory forrha first term in Eq.(1), describes the reversible work

needed to create a cavity of radiRs in the polymer solu-
3Electronic mail: aal20@cus.cam.ac.uk tion. Since the osmotic pressurg p) of a polymer solution
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in the dilute and semidilute regimes is quantitatively known ' '

as a function of polymer concentratiop from RG 05 - 05 L[ p/p*=0.0 ﬁ
calculations?® this volume term is well understood. The i o gjg::?';;
problem of a quantitative description of a single colloid in a — pb/p*=2:65
polymer solution thus reduces to understanding the secon —-— pfp*=6.46
term, which defines the surface tensigg(p), i.e., the free-

energy per unit area that is directly related to the creation of%
the depletion layer. It is customary to relate the surface ten-
sion y¢(p) around a sphere to the surface tensigy(p)

near a planar wall, by expanding in powers of the ratio
q=Ry/R¢

¥s(p) = ywl(p) + k1(p)a+ k2(p) G2+ O(G3), ()

which is expected to be most useful whgiis not too large.
The coefficientsk;(p) control the curvature corrections.
They are ansaglggous to the Tolman corrections in the Macro g, 1. (3 The wall-polymer cm profileh(z)=p(2)/p—1 for L=500
scopic Casé.' SAW polymers at different bulk concentratiorib) The wall-monomer pro-

The paper is Organized as follows: The case of a Sing|é|e hn(2) for the same bulk concentrations. Both representations result, by
plate or hard wall immersed in a polymer solution is dis_definition, in the same relative adsorptions. The full lines are a fit to the
cussed in Sec. Il, where we report results for density profile§™P'e formh
p(z) at various polymer concentrations. These density pro-
files define the reduced adsorpticﬁ(p), from which the o ) )
surface tensiony,(p) may ultimately be extracted. These expectec_JI to e_xhlblt properties close to_ those corre_sponqhng to
considerations are extended to spherical colloids in Sec. IIth€ scaling limitL—. Further details of the simulation
where simulation results for the density profiles are reporte(';inmhod and the mo_del can be found in Refs. 18-21. Note
for size ratiosq=0.67,1.05, and 1.68. These data are therfat & small correction to these results must be appfied.
used to computey(p) and thex(p): limiting forms are Since our models are all athermal, we set_ 1/(kBT)= 1.
extracted for thep—0 and the semidilute regimes. The re-  Examples of the depletion layer density profiles near a
sults are compared to the theoretical predictions for idea!@d wall are depicted in Fig. 1 for a polymer center-of-mass
polymers, for the penetrable sphere model, and wherever apcM) representation, as well as for a monomer representa-
plicable, to RG and integral equation predictions. The limittion- Both profiles hé;\ve, by definition, the same reduced ad-
of large q, where the expansiof2) becomes less useful is SOTPtion, defined as:
also discussed. For this limit we also report on some prelimi- 1 9(QA) w
nary direct simulation results fdf, based on the Widom I'(p)=— ;T:
insertion techniqué® Finally we show that the soft colloid
paradigm has the correct thermodynamics of the single cowhere Q®/A is the surface excess grand potential per unit
loid problem automatically built in. areaA. h(z)=p(2)/p—1, with p(z) the cm density profile

of the polymer coils a distance from the surface. In the
monomer representation one should repladsy c=LN/M

Il. DENSITY PROFILES AND SURFACE TENSION andh(z) by the monomer profile; the two reduced adsorp-
NEAR A SINGLE WALL tions are equal and measure the reduction in the number of

A single hard wall in a bath of nonadsorbing polymerschains near the surface.
creates an entropically induced depletion layer because the In the low-density limit an RG calculation based on a
polymers have fewer possible configurations near the walffirst ordere-expansion give$'(0)~ — 1.074R,*"*"which is
To calculate these density profiles we performed Monteslightly less than
Carlo simulations of the popular self avoiding wdBRAW) Ny
model on a cubic lattice. Even though this model ignores all FId:ZRQ/\/;~ 1128, (4)
chemical details of a real polymer system except the exthe density independent result for an ideal polymer with the
cluded volume and polymer connectivity, it reproduces thesame sizeRg26 (but largerL due to the different scaling of
scaling behavior and many other physical properties of athetthe radius of gyration This reflects the fact that for a given
mal polymer solution$>**For N polymers of length. ona Ry, the polymer—polymer interactions reduce the size of the
lattice of M sites, the polymer density is given by  depletion layer, an effect which becomes more pronounced
=N/M, while the monomer density is=LN/M. The poly-  with increasing density; see e.g., Fig. 1.
mers are characterized by the radius of gyration, which  For the semidilute regime, de Gennes has proposed an
scales as R,~L", where »~0.588 is the Flory approximate expression for the monomer profile near a wall,
exponenﬁ2’25'3%For densitiep less than the overlap density h,,(z) =tanH(Z&(p))—1, where¢(p) is the correlation length
p*=1/(§7rRS) the system is in the dilute regime, while for or blob size?? If we identify £(p) with —T'(p) then, as
p=p*, andc<1, the system is in the semidilute regime. We shown in Fig. 1, this form provides a fairly accurate fit to our
use L=500 SAW polymers in our simulations, which are simulation results. Sincé(p)~p """ V~p~0770in the

w(2) =tanif(@ T (p))—1.

h(z)dz, 3)
0
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Ol:“from L=500 SAW simulations
—— TI'from fit to simulation data
---- -R(p)/R,(p=0)

. FIG. 3. Polymer—wall surface tensiop,(p) divided by yiv‘a(p). The full
FIG. 2. Relative adsorptiofi(p), in units of Ry, vs density. Circles denote |ines with square symbols are for interacting polymers and were calculated
direct computer simulations df=500 SAW polymers near a single hard with Eq. (7), while the dotted line with circle symbols denotes the simpler
wall, and the line denotes the simple fit with the correct scaling behaviorexpression of Eq(8) which is only valid in the semidilute scaling regime,
given by Eq. (5). Also shown is the density dependence of the where y,~p'% Also shown are two recent RG resulfRef. 29: The
radius of gyration. In the semi-dilute reginies — £~ p°77, while Ry(p)/ dashed line denotes the renormalized tree expansion, while the dotted-
Ry(p=0)~p®t3 dashed line denotes the asymptotic limit fore@xpansion. The solid line is
from Eq. (9), a result derived from a recent PRISM calculatigef. 31,
while the dotted line denotes the results when PRISM is supplemented by an
effective step length, which incorporates the correct scaling behavior. The

o : e : : . ~effective step length correction works well in the semidilute regime, but in
semidilute regime, this implies that the density prOf”eSthe low density limit it leads to a spurious divergence. In the dilute regime,

should become more narrow with increasing density, a treng is therefore, better to use the simplified PRISM. The inset shows the ratio

clearly seen in Fig. 1. of the full and simplified expressions far,(p). They coincide for higher
From the density profiles of Fig. 1, we can derive thedensitie_s but in the low density Iimit, the semidilute scaling expression

adsorption at different densities using E@). These are overestimates the true surface tension by a factor 1.5.

shown in Fig. 2, together with a simple fit constrained to give

the expectedp=0 value, and the correct scaling behav- . . . .
“o770  €quation to express the surface tension near a single wall in

lor in the semidilute regime where I'(p)~£{(p)~p ' terms of the relative adsorption and the equation of state:

namely
N p p 3\ —(0.2565) ( ):&Qexz_fp(m
[(p)=—-1.07R, 1+7.63p—*+14.5€<p—*) ) . Twlp A o\ dp’

I'(p")dp’. (6)

(50 The derivation of this equation can be found, for example, in

Throughout this paper the value of the radius of gyration isR€fS. 24 and 38. By performing one integration by parts
conventionally chosen as that appropriate for an isolate-t. density, Eq(6) can also be expressed as
polymer, i.e.,Ry=Ry(p=0). However, as the polymer con- A p af“(p’)
centration increases, the measuRydp) will decrease with Yolp)= —H(p)r(p)-l-f H(p’)( -
density as shown in Fig. 2. In the semidilute regime this 0 p
scales  as Ry(p)/Ry(p=0)~p@ D=2~ p=011522  1pa first term in this equation takes the form of a pressure
which decreases much more slowly with densjty than thgjmes a length. For ideal polymers, Whel?ép) is indepen-
correlation lengthé(p) or the relative adsorptiol(p). In dent of density;*°this term completely describes the surface
fact atp/p* =1, the crossover from the dilute to the semidi- tension of the depletion layer. It is just thentropio free
lute regimesf'(p) has dropped to 59% of its—0 value, energy cost per unit area of creating a cavity of volume
while Ry(p) has only changed by a few percent. The largest(p)A. The secondpositive term is therefore only relevant
rate of relative change in the adsorption is, therefore, founef there are polymer—polymer interactions.
in the dilute regime, suggesting that theories based on the \We have previously calculated the equation of state for
p—0 limit may start to break down well before the semidi- | =500 andL =2000 SAW polymers®?1both of which are
lute regime is reached. The border between the dilute anglell described by analytic RG expressicfidJsing this for
semidilute regimes is not sharp. For the semidilute regimef(p) together with the fit to the relative adsorption from Eq.
the asymptotic forms derived by scaling theories appear to bgs), we can now use Eq7) to calculate the surface tension
reached at a lower density fdi(p) than fong(p).19 of a solution of polymers in good solvent near a single wall.
One route to calculate the surface tensions from the der@ur results are shown in Fig. 3. In the low density limit the
sity profiles is to use an extension of the Gibbs adsorptiorsurface tension reduces to the same functional form as for

)dp'. @

Downloaded 30 May 2002 to 131.111.116.196. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



10550  J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Louis et al.

ideal polymers, i.e., y,(p)=—II(p)['(p), so that scaling without the need for an effective step-length. This
lim /% 0Yu(p)~1.074Ryp. Note that for all but the lowest would have the advantage that the surface tension would also
densities, the surface tension is considerably larger than tHee correctly described in the dilute regime, where the use of
ideal polymer FeSU|b/{ﬂ(p)=2pRg/\/;- The surface tension an effective step-length results in a spurious divergence as
for interacting polymers increases more rapidly with increas?—0-

ing density both becausH(p) increases faster thaﬁ(p)

decreases in the first term of E{), and because the second !ll. DENSITY PROFILES AND SURFACE TENSION

term, which is absent for noninteracting polymers, increase&ROUND A HARD SPHERE

with density as well. . o . Having described the surface tension for a polymer so-
Further simplifications occur in the semidilute regime. |ytion near a single hard wall, we next investigate the related
For example, when the scaling forms for the osmotichprespromem of a polymer solution near a single hard splie®
sure, [1~p3/G*~1 " and for the reduced adsorptioh,  of radius R.. As discussed in the Introduction, adding a
~p~"B3=1 are used in Eq(7), then the integral in the single HS to a polymer solution reduces the number of con-
second term can be easily performed and turns out to bfigurations available to the polymers, and results in a finite
exactly half the first term, a result that is independent of thensertion free energy or chemical potential described by Eq.
value of the exponent. The surface tension, therefore, takes(1). Besides the configurations directly excluded by the

on a very simple form sphere of volumeinR?, there are also configurations ex-
s 3 N 20i(3v—1)_ 1539 cluded near the surface of the sphere, an effect which mani-
Yalp)=— ()T (p)~p =P ®  fests itself in an entropically driven depletion layer, just as

As shown in Fig. 3, this expression works remarkably wellWas found for the case of a hard vyall. However, the curva-
for larger densities into the semidilute regime. Deviations ddure Of the sphere leads to corrections to the planar surface
occur for the dilute regime where E¢B) overestimates the tension, as described by E), i.e., the surface tension
surface tension by a factor 1.5 fpr~0, as demonstrated in ¥s(p) depends not only on the polymer dengfyout also on
the inset of Fig. 3. R. through the ratiqj=Ry/R;.

In a recent publication Maassen, Eisenriegler, anda. |deal polymers
Bringer’® have used the renormalized tree approximation to ) ) ) .
derive a surface tension which compares well with our re- The free energy cost of inserting a single HS into a bath

. : 41
sults, as shown in Fig. 3. A similar asymptotic RG ©f ideal polymers is knod

e-expansion compares slightly less well. The difference be- op 1 6q
tween the two approximations gives an estimate of the error Ff=p—* ag 1+ \/—_—|—3q2 . (10
T

in the RG approach. It should be kept in mind that our simu-
lation approach also incurs small errors through the use aBy combining this result with Eq(1), it follows that the
the fitted form ofl’(p), and because we use polymers of aideal polymer surface tension takes the form:
finite length. id ~_ _id
Fuchs and Schweitz&recently applied the polymer ref- 7s(P)=vu(p)+PRGQ. (1)
erence interaction site mod@RISM) approach to polymer— The curvature corrections defined in Eg) take on a par-
colloid mixtures. In the limit of low colloid density, a num- ticularly simple form here, since:f’(p)=pRg, and ;=0
ber of analytic results can be derived for the insertion fregor i =2. Note that this expression is not simply an expansion
energyF,, from which the surface tension can be extractedn q=Ry/R.; it is valid for all size ratios.
by using Egs(1) and Eq.(2) In 1958 Asakura and OosaWaAO) introduced a model
where the ideal polymers are approximated as inter-
1+ 1.06%). (9) penetrable spheres of radié&. This corresponds to ap-
P proximating the true depletion layer by a step-function. The
free-energy of insertion of a single hard sphere into a bath of
AO particles can be easily calculated to be

Y (p)=1.279Ry

Here we have used the PRISM results arising from loca
packing information(see Ref. 31 for detailsAs can be seen
in Fig. 3 this PRISM approach does not show the right scal- 1

ing behavior. This is not surprising since these results are F1 = ﬂAho(1+QAo)3, (12
based on a simplified PRISM model with an id€@hussiapn A0

description of the internal polymer correlations. This has thevhere 7ao=3mpR3o is analogous t/p*, and we have
advantage of being analytically solvable, but the disadvandefined the size ratigao=Rao/R.. The surface tension is,
tage of exhibiting the wrong scaling behavior. In the semidi-therefore, given by

lute regime, this can be remedied by choosing an effective oR

step-lengtif® which sets the correct scaling behavior of the  12°%(p) = ¥2%(p) + pRaclao+ —= (Uao)?, (13
radius of gyratiorRy~ p~(1~2"/(2(1=3) ‘When this correc- 3

tion is applied, Eq.(9) shows the right scaling behavior in where)/\'fvo(p)szAo. In this case the curvature corrections
the semidilute regime, as shown in Fig. 3. In principle, ahave a very simple geometrical origin: The volume of a
fully self-consistent PRISM calculation, which includes the spherical shell of widtlR,o with an inner radius oR has a
correct internal polymer statistics, should result in the correctarger volume than that of a flat layer of widRyg and area
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FIG. 4. The effective AO radiuRS™ , given by Eq.(14), which would result =
in the same surface tension for an AO fluid around a sphere of r&ias =

found for ideal polymers of siz&;. For infinite sphere sizé.e., a wal)

Rao= (2I\/7) Ry As the relative sphere si#, /Ry decreases this effective
parameter decreases due to the deformation of the polymers around a
sphere. The symbols denote direct simulatibrs200 ideal polymers on a
lattice, taken from Ref. 12. The small differences are due to the discrete
nature of the lattice used in the simulations.

FIG. 5. The polymer cm density profilg(r) around a sphere for the ratios

q=Ry/R;=0.67,1.05,1.68graphs from top to bottom For each sphere

size the curves are fop/p*=0.037,0.30,0.58,1.16,2.3%s0lid, dotted,
47TR§. In part this is a matter of definition. For hard par- dashed, long-dashed, and dotted—dashed lines, respektiity depletion

ticles one can also find instances in the literature whye layer narrows with increasing density, just as was found for as single wall
+Rao is taken as the radius of the Gibbs dividing Surface'(compare with Flg. L The small vertical lines denote ‘the position of the

. . IR . . ~ radius of the colloid. The polymers can wrap more easily around the smaller
The AO model surface tension vanishes if it is defined in thisggids, which explains why the cm profile penetrates further into the col-
way. loid for smallerR; /Ry .

I the prescriptiorRao=2Ry/\/7 is used to set the free

parameter in the AO model, then the surface tension for the i
planar wall is the same as that of ideal polymers. HoweverB- Intéracting polymers
this prescription no longer holds for spheres immersed in d. Low density limit for interacting polymers
polymer solution, since the curvature corrections to the sur- ., interacting polymers, the— 0 limit of the curvature
face tension for ideal polymers are not the same as those @hrections to the surface tension have been calculated to
the AO model. Physically this difference arises because thﬁrst order in ane-expansion by Hanke, Eisenriegler, and

AO model assumes a fixed depletion layer Wik, while  Hiatrich2” For large spheresmall R, /R, ,) they find
the (idea) polymers can deform around a sphere, which g

leads to an effectively smaller depletion layer. This effect . ys(p)
becomes progressively more pronounced with decreasing p_}o'yw(p)
size ratioR./Ry."? An effective AO parameter which takes . _ .
this deformation effect into account can be derived by equatl" this low density and smafj regime, the curvature correc-

~1+0.8491—0.037%2+ O(g3). (15)

ing the two surface tensions, Eq41) and (13) tions for interacting polymers are quite similar to those found
for noninteracting polymers. Compare, for example, the first
off 113 relative curvature correction coefficient, which is 0.849 for
%_ E i 2| _ interacting polymers, and 0.886 for ideal polymers. In the
= 1+ g+3q 1]. (14 ; e .
Ry ¢ Jr opposite(small sphereq— < limit the differences are more

pronounced:y Y/ y9~q, 4%/ y42°~(qao)? while for inter-
Since the pressures in the two systems are the samdi.e., 2¢tNg polymer?ﬁ? aréciofgglgg% theory approaches predict
—p, this is equivalent to equating the two insertion free-that ¥s/yw=(a)™" “~q= 0"
energied; of Egs.(10) and(12), as done in Refs. 12 and 26. . o -
For g=R,/R.—0 this expression reduces tRﬁfé /R, 2. Interacting polymers at finite densities
=2/\/m, the known result for a single wall. For largeon We have calculated the density profilagr)=p(r)/p
the other hand, the effective AO radius scaleslﬁ%/Rg —1 for polymers around spheres of radits=1.4R,, R,
~q Y3 For fixed Ry, the effective radiusRST decreases =0.9%Ry, and R;=0.5R, from simulations ofL =500
monotonically with decreasing sphere sRg, as shown in  SAW polymers. These are shown in Fig. 5 in the cm repre-
Fig. 4. sentation. Just as was found for the case of a planar wall, the
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FIG. 6. Surface tension for a planar wall, and for spheres @it0.67, q FIG. 7. Ratio of surface tension of a sphere to the surface tension of a wall
=1.05, andg=1.68 as a function of density. We also include the planar for spheres withg=0.67, q=1.05, andq=1.68. Inset: Comparison of an
surface tension of a HS fluid, witR,=R, such thatn,=p/p*. Inset: RG calculation(Ref. 29 valid to lowest order irg, and our direct calcula-
Blowup of the graph for low densities. The planar wall surface tension fortion for q=1.05. We also compare the ratio of the surface tension of a HS
interacting polymers, ideal polymers, and the HS system are compared. fluid around a single inserted sphere to the planar HS surface tension. The
size-ratio is 1:1, andy,=p/p*. The value aty,=0 is equal to that of the
AO model, given by Eq(13).

depletion layers shrink with increasing bulk densityBe-

cause the polymers can deform around the colloid, the den-

sity profiles in the cm representation can penetrate into the

HS region, an effect which becomes more pronounced fogilute regime; for increasing/p* the two terms appear to

smaller colloids(largerq). (For an interesting proposal that approach each other asymptotically. Just as we argued for the

describes the monomer density around a spherical particlgdsorptions, the blob picture in the semidilute regime implies

we refer to Ref. 43. that the curvature corrections should decrease with increas-
The relative adsorption around a sphere is defined as ing density, which is what we observe. This also implies that

) 47R2 J(OA) vs(p) = yu(p)~p°% in the semidilute regime. Of course
477R§1“S(p)= - ¢ the smaller the HS, the higher the density one needs for the
p I curvature corrections to become negligible. This picture is
- 4 confirmed by recent scaling and RG arguméntsyhich
ZL Aarr2h(r)dr+ §7TR§- (16)  show that the first curvature correction coefficiert

~p¥!Gv=1)~ p0770 implying that with increasing density,
Hereh(r) is defined from the center of the sphere, &hp) the contribution of the curvature corrections defined in Eq.
has the dimension of a length. The volume of a single HS2) becomes relatively smaller, so that approaches, . In
was subtracted off so that the adsorption only describes thée inset of Fig. 7 we compare our results to the RG calcu-
effects of the depletion layer around a sphere. For low denlations, valid to lowest order ing, i.e., ys(p)=yw(p)
sity the relative adsorption of a sphere is larger than that of a& «1(p)d. Although only the results for the ratp=1.05 are
planar wall by a curvature correction factor term similar toshown, they are similar to those at the other two size-ratios,
those described in Eq15). As the density increases, the Which also show an overestimate by the RG. The difference
relative adsorption decreases and tends asymptotically to tHgay be due in part to higher ordef(p) terms which have
same value as for a planar wall. This can be understood frofiot yet been calculated by RG. To confirm this picture fur-
the simple “blob” picturé? in the semidilute regime: Since ther simulations are needed sin¢a: our simulations of the
the ratio of the blob-size to the spheiép)/R. decreases adsorption are only fop/p*<2.32, and we extrapolated to
with increasing density, the curvature corrections to the relahigher densities using a fit form which scales -a$'(p)
tive adsorption are also expected to become relatively less £(p)~p %77 at high densitiesb) we only examined
important with increasing density. three different sphere sizes so that it is difficult to directly
The surface tensior(p) can now be calculated from extractx,(p), and for that matter the higher ordey(p).
Eq. (6) using the adsorption defined in E46). In Fig. 6, we Finally, we reemphasize how much the density depen-
compare the surface tension for three different sphere sizetence of the surface tension of the interacting polymers dif-
to vw(p), the value for a planar wall. As expected from the fers from that of ideal polymers or the related Asakura—
results for low densitiesjsee e.g., Eq(15)], for a given = Oosawa model, where the ratio of the wall to the sphere
densityp, the surface tension increases with decreaflpg  surface tensions is independent of density, and close to that
The ratioys(p)/ yw(p), shown in Fig. 7, decreases with in- of interacting polymers in the low-density limfcompare
creasingp/p*. Again, the rate of change is largest in the Egs.(11), (13), and(15)].
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3. Comparison with a hard-sphere model 20 . » ‘

One might inquire what would happen if the polymers ’
were modeled as HS instead. By using the very accurate =—=F, from insertion A
Rosenfeld fundamental measure density functinach- 15 | = 4nRy, from insertion /o
nique, an explicit form for the surface tension of a HS fluid S Z;tg"zrz af‘g::‘rggggrpﬁon J/
with radiuss R, around a single HSradius R;) has been e F, for small RJR, limit J/
calculated _ ——— F, from PRISM w

Hs w10 | —-—- F, forideal polymers / 3

s (77p)_ 2(1_77p)<&)

Yl 77p) (2+ 77p) Re

2(1-7p)%n(1-7,) ( Ry\? an 5
37]p(2+ 77p) R/’
where we have defined the packing fractigp= %prRg,
for a number densitp,,. The planar wall-surface tension is g 0.2 04 06 08 1
given by R c/F{g
Yl 7]p) = M (18) FIG. 8. Insertion free enerdy, for spheres of various radR. , in a poly-

877RS(1— np)z' mer bath afp/p* =1.16. For smalleR. /R, a direct insertion method was

. . . used, while for largeR;/R, the adsorption method was used. We also
We note that this result for the surface tension of a HS fluithompare 4-R2y.(p), the contribution tdF, due to the creation of a deple-

around a sphere was also derived independently by scaleidn layer. For smalR. /R, this term is the dominant contribution to the
particle theory® Equation (17) can be generalized to the insertion free energf;. Comparison is also made to an expression from
nonadditive HS model, for which the cross diameEQrp RG theory, Eq(20), valid in the smaIIRc/.Rg limit (Ref. 28, with results

1 . from the PRISM approactRef. 31 and withF, for ideal polymers, taken
# 5( Re+ Rp)’ so that one can smoothly 'nterpOIate betWeenfrom Eq.(10). Note that for this density, the ideal and interacting results for
the fully repulsive HS model and the fully nonadditive AO F, cross each other &./R,~0.5, below which it is easier to insert a
modelf‘s'47 spherical colloid into an interacting polymer solution than into a noninter-

To lowest order in density, the surface tension of a HS?cting one.

system near a planar wall ﬁﬂsw Rpp, i.e., the same as that
of the AO model, which is close to that of interacting poly- =1.16. This is closely related to the so-called Widom inser-
mers in the same limit wherg,~1.07/Rp. However, the tion technique to find the chemical potential Figure 8
terms of orderp? are already significantly larger in the HS shows thaf; grows with increasing sphere size as expected.
case. Therefore, as illustrated in the inset of Fig. 6, the HJhe same is true for the contribution due to the depletion
model gives a large relative overestimate of the surface terfayer, i.e., the contribution proportional torsRZ in Eg.
sion well before reaching the packing fraction at which the(1). However, the relative importance of this surface tension
system freezegHere we took units wherR,= R, so thatz, term increases witdecreasingsphere size, and becomes the

is equivalent top/p*.) dominant contribution asR./Ry—0. The values up to
For a fixed size-rati®, /R, the curvature corrections for Rc/R;=0.59 were calculated by the insertion probability

a HS system vary with density as method, while those with largeR. /R, were taken from the
adsorption method, i.e., from the density profiles, as was

HS, AO 2

Ys () _ Ys (ﬁJr 2R, o) (199  done for example in Fig. 6. FdR;/R,=0.59 we used both

Yoy Yl 2R 3RZ e o methods and find within the error margins identical results,
where the ratio for the AO model comes from Eg3) with consistent with the fact that bot.h approaches are equivalent.
Rao=Rp . As illustrated for a 1:1 size ratio in the inset of }/gfsséf\:ﬂogpare to results for ideal polymEs|. (10)] and
Fig. 7, for small 5, this ratio is indeed almost linear. The '
change with density is more pronounced than that found fok | it of small colloids
a polymer—colloid system with a similar size-ratio, suggest-
ing (not surprisingly that a full HS system is not such a . . . ) ;
good model of interacting polymers, even at relatively Iwa[heorles predict that thg free energy to |n32ert a single particle
densities. Making the spheres nonadditive does not fundd" 2 bulk polymer solution takes the foffif

In the limit of smallR./Ry, scaling arguments and RG

mentally alter this picture—the behavior of polymers falls ~ F,;=A;RIpRI". (20)
into the class of “mean-field fluids;*°i.e., they do not Where A i . | ical (actor that b
behave like hard-core particles. ere A, is a universal numerical pre-factor that can be

calculated from an RG techniqdé?® For d=3 Eq. (20) re-
duces toF;~18.4R;*R;"°. This expression is directly
compared to our simulations in Fig. 8. By comparing to Eq.
(1) we can extract the surface tension from the insertion free
We also performed direct computer simulations of theenergies. This was done for tkg at p/p* = 1.16 shown Fig.
free energyF, by measuring the insertion probability of a 8, and also folL. =2000 polymers ap/p* =0.94. Using the
single sphere in a bath of polymers at fixed dengityp* longer polymers allows effectively smaller colloidgal’s to

4. Direct calculation of F ; by the Widom insertion
method
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25 . . (This analysis should not be confused with a comparison at
“', PP em— fixed L.) Note that the PRISM results also overestim@te
||'.‘ % zs fg: S/g*;o:g 1 E;g;"m';xic'%"é) at smallR.. This is in part because the simplified PRISM
2 1y, for p/p*=1.16 (from insertion) ] model we compare to also includes ideal polymer statistics,
\\‘.‘ @y, for p/p*=1.16 (from adsorption) resulting in an overestimate of the monomer density com-
YW\ | === v for p/p*=1.16 (asymptotic RG) pared to a true interacting system, an effect already pointed
L3 i out in Ref. 31.
o For large spheres, on the other hand, whéte
~ 47l (p)RS which scales af,~ p?*R? in the semidilute
ir | regime, the spheres do directly probe the number density of
e G polymer coils, and the insertion free energy for interacting
- . S o Yw(p/p*=13;)—:ez polymers is always higher than that of ideal polymers at the
' S Y, (p/p*=0.94) — sameRy and p. Note how differently the large and small
\\\\\\ R:/Ry limits of F, scale both withp and withR. . Signifi-
0 , = cant differences can be also found for the scaling of the
0 0.5 1 1.5 surface tensions since for largB./Ry, vs~vyw(p)(1
R/R, +O(Ry/R))~pt 531+ O(p *T'RIR;)),  while for

_ , o smallR./Ry, the RG expressions imply that~cR; *”’.
FIG. 9. Surface tension for spheres of different radiug;, in a polymer

bath atp/p*=1.16, (L=500 SAW simulations and for p/p*=0.94 (L C. Surface tension for polymers as soft colloids
=2000 SAW simulations The insertion and the adsorption methods agree

to within the expected statistical errors of our approachRior 0.5, . We We have recently modeled polymers as single soft col-
also compare to an expression from RG theory, (@), valid in the small  |oids interacting with a pair potential between their t?*
R:/Ry limit (Ref. 2@. The arrows on the right depict the values of the Thege pair potentials were derived by a liquid state theory
planar surface tensions, valid B3/Ry <. based inversion procedure such that the soft colloids have
exactly the same radial distribution functigfr) as those
be used in our lattice simulations. The surface tensions ar%en_erateq by a fully interacting polymer _simulation. A .Simi'
depicted in Fig. 9. At smallj our computer simulation re- lar inversion procedL_Jre was used to derive the potential be-
sults correspond reasonably well with the asymptotic RGtween the soft-colloids and a planar wa!l or a HS. These
results. We expect there to be small errors due to the disv_vall—polymer or sphere—polymer potentle_tls are. such that
creteness of out lattice simulations, similar to those depicteHﬁ|ey gxactly reprodyce the one-body density prc_)fplels). :
for ideal polymers in Fig. 4. These discretization errors be- Since our effective polymgr—polymer potentials E’Jgi"de
come more important as the spheres become relativel very accurate representation of the prefss][[(qe;),' ’
smaller. We have made some small correctiis take this hile th_e polymer—wall or polymer—sphere |_nteract|_ons are
into account, but a more systematic study, possibly Withconstramed to reproduce tthcorrect dens!ty proﬂles, and
longer polymers, would be necessary to completely test thiherefore the correct adsorptidi(p), Eq. (6) implies that
RG results. our soft-colloid approach has the correct surface tensions au-
When the colloids are much smaller than the poWmers:tomatically built in. Similarly Eq.(1) implies. that this ap-
one expects that they only probe the local monomer densitproach correctly reproduces, for a sphere immersed in a
and not the overall number density of polymer coils. In fact,Polymer solution.
Eq. (20) implies just that sinceF;=pRY"RE*~pL R}
=cRY%. The reasorF; scales linearly with the monomer
densityc is that by definition this is very smalc&1) inthe v, CONCLUSIONS
dilute and semidilute regime. The small colloidal particles
probe what is effectively an ideal gas of monomers. In summary then, we have used computer simulations of
For ideal polymersF;=cR; in the limit of small R, SAW polymers on a cubic lattice to calculate the density
which implies that for a giverR; and p, and for a small profiles for nonadsorbing polymers near a planar wall, and
enoughR; it is easier to insert a hard-sphere into a bath ofnear HS’s. From this we were able to calculate and fit the
interacting polymers than it is to insert it into a bath of non-relative adsorptiod'(p). Together with the equation of state,
interacting polymers. At first sight this may seem surprising,which is well understood for polymer solutions, this provides
but the reason is as follows: Inside an interacting polymerthe needed ingredients to calculate the surface tensions
the monomer concentration scales @sR;** while for  through Eq.(6).
ideal polymers it scales aSngl. In other words, the in- The surface tension of interacting polymers near a planar
teractions swell a polymer and make it less dense; for a givewall was shown to differ significantly from that of ideal
Ry, the monomer density is larger for ideal polymers than polymers, or other simple models such as the Asakura—
for interaction polymers, and since the small colloids onlyOosawa penetrable-sphere model, or a pure HS fluid. Simi-
probe the local monomer density it is easier to insert thdarly, a recent PRISM calculatidhalso shows large qualita-
sphere into an interacting system than into a noninteractingve differences with our results, which could have been
system at the san®, . This effect is illustrated in Fig. 8 for anticipated in view of its use of simplified ideal polymer
plp*=1.16, where the crossover is at abd@f~0.5R. statistics. However, if an effective step-length is used, the
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