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Accurate effective pair potentials for polymer solutions
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Dilute or semidilute solutions of nonintersecting self-avoiding walk~SAW! polymer chains are
mapped onto a fluid of ‘‘soft’’ particles interacting via an effective pair potential between their
centers of mass. This mapping is achieved by inverting the pair distribution function of the centers
of mass of the original polymer chains, using integral equation techniques from the theory of simple
fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the
radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of
the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The
effective potential is used to derive the osmotic equation of state, which is compared to simulation
data for the full SAW segment model, and to the predictions of renormalization group calculations.
A similar inversion procedure is used to derive an effective wall–polymer potential from the center
of mass density profiles near the wall, obtained from simulations of the full polymer segment model.
The resulting wall–polymer potential turns out to depend strongly on bulk polymer concentration
when polymer–polymer correlations are taken into account, leading to a considerable enhancement
of the effective repulsion with increasing concentration. The effective polymer–polymer and wall–
polymer potentials are combined to calculate the depletion interaction induced by SAW polymers
between two walls. The calculated depletion interaction agrees well with the ‘‘exact’’ results from
much more computer-intensive direct simulation of the full polymer-segment model, and clearly
illustrates the inadequacy—in the semidilute regime—of the standard Asakura–Oosawa
approximation based on the assumption of noninteracting polymer coils. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1344606#
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I. INTRODUCTION

Polymer solutions have attracted the attention of th
rists and experimentalists alike for many decades, and a
oretical understanding of their structure and phase beha
based on mean-field and on scaling or renormalization gr
arguments, is by now well established.1–6 Recently, there has
been a growing interest in the structure, phase behavior
rheology of binary systems involving colloidal particles a
nonadsorbing polymers.7–22 In such mixtures the mean siz
of the polymer coils, i.e., their radius of gyrationRg , is
comparable to, or smaller than the diameters of the colloidal
particles. Since the latter may, for most purposes, be m
eled as ‘‘hard’’ convex bodies dominated by excluded v
ume effects on the mesoscopic scales, it is clear that a
statistical description of the polymer coils requires a h
degree of coarse-graining to provide a tractable theory
these mixtures. Such coarse-graining is, more generally,
sirable for theoretical investigations of large scale pheno
ena involving large numbers of interacting polymer chains
the dilute of semidilute regimes. In particular, simulations
solutions involving many interacting polymer chains beco
rapidly intractable if a detailed description at the level
monomers or even of Kuhn segments is retained. It is th
fore tempting to consider polymer coils as ‘‘soft’’ particle
and to replace the detailed interactions between segmen
4290021-9606/2001/114(9)/4296/16/$18.00
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an effective interaction acting between the centers-of-m
~CM! of different polymer coils as shown schematically
Fig. 1. Similarly, an effective interaction must be worked o
between the ‘‘soft’’ polymer coils and the ‘‘hard’’ colloida
particles. Such a drastic reduction in the number of degr
of freedom, achieved by formally averaging over the coor
nates of individual polymer segments, leads to a consider
simplification of the initial problem involvingNc colloidal
particles andNL polymer segments, whereN is the number
of polymer coils andL the number of monomers or segmen
per polymer~i.e., the length of a polymer!. The idea of rep-
resenting a polymer coil by a single particle of radius of t
order ofRg goes back to the work of Flory and Krigbaum,23

who considered the infinite dilution limit of two isolated in
teracting polymers. A brief outline of subsequent theoreti
and numerical work on the two-coil problem is given in Se
III. In this paper we generalize the idea to finite concent
tions, i.e., to dilute and semidilute polymer solutions. T
effective interaction between the CM of polymer coils is d
termined by a combination of Monte Carlo~MC! simulations
of a detailed segment model of interacting polymers, and
an inversion technique which allows the effective pair int
action to be extracted from the MC results for the center
mass pair distribution function. A similar inversion tec
nique is applied to the density profiles of the CM of th
polymers near a hard wall to determine the effective
6 © 2001 American Institute of Physics
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teraction between a wall, impenetrable to the polymer s
ments, and the CM of interacting polymers. The effect
polymer–polymer and wall–polymer interactions provide
first step towards a complete description of colloid–polym
mixtures, with the hard wall considered in this paper rep
senting a single colloidal particle of infinite radius. The ul
mate goal is to go well beyond the familiar Asakura–Oosa
~AO! model which considers polymers to be noninteract
point particles, excluded from a sphere of radiuss/21Rg

around each colloidal particle.24 This model leads to the
well-known AO depletion interaction between hard sph
colloids.24–26 As an application of the general method ou
lined in this paper, the limitations of the AO picture will b
illustrated in a calculation of the depletion interaction b
tween two parallel hard walls. The effective interaction b
tween polymer coils will be shown to lead to considera
deviations from the AO results, even in the dilute regime

A preliminary account of parts of the present work h
been published elsewhere.27 A related soft particle picture
has recently been applied to polymer melts and polym
blends.28 However, the phenomenological coarse-grain
procedure proposed by these authors, and its practical im
mentation, differ considerably from the present ‘‘first pri
ciples’’ approach, which is better adapted to dilute and
midilute polymer solutions. Both methods are go
examples of current efforts to bridge widely different leng
and time scales in complex fluids.

II. SIMULATION MODELS AND METHODS

Many physical properties of polymers in solution a
ready emerge from simple models which ignore chem
detail and describe the polymers as self-avoiding wa
~SAW! with hard segments interacting through a simple p
tential. For example, solutions of linear polymers in a go
solvent are well modeled byN athermal SAW’s, each mad
up of L nonintersecting segments, on a cubic lattice ofM
sites, with periodic boundary conditions. This model ca
tures the leading scaling behavior and has been used
many decades to describe polymer solutions.1–6 Slightly
more sophisticated models exist, such as the fluctuating b
model29 or off-lattice hard sphere chains,30 but the SAW lat-
tice model is simple, efficient and allows for compariso
with previous studies.

FIG. 1. Modeling polymer coils by effective ‘‘soft particles.’’ TheN poly-
mers, each made up ofL segments, are replaced byN particles interacting
with an effective pair potential. The centers of the particles correspon
the polymer CM. The interaction of the polymers with a hard wall is mo
elled by a single soft particle–wall interaction.
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Within the lattice model, the monomer packing fractio
is equal to the fraction of lattice sites occupied by polym
segments,c5N3L/M , while the concentration of polyme
chains isrb5c/L5N/M . For a single SAW chain, the ra
dius of gyration scales asRg;Ln, wheren.0.6 is the Flory
exponent.1 The overlap concentrationr* , signaling the onset
of the semidilute regime, is such that 4pr* Rg

3/3.1, and
hencer* ;L23n.31

To sample the configuration space of the polymer sys
we employ the Monte Carlo pivot algorithm30,32 which at-
tempts to rotate part of the polymer around a random s
ment ~the pivot!. If the new trial configuration shows no
overlap, the move is accepted, otherwise the old configu
tion is restored. This simple scheme turns out to be v
effective for single polymers and dilute polymer solutio
where we found that it efficiently samples configuration
space up to densitiesrb /r* '1 for L5500 polymers. Be-
cause the polymers are restricted to a cubic lattice, the p
move can only take place in five possible directions. F
efficiency we store the complete lattice in memory, so t
overlap between different polymers can be easily chec
for. In this way one has only to check of orderL sites per
polymer move, which is much more efficient than theNL2

sites needed when each pair of segments has to be teste
overlap.

In addition to the pivot moves, we also attempt to tran
late the polymer. This Monte Carlo move enhances the
laxation to equilibrium of the polymer solution, although th
acceptance ratio for this move decreases rapidly if the d
sity exceedsrb /r* '1 ~for L5500 polymers!. For densities
deep in the semidilute regime,rb /r* .1, we therefore also
perform configurational bias Monte Carlo~CBMC!
moves,33,34 in which part of the interior polymer is regrown
In addition, we attempt reptation moves where a limit
number of segments at one end of the polymer are remo
and regrown at the other end. By regrowing the polyme
bias is introduced, which is then corrected for in t
sampling.33,34 In the simulations at high densities, we fin
that we can regrow groups of up to about 20–40 segmen
a CBMC move with a reasonable acceptance ratio~about
40%–50%!. More sophisticated algorithms for very den
polymer systems are available,35 but are not necessary in ou
relatively dilute systems.

III. EFFECTIVE POTENTIALS: TWO ISOLATED
POLYMERS

The theory of the effective interactions between tw
polymer coils in dilute solution has a long history. The fir
calculations were by Flory and Krigbaum in 1950,23 who
showed that, within a mean-field picture, SAW polymers in
good solvent have a strongly repulsive interaction of
form,

bv2
~FK!~r !;L2S 3

4pRg
3D ~122x!expS 2

3

4

r 2

Rg
2D , ~1!

wherer is the distance between the CM of the two polym
coils, x is the usual Flory parameter, andb51/kBT is the
reciprocal temperature, withkB denoting Boltzmann’s con-

to
-
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stant. As long as the polymers are in a good solvent,
chains can be regarded as athermal, and for that reaso
setb51 in the rest of this paper.

The interaction strength at full overlap,v2
(FK)(r 50), can

be understood from the following argument: each polym
coil has a density of monomersc;L/V, while the volume of
a polymer scales asV}L3n, so thatc}L123n ~heren'0.6 is
the Flory exponent!. If two polymers overlap completely
then the mean-field free-energy of interaction would be p
portional to the number of monomers times the probability
contact of two monomers on different chains,

v2
~FK!~r 50!}Lc}L223n;O~L0.2!, ~2!

which implies that the polymer repulsion increases with p
lymerizationL, and is typically much larger thankBT.

In an elegant paper, Grosberg, Khalatur, and Khokhlo36

showed that Flory’s argument was in fact incorrect. Fro
scaling theory it follows that the probability of an interactio
between two monomers on different chains scales
c1/(3n21);c1.3 ~Ref. 37! instead of simplyc, so that the free
energy of interaction scales as

v2~r 50!}Lc1/~3n21!;L~L123n!1/~3n21!;O~1!. ~3!

In other words, the free energy of interaction at full overl
of two equal-length polymers is independent of the degre
polymerization; polymer coils are not nearly as ‘‘hard’’ a
one might naively expect.

Krüger, Scha¨fer, and Baumga¨rtner38 put these ideas on
firmer footing using elaborate renormalization group~RG!
calculations. In particular they calculated the full free-ene
of overlap of polymers as a function of the CM distanc
They foundv2(r 50)51.53e from an r-spacee expansion
and v2(r 50)50.94e10.62e2 from a k-spacee expansion
(e542d, soe51 for three dimensions!. Although there are
still significant quantitative differences between anO(e) and
an O(e2) calculation, implying that thee expansion has no
quite converged, the qualitative picture is clearly that o
repulsive Gaussian-type potential, as shown in Fig. 2. Th
calculations were confirmed by a number of computer sim
lation studies, notably those by Olaj and collaborators39 and
by Dauntenhahn and Hall.30

We repeated the calculation of the effective interact
between two isolated SAW polymer coils, to make sure t
the simulations are carried out under conditions sufficien
close to the scaling limit. For two polymers at infinite dilu
tion, the effective interaction can be determined by calcu
ing the normalized probabilityP(r ) of finding their respec-
tive CM’s at a separationr. The effective potentialv2(r ) is
then defined as

v2~r !52 ln~P~r !!. ~4!

In the course of the simulation we sample configurations
two polymers infinitely far apart using only the pivot alg
rithm. After every 1000 pivot moves, we calculate the ov
lap probability as a function of CM distance, by moving t
polymers towards each other while checking for overlap.
addition, the radius of gyration is calculated for each len
considered, fromL5100 to L58000. This reproduces th
well known Flory scaling lawRg;Ln. The effective inter-
Downloaded 22 Feb 2001 to 131.111.116.196. Redistribution subject 
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actions between two polymers of various lengths are plo
in Fig. 2; the distancer is scaled with the measured radius
gyrationRg . As expected,v2(r ) has a Gaussian shape ce
tered onr 50. The potentials are almost indistinguishable f
r /Rg.1, but for smallerr the potentials differ slightly for
different L. This is most pronounced at full overlap of th
polymers, wherev2(r 50) decreases with lengthL. In the
scaling limit L→`, v2(r 50) is expected to reach a finit
value. For finiteL, we expectv2(r 50) to scale as

v2~r 50!}2L ln~12ac1/~3n21!!;2L lnS 12
a

L D , ~5!

FIG. 2. Effective CM–CM pair potentialv2(r ) for two isolated SAW poly-
mers, here shown for different lengthsL. The x-axis is scaled withRg , to
allow comparison. The pair interactionv2(r ) is approximately Gaussian
The height of the potential atr 50 decreases with length. Also shown is th
RG result from an orderO(e2) expansion~Ref. 38!. Inset: 4pr 2v2(r ),
which is more relevant to the thermodynamics of polymer solutions, sh
much less variation with lengthL thanv2(r ).

FIG. 3. Finite-size scaling for the interaction between two isolated polym
at full overlap:v2(r 50). By plotting exp@2v2(r50)/L# vs 1/L, the agree-
ment between the scaling relation of Eq.~5! and the simulations is demon
strated.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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wherea is a ~positive! constant. This finite-size scaling be
havior is confirmed in Fig. 3 and in theL→` limit this
equation goes over to Eq.~3!. Using a nonlinear fit of the
MC data to Eq.~5! we estimatev2(r 50)51.8060.05, a
value slightly higher than the bestO(e2) RG calculations,38

which give v2(r 50)51.53. The difference is most likely
due to a lack of convergence of thee expansion.

The quantityr 2v2(r ) is actually more relevant for the
thermodynamic properties of polymer solutions thanv2(r
50),40 and, as demonstrated in the inset of Fig. 2, the form
varies less withL than the latter, such that forr 2v2(r ) the
scaling limit appears to be reached even for chains as s
asL5500.

Similarly, with the effective pair-potentials we can ca
culate the second osmotic virial coefficient,

B2522pE
0

`

r 2dr~exp~2v2~r !!21!. ~6!

Since the potentials scale withr /Rg , this means thatB2 /Rg
3

should be independent ofL in the scaling limit. As demon-
strated in Fig. 4, the scaling limit appears to be practica
reached forL5500. We estimate that forL→`, B2 /Rg

3

'5.8560.05, which is consistent with other results obtain
from simulations@B2 /Rg

3'5.50 ~Ref. 41!# or RG calcula-
tions @B2 /Rg

3'5.99 ~Ref. 42!#. Note that althoughB2 scales
as B2;Rg

3, as required by scaling theory,1,2,4 this does not
mean that the polymer–polymer interaction is hard-sphe
like, as is sometimes implied in the literature.43

IV. EFFECTIVE POTENTIALS: POLYMER SOLUTIONS

A. Deriving effective potentials from g „r …

Having derived the effective potential between two is
lated polymers, we now attempt the same for polymers
solution at finite concentration. Whereas for simple flui
the interaction potential is generally independent of the th
modynamic state, this is not true for effective potentials
complex fluids. The latter typically follow from a coarse
graining procedure, which amounts to averaging out cer
degrees of freedom, the individual microscopic polymer s

FIG. 4. The reduced osmotic virial coefficientB2 /Rg
3 vs 1/L.
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ments in the present case. The effective total interaction
tential energyVN($r i%;rb) is in fact a free energy which
depends here on the polymer densityrb5N/V and on the
configuration $r i% of the polymer CM’s. The bare pair
interaction termv2(r ) can be defined as the effective pote
tial between two isolated polymers, the bare triplet inter
tion term v3(r i ,r j ,r k) can be defined for three isolate
polymers and so forth. One could in principle calcula
higher and higher ordern-body terms, but this rapidly be
comes intractable. Even if explicit expressions for each
the terms were obtained, the total interaction energy wo
be very difficult to evaluate because the number ofn-tuple
coordinates increases exponentially.

Instead, we follow a different route and approximate t
pair and higher order terms by an effective,~state dependent!
pair interactionv(r ;rb) which is constructed to exactly re
produce the two-body correlations of the full underlyin
many-body system. In fact, it can be proven that for a
given pair distribution functiong(r ) and densityrb , there
exists a correspondingunique two-body pair potential
v(r ;rb) which reproducesg(r ) irrespective of the underly-
ing many-body interactionsin the system.44 Of course,g(r )
will contain contributions not only from the bare pai
potential v2(r ), but also from the three and more bod
terms. As a consequence, the effective pair interac
v(r ;rb) will also be state dependent~in the polymer case,
density dependent! and a new effective potential must b
calculated for each density. Nevertheless, the effective
tential leads back to the true thermodynamics of the
many-body system through the compressibility relation,

S ]Pb

]rb
D

N,T

5
1

12rbĥ~k50!
512rbĉ~k50!, ~7!

where ĥ(k) is the Fourier transform~FT! of the pair corre-
lation function h(r )5g(r )21, and ĉ(k) is the FT of the
direct correlation function. Using a variational argume
Reatto45 has shown thatv(r ;rb) may also be viewed as th
‘‘best’’ pair representation of the true interactions. Howev
this inversion approach says nothing about a possible volu
term V0(rb), in the coarse-grained total potential energ
which contributes to the e.o.s., but notdirectly to the
pair-correlations.46 Of course the volume terms may sti
contributeindirectly, for example when they induce phas
transitions.

The inversion ofg(r ) to extractv(r ;rb) is a well known
procedure and has been studied extensively in the field
simple fluids.45,47 We invert g(r ) using the hypernetted
chain ~HNC! closure,

g~r !5exp~2v~r !1g~r !2c~r !21!, ~8!

of the Ornstein–Zernike equation.48 While the simple HNC
inversion procedure would be inadequate for dense fluid
hard core particles, where more sophisticated closures o
erative procedures are required,45,47 we are able to demon
strate the consistency of the HNC inversion in the pres
case.

We performed Monte Carlo simulations ofN SAW poly-
mers of lengthL5500 on a cubic lattice of sizeM5240
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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32403240. The number of polymers was varied fromN
5400 (rb /r* 50.54) toN56400 (rb /r* 58.7). Note that
at the highest density the monomer packing fraction isc
'0.23, meaning that the conditions for the semi-dilute
gime, namely,rb.r* and c'0 begin to be violated. At
even higher densities the system will approach the melt
gime where monomer packing effects become importan49

More generally, for finite length SAW polymers, there is
limited density regime for which both conditions for th
semi-dilute regime can be simultaneously satisfied. We
empirically thatRg'0.39L0.6 for SAW polymers on a simple
cubic lattice, so that the monomer packing fraction at
overlap concentration is given by

c* '4/L0.8. ~9!

Thus, forL5100 chains we findc* '0.1 so that there is only
a very small density range which might be called semidilu
while for L5500 chainsc* '0.027 and a meaningful sem
dilute regime exists. The literature contains several claim
semi-dilute scaling behavior for SAW lattice polymers wi
L,100, but, as the analysis above shows, these polymer
not have a semidilute regime large enough to derive sca
relations. An example of this is shown in Fig. 5.

In the course of the simulations the CM of each polym
was tracked in order to construct the CM radial pair dis
bution functiong(r ). The latter is only known up to a cutof
radiusr c , which corresponds to half the size of the simu
tion box~lattice size!. For the inversion, we needg(r ) for all
r, so we employ the following iterative scheme to exte
g(r ). First we setg(r )51 for r .r c and calculate the cor
respondingv(r ;rb) by inversion. We then setv(r ;rb)50
for r .r c and determine the correspondingg(r ) for 0,r
,` by a regular HNC calculation, using a simple iterati

FIG. 5. This figure compares the e.o.s.Z5Pb /rb from simulations forL
540 SAW polymers~Ref. 50!, with the e.o.s. forL5500 SAW polymers
~see Sec. IV B!, and with the Bawendi–Freed~BF! e.o.s. for lattice models
~Ref. 51!, which is accurate for larger values ofc. The latter gives an
indication where finitec correlations become important, and where o
would expect the melt-regime to start forL540, L5100, and L
5500 SAW polymers. In the melt regime the des Cloizeaux scaling lawZ
;(rb /r* )1/(3n21) will break down~Ref. 6!. Clearly, theL540 data do not
follow the des Cloizeaux scaling law, demonstrating that there is no m
ingful semidilute regime forL540 polymers, whereas there is one forL
5500 polymers.
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procedure. Theg(r ) for r ,r c is then replaced by the mea
suredg(r ), and the process is repeated until convergen
For low density,g(r ) and v(r ;rb) converge very quickly,
but for higher densities, sayrb /r* .1, the convergence is
slower, and the mixing factor of the old solution into the ne
one has to be increased to a value as large as 99%. In
because of the finite box-size, the inversion process is un
determined, and our ansatz thatv(r ;rb)50 for r .r c is
needed to find a unique solution. This is not unreasona
since we do not expect the interactions between the poly
coils to be significant beyond a distance a few times
radius of gyration. However, to make sure that this is ac
ally the case, we found that relatively large simulation box
were needed, with a lattice size of up to 10215Rg . This is
especially important at high density, where the inverted
tential becomes longer ranged and more sensitive to s
changes in the radial distribution functiong(r ). In all our
inversions we checked explicitly thatv(r ;rb) becomes ef-
fectively zero for anr ,r c , confirming our initial ansatz.

The resulting radial distribution functionsg(r ) are
shown in Fig. 6, and are similar in shape to those of the p
Gaussian core model.40 As the density goes up the correla
tion hole at smallr decreases in range and height. Except
a small maximum aroundr'2Rg , the pair correlation func-
tions do not show oscillations within the statistical noise
about 0.1%, for any density considered here.

The effective polymer–polymer potentialsv(r ;rb), ob-
tained from theg(r )’s, are shown in Fig. 7. Careful inspec
tion of the figure reveals that the effective pair potential
not very sensitive to the polymer concentration. The value
r 50 first increases slightly withrb , before decreasing agai
at the highest concentrations, as is depicted in the inse
Fig. 7, while the range ofv(r ;rb) increases withrb . A more
subtle feature, highlighted in Fig. 8, is that the effective p
tential becomes slightly negative (O(1023kBT)) for r /Rg

*3 at the higher concentrations. These effects become
parent only when large enough box-sizes are used. Altho
the negative tails seem very small, they are nevertheless
nificant since the thermodynamics depend on the integra

n-

FIG. 6. The polymer CM pair distribution functiong(r ) calculated forL
5500 SAW polymers and used to generatev(r ;rb). The x-axis denotes
r /Rg , whereRg is the radius of gyration of an isolated SAW polymer.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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r 2v(r ;rb). For example, leaving them out can easily indu
a 5% change in the pressure. It is, therefore, paramoun
include these effects in~quasi!-analytical representations o
the effective potentials. For that reason, a simple fit to
Gaussian or a sum of Gaussians is not accurate enoug
reproduce the potentials and hence the thermodynamic
the SAW polymer systems and consequently, we chos
use an interpolation spline fit to describe the potentials. F
the raw effective potential data were fitted to a Gaussian

vest~r !5a0e2a1r 2
. ~10!

Subsequently, the differenceDv(r ;rb)5v(r ;rb)2vest(r )
was fitted by employing a least squares spline procedure
8 nodes~the ‘‘dfc’’ routine of the slatec library52!. The val-

FIG. 7. The effective polymer CM pair potentialv(r ;rb) derived from a
HNC inversion ofg(r ) for different densities. Thex-axis denotesr /Rg ,
whereRg is the radius of gyration of an isolated SAW polymer.~Inset! The
value of the effective polymer CM pair potential atr 50, as a function of
density rb /r* . The maximum of the potential initially increases befo
decreasing at high concentration.

FIG. 8. The negative part of the effective polymer CM pair poten
v(r ;rb) derived from an HNC inversion ofg(r ) for different densities. The
x-axis denotesr /Rg , whereRg is the radius of gyration of an isolated SAW
polymer.
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ues of the nodes are not known in advance, except for
boundariesr 50 and r 5r c . Additional constraints on the
spline fit werev(r c)50, dv(r 5r c)/dr50 andv(r 50)/dr
50. We optimized the spline fit by moving the nodes on t
x-axis using a Monte Carlo procedure. The parameters
the fits are available elsewhere.53

Note that in Fig. 7, the polymer–polymer interactio
v(r ;rb) is plotted vsr /Rg , whereRg is the radius of gyra-
tion of isolatedpolymers in the infinitely dilute limit. In a
dense solution, the effective radius of gyration of the po
mers contracts according to the power-law,Rg;rb

21/8,2,37,54

as shown in Fig. 9.
The accuracy of the effective potentials are tested

performing a direct molecular dynamics~MD! simulation of
the ‘‘soft colloids’’ interacting viav(r ;rb). In Fig. 10 the
pair distribution functiongMD(r ) from MD simulations is
compared with the original SAWg(r ) for two densities in

l

FIG. 9. The effective radius of gyration forL5500 SAW polymers de-
creases as a function of densityrb /r* . ~Inset! At high densities the effec-
tive radius of gyration asymptotically follows the scaling lawRg;r1/8.

FIG. 10. Theg(r ) of a system interacting via the effective potentialv(r ;rb)
compared with the CM pair distribution of a SAW simulation for two pol
mer concentrations. The differences are shown in the lower panel and
typically less than60.01.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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the semidilute regime. The difference between the two d
tribution functions shows an oscillation at smallr. Because
this occurs in the same way for both densities it is poss
introduced by the inversion procedure. Even so, the dif
ence between the two distribution functions is still typica
less than60.01. We conclude that the HNC inversion pr
cedure yields very accurate effective potentials for soft p
ticles, capable of describing the structure of the fluid with
absolute error of less than60.01.

In a previous paper40 we have shown that the HNC clo
sure is very accurate when applied to the Gaussian mod55

whereby particles interact via the repulsive potentialv(r )
5e exp@2a(r/Rg)

2#, and is in fact quasiexact in the regim
relevant to the effective potentials shown in Fig. 7.56 Even
the much cruder RPA closure,c(r )52v(r ), yields semi-
quantitatively accurate results for correlations and thermo
namics in the regime of interest. Thus polymer solutions
the dilute or semidilute regime fall into the class of me
field fluids according to the nomenclature introduced in R
40.

The inversion procedure guarantees that the two-b
correlations are accurately reproduced by the effective po
tial, but this does not necessarily imply that higher ord
correlations are also well represented. As a first test we
formed preliminary simulations of the three-body correlati
functions for both full SAW walks and our soft particles. Th
two approaches lead to identical results within statistical
rors, implying that higher order correlations are much m
accurately reproduced than one might initially expect. W
have also performed some preliminary calculations of
three-body interactionv3(r 1,r2,r3). Even at full overlap of
the three centers of mass, the three-body interaction ter
only about 10% of the pairwise interaction. This is consist
with the results found for star-polymers,57 and was foreshad
owed by the relatively weak density dependence of the
fective pair interactionv(r ;rb).

Besides accurately describing the structure, it is also
portant that the thermodynamics are captured by the ef
tive potential. In the next section we therefore focus on
equation of state~e.o.s.! for polymer solutions.

B. Equation of state

1. Equation of state from direct SAW simulations

We measured the e.o.s.,Pb /rb , directly for a SAW
simulation by using the thermodynamic integration appro
of Dickman.58 In this method the bulk~osmotic! pressurePb

is measured by taking the derivative of the free energyF
with respect to volume of a system of SAW polymers b
tween two hard walls. The polymers live on a rectangu
cubic lattice of sizeM5H3D3D, which is periodic in the
y andz directions. The two walls are represented by an in
nitely repulsive potential atx50 and atx5H11, so that the
polymer segments cannot penetrate the walls. The volum
a lattice can only change discretely, and the free energy
rivative changes to a finite difference,

Pb5
] ln Z~N,L,D,H !

]M
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5D22
] ln Z~N,L,D,H !

]H

'D22~ ln Z~N,L,D,H !2 ln Z~N,L,D,H21!!. ~11!

The model is modified by associating an additional repuls
potential2 ln l with each occupied site in the planex5H,
where 0,l,1. The partition function then becomes

Z~N,L,D,Hl!5 (
polymer conf

e2U
•lnH, ~12!

wherenH5D2rH(l) is the number of occupied sites in th
x5H plane, andrH(l) is the corresponding number densi
in this plane. The pressure can now be estimated as

Pb5D22E
0

1

dlS ] ln Z

]l D5E
0

1

dl
rH~l!

l
. ~13!

We performed SAW simulations of polymers with lengthL
5500 on anM516031003100 cubic lattice forN550,
100, 200, 400, 600, and 800. For each density we determ
the value ofrH(l) for 5 different values ofl, corresponding
to the abscissae of a 5 point Gaussian quadrature which w
used to evaluate the integral in Eq.~13! The resulting e.o.s. is
plotted in Fig. 11 and Fig. 12.

2. Equation of state from the soft-particle picture

To calculate the e.o.s. within the soft-particle picture,
use the compressibility relation~7!, which must now be in-
tegrated w.r.t. the density,

Pb~rb!5E
0

rb
~12r8ĉ~0,r8!!dr8. ~14!

We used the quasiexact HNC approximation to calcul
c(r ) from the inverted effective potentialv(r ;rb) for several
state-points, fitted the values ofĉ(0;rb), and integrated

FIG. 11. Log–log plot of the e.o.s.Z5P/rb as a function of the density for
L5500 polymers. The soft-particle e.o.s. gives a good representation o
full SAW polymer simulations. At the highest densities there is a slig
deviation from the expected des Cloizeaux (rb /r* )1/(3n21) scaling law
which we attribute to the effects of a finite monomer concentrationc. Also
shown is the RG e.o.s. of Ohta and Oono~Refs. 60, 61!.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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w.r.t. density. As demonstrated in Fig. 11, the e.o.s. is v
close to the one obtained by direct SAW simulations, imm
diately suggesting that our inversion procedure indeed re
duces the true thermodynamics of the full many-body s
tem. This success also implies that the volume terms
small, possibly smaller than the statistical error in o
present simulations and inverted potentials. In fact, usin
simple scaling theory, Likos has argued that the contribut
of volume terms to the e.o.s. scales as (rb /r* )3/8 in the
semidilute regime, and so contributes little to the full e.o.s59

Also shown in Fig. 11 is the RG result by Ohta an
Oono;60 we use a slight improvement with corre
exponents.61 The one remaining fit parameter is determin
by the second osmotic virial coefficientB2 for L5500 SAW
polymers, a procedure similar to that used when compa
to experiments.62 The agreement is seen to be fairly goo
although the SAW e.o.s. is somewhat higher than the
results. This is most likely due to the fact that the monom
densityc is not zero, which induces small corrections to t
full scaling limit ~see the discussion in Sec. IV A!.

Instead of the compressibility route, one could also u
the virial route to the e.o.s.,48

Pb

rb
511

dV0~rb!

drb

2
1

3 (
i , j

N K r i j

]v~r i j ;rb!

]r i j
23rb

]v~r i j ;rb!

]rb
L , ~15!

which includes not only the density dependence of the ef
tive pair potential, but also the density dependence of
volume term. The full density dependence of the potential
at present hard to calculate, so instead we initially ignore
density derivative and the volume terms. First, we direc
measured the e.o.s. of the soft-particle fluid by a MD sim
lation with the spline-fit potentials. The pressure follow
from the usual virial theorem, when the density derivativ
in Eq. ~15! are neglected. The e.o.s. from this approach
depicted in Fig. 12, and compared to the simple mean-fi
~MF! form,

ZMF511 1
2 v̂~0;rb!r, ~16!

which gives a good fit to the simulations, as expected
soft-core fluids in the MFF regime.40 Here v̂(0;rb) is thek
50 component of the FT of the pair interaction. Howev
by including only the explicit density dependence of the
fective pair potentials while ignoring the density derivati
terms in the viral equation, weoverestimatethe e.o.s. com-
pared to the full SAW simulation.

The density dependence can be neglected even fu
by simply taking therb→0 form of the pair potential,v2(r ),
and applying it at all densities. The resulting e.o.s. nowun-
derestimatesthe e.o.s. when compared to the full SAW
simulation, as demonstrated in Fig. 12. We note that a s
lar approach was employed in recent work on the pha
behavior of star-polymers, where therb→0 limit of the pair
potential was used to calculate the structure and ph
behavior at finite concentration.63

Finally, we comment on the common practice of extra
ing osmotic virial coefficients from the measured experim
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tal e.o.s. First, the virial equation has a very small radius
convergence for soft-core fluids.40 Second, the range of th
effective potentialv(r ;rb) increases with density. These tw
effects imply that a naive linear fit to all but the very lowe
polymer densities will lead to an overestimate of the tr
osmotic second virial coefficientB2 .

V. EFFECTIVE WALL–POLYMER POTENTIALS

A. Polymer coils near a wall

Polymer coils near a nonadsorbing hard wall exhibi
depletion layer due to entropic effects. This is true even
ideal Gaussian polymers, and if one were to model these
effective CM potentials, the polymer–polymer potent
would be zero, but there would still be a polymer–wall p
tential of the formf(z)5 ln(r(z)/rb), wherer(z) is the CM
density profile near the wall andrb is the uniform density far
from the wall ~see the Appendix for more details!. Thus a
complete description of polymer coils in confined geometr
requires not only the polymer–polymer interactions deriv
in the previous section, but also effective polymer–wall p
tentialsf(z;rb).

We follow a strategy similar to that used in the hom
geneous case, and first calculate the wall-polymer den
profile r(z), from which we then extract an effective pote
tial f(z;rb). Using the same explicit SAW polymer mode
as in Sec. II, we performed MC simulations of polymers
lengthL5500 on a lattice of sizeM516031003100 with
hard walls atx50 andx5160. The polymer segments wer
not allowed to penetrate the walls. The simulations w
done forN550, 100, 200, and 500. During each simulatio
we computed the density profilesr(z), wherez denotes the
distance of the polymer CM from the wall andrb is the bulk
density far from the wall. The normalized profilesh(z)
5r(z)/rb21, for different bulk concentrationsrb /r* are
shown in Fig. 13.

The polymer coil adsorptionG is defined by

FIG. 12. Linear plot of the the e.o.s.Z5Pb /rb as a function of the density
for L5500 polymers. Several approximations to the e.o.s., discussed in
text, are compared.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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G52
]~Vex/A!

]m
5rbE

0

`

h~z!dz, ~17!

whereVex/A is the excess grand potential per unit area a
m the chemical potential of the polymers. As the dens
increases, more polymer is adsorbed at the wall as expe
but the relative adsorption,G/rb , decreases.

The normalized monomer density profiles for SAW’s a
shown in Fig. 14 for the same polymer densities as the
profiles shown in Fig. 13. As expected, the profile mov
closer to the wall for higher density; the width of the mon
mer depletion layer shifts from aroundRg at the lowest den-
sities, down to values dictated by the segment correla

FIG. 13. The wall–polymer CM density profileh(z)5r(z)/rb21 for SAW
polymers at different bulk concentrations. Fromh(z) we can calculate the
corresponding polymer absorptionsG and find2G50, 0.094, 0.13, 0.16,
and 0.20 in units ofRg

22, respectively. The relative absorptions a
2G/rb50.84, 0.59, 0.41, 0.27, and 0.14Rg , respectively, and decreas
with increasing density as expected.

FIG. 14. The wall–monomer density profilew(z;rb)5r(z)/rb21 for the
same set of densities as in Fig. 13.~Inset! A magnification of the region
where there is a small correlational bump in the density profiles. The he
is less than 1% of the total density while the range is aboutRg , implying
that the bump arises from polymer–polymer correlations.
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length2 in the semidilute regime. Although the profiles do n
show such a clear correlation-induced oscillation as the
profiles, there is nevertheless still a small maximum in
depletion layer as illustrated in the inset of Fig. 14. The pe
in the monomer profile is less than 1% of the bulk dens
and seems to decrease with higher overall polymer conc
tration. The range is aboutRg , implying that it arises from
correlations between polymer coils. We observe only o
peak, although due to statistical noise, we cannot rule out
possibility of more oscillations in the density profiles. R
cently self-consistent field calculations, valid for polymers
a theta solvent, found a similar small oscillation in the mon
mer profiles.64

B. Deriving f„z; rb… from r„z…

From a knowledge of the concentration profiler(z), and
the bulk direct correlation function between polymer CM
cb(r ), one may extract an effective wall–polymer potent
f(z;rb) by combining the wall–polymer OZ relations48 with
the HNC closure. For a binary mixture of two componen
labeled 0 and 1, in which component 0 is infinitely dilu
(x0→0), the Ornstein–Zernike equations become48

h11~1,2!5c11~1,2!1rbE h11~1,3!c11~2,3!d3, ~18a!

h10~1,2!5c10~1,2!1rbE h11~1,3!c10~2,3!d3, ~18b!

h01~1,2!5c01~1,2!1rbE h01~1,3!c11~2,3!d3, ~18c!

h00~1,2!5c00~1,2!1rbE h01~1,3!c10~2,3!d3. ~18d!

In the limit R0→`, Eq. ~18c! becomes an equation for th
wall-density profile, sometimes called the wall-OZ relatio

h~z!5c01~z!1rbE dr 8h01~z8!cb~ ur2r 8u!, ~19!

where h(z)5r(z)/rb21. The wall-OZ equation can be
solved, given the bulk correlation functioncb(r ), and a clo-
sure relation. In Sec. IV A we showed that the HNC closu
gives excellent results for effective polymer–polymer inte
actions, and it is therefore natural to apply the same appr
mation here. Combining Eq.~8! with Eq. ~19! we obtain

f~z;rb!5fMF~z;rb!1rbE dr 8h~z8!cb~ ur2r 8u!. ~20!

The first term is the usual potential of mean for
fMF(z;rb)52 ln@r (z)/rb#, to which f(z;rb) would reduce
in the rb→0 limit, while the second term arises from corr
lations between the polymer coils next to the wall. An ide
tical equation results from the HNC density functional theo
~DFT! approach,65 and a similar one, withcb(r ) replaced by
v(r ;rb) obtains if a mean field DFT is used. In contrast
simple fluids, where Eq.~20! is not very reliable, the wall-
HNC closure works remarkably well for the Gaussian co
fluid in the regime relevant to polymer solutions.40 Using the
cb(r ) extracted from the earlier bulk simulations ofg(r ) ~see

ht
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Sec. IV A!, together with Eq.~20!, we are able to extrac
f(z;rb) from the density profiles. In order to calculate th
integral in Eq.~20!, we use the procedure outlined by Sul
van and Stell.66 In contrast to the inversion of the bulkg(r ),
where we had to iterate until convergence, the wall–polym
inversion requires only one step sincecb(r ) is given once
and for all. Results for various bulk concentrations are p
ted in Fig. 15. The range of the effective wall–polymer r
pulsion increases with increasing concentration, while
density profiles actually move in closer to the wall. The co
pression and enhanced correlation in the density profiles
increasing density resembles that of the pure Gaussian
fluid in a fixed external potential,40 but the effect is less
pronounced in the former case since for polymer soluti

FIG. 15. The wall–polymer potentialf(z;rb) as obtained from the inver-
sion of h(z) via the HNC expression, Eq.~20!.

FIG. 16. Comparison between the contributions to the effective wa
polymer potentials from the potential of mean force~solid lines! and from
the correlation part~dashed lines! @cf. Eq. ~20!# for polymer concentrations
rb /r* 50.67, 1.28, 2.49, and 6.05. From top to bottom the solid lines c
respond to increasing density and the dashed lines correspond to decre
density. The solid line with the small squares denotes the potential of m
force for infinitely diluted systems.
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the wall–polymer potential becomes more repulsive w
density. This is due mainly to the correlation term, which
nearly linear inrb , and so becomes relatively more impo
tant as the density increases. Nevertheless at shorter
tances thefMF(z;rb) term still dominates. The importanc
of including both the potential of mean force, and t
correlation-induced component of the effective potential
demonstrated in Fig. 16. At very low densities the poten
of mean force is adequate, but at higher densities the co
lation term becomes increasingly important.

The effective potentials decay exponentially, and to o
tain a useful analytic form for the effective potential, th
logarithm of f(z;rb) can be fitted to a cubic polynomia
which describes the potential very well. However, as in
bulk case, the wall–polymer potentialf(z;rb) has a small
negative component that cannot be described by an expo
tial function. Although in this case the tail is probably n
very important, in order to be consistent, we fitf(z;rb) by a
least squares spline fit similar to the one described Sec. IV
The parameters for this fit are available elsewhere.53

C. Consistency of the wall–polymer inversion

To test the validity of the inversion procedure for th
wall–polymer r(z), we performed Molecular Dynamic
simulations of a system of ‘‘soft colloidal’’ particles inter
acting with each other via the effective pair potentialv(r ,rb)
and with a wall via the inverted potentialf(z;rb) for the
appropriate bulk concentrationrb . Such effective potentia
simulations are at least an order of magnitude faster t
simulations of the original SAW model. The resulting co
centration profile of the effective particles is shown in F
17 for one density; it agrees to within an absolute error
roughly 60.02 with ther(z)/rb obtained from the detailed
SAW simulations. The corresponding adsorptionG also dif-
fers by less than 1% from the value obtained by the SA
simulation, thus demonstrating the adequacy of the soft

-
sing
an

FIG. 17. The profileh(z) of soft colloids atr/r* 21.28 near a wall~dashed
line!. The particles interact with each other viav(r ), and with the wall via
f(z;rb). This is compared with the wall-CM distribution of an explic
SAW simulation~solid line!. The difference is shown in the lower panel an
is less than60.02.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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loid representation of the interacting polymer coils, and
accuracy of the HNC inversion for polymer coils near a ha
wall.

VI. DEPLETION POTENTIAL BETWEEN TWO WALLS

A. Full SAW simulations

One of the aims of this work is to show that the so
particle description of the polymers provides a useful ro
to the colloid–colloid depletion potential in mixtures of co
loidal particles and nonadsorbing polymers. Calculat
these depletion interactions poses a severe test of the
colloid representation.

As a first step we calculate the depletion potential
tween two planar walls, which can ultimately be applied
spherical colloids through the Derjaguin approximation. W
confined the polymers within a slit of widthd, and, using
direct grand-canonical simulations of the full SAW polym
model, we computed the osmotic pressure exerted by
polymer coils on the walls. The insertion of polymers w
achieved by the configurational bias Monte Ca
technique.33 The ~osmotic! pressureP(d) was calculated for
different values of the spacingd between the walls by a
thermodynamic integration technique similar to the one
plained in Sec. IV B. Details of these simulations can
found in Ref. 67. The interaction free energy per unit area
DF/A, is then obtained by integrating the osmotic press
as a function ofd,

DF~d!/A5E
d

`

dz~P~z!2P~`!!, ~21!

whereP(`) denotes the bulk osmotic pressurePb . These
explicit SAW simulations are rather computer intensive, a
were only carried out forL5100.67

B. Effective potential simulations

In the soft colloid picture, the interactions of the polym
CM’s with each other,v(r ;rb), and with a wall,f(z;rb),
are calculated once with the HNC inversion procedures fr
the g(r ) andr(z) of a full SAW polymer simulation at the
bulk densityrb . These potentials are then used in gran
canonical MC simulations of soft particles between tw
walls. The imposed chemical potential is chosen such
for infinitely separated walls the bulk density is recovere
The ~osmotic! virial pressure is measured as a function
wall separationd, and the interaction free energy per un
areaDF/A, is again obtained by integration of the pressu
via Eq. ~21!.

In Fig. 18 the soft colloid depletion interaction is com
pared to that of the ‘‘exact’’ grand-canonical MC simul
tions ofL5100 SAW polymers, for three different densitie
rb /r* 50.28, 0.58, and 0.95. The two approaches are
good agreement, but the soft colloid calculations are at le
two orders of magnitude faster than the SAW simulatio
As expected, the depth of the potential increases, wherea
range of the interaction decreases as the density increas68

At the two lowest densities, the two approaches agree v
well, but for rb /r* 50.95 they differ slightly aroundz
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52Rg where the soft particle picture shows a larger repuls
barrier. The barrier height is, however, small compared to
attractive minimum at contact, which agrees well with t
‘‘exact’’ data, as does the slope of the attraction.

Liquid state theories for fluids with repulsive particle
particle interactions predict a repulsive barrier,69 so it is not
surprising that the soft particle picture shows a small rep
sive barrier as well. Instead, it is the lack of a significa
barrier for the pure SAW polymer simulations which r
quires explanation. We trace the repulsive barrier to
breakdown of the ‘‘potential overlap approximation’’~POA!
described in the Appendix. Under close confinement, the
teraction of the soft particles with two parallel walls a di
tanced apart can no longer be written as the sum of the t

FIG. 18. Depletion free-energyDF(d)/Rg
2 between two plates separated b

d, for three densities,rb /r* 50.95,rb /r* 50.58,rb /r* 50.24. The sym-
bols denote the ‘‘exact’’ MC simulations, while the dashed, dashed–dot
and solid lines are the soft-colloid simulations for the same densities.~Inset!
DF(d)/DF(0) for the SAW simulations, the solid lines are to guide the e
The long-dashed line is the ideal Gaussian polymer result calculated in
Appendix. Note that the range decreases with density, and that, even fo
lowest density, the AO ideal polymer approximation overestimates the
teraction range.

FIG. 19. Comparison of normalized pressure between the walls,P(d)/Pb ,
as a function of separationd, for SAW polymers and soft particles for a
densityrb /r* 50.95.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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individual wall–particle interactions as would be the case
simple liquids. This is caused mainly by the deformation
the polymers due to the two walls, and also holds for id
polymers. The failure of the POA can be clearly seen in F
19, where we compare the pressure~or force! profiles for the
SAW calculations and the effective potentials. In the s
particle picture the pressure starts to rise at a larger inter
distance than the pressure for the SAW polymers, an ef
also seen when noninteracting polymers are represente
an effective particle representation based on the CM~see the
Appendix!. Note that the over and underestimates of
pressure cancel each other, so that the free energy at co
DF(0), for theeffective potentials is in good agreement wi
the SAW calculations.

The MC simulations for the soft colloid model were ca
ried out with effective wall–polymer and polymer–polym
potentials appropriate forL5100, since longer polymers ar
not easily handled in the full SAW model. However, w
checked that the data obtained with effective interactions
propriate for longer polymers (L5500), are very close to the
L5100 results, as is shown in Fig. 20. Therefore, we
confident that we are close enough to the scaling regime
the properties under consideration.

C. Comparison with the Asakura–Oosawa approach

The first ~and still most popular! approach to the deple
tion interaction in colloid–polymer mixtures was pioneer
by Asakura and Oosawa in 1954,25 when they approximated
the polymers as ideal~Gaussian!, and calculated the induce
attraction between two walls. We shall refer to this neglec
polymer–polymer repulsion as theAO approximation, in
contrast to theAO model, where a further step is taken an
the polymers are approximated as inter-penetrable spher
radiusRg .24

The exact depletion potential induced by ideal polym
between two plates of areaA a distanced apart is given by

DF~d!/A5rbDVid~d!, ~22!

FIG. 20. Depletion free-energyDF(d)/Rg
2 between two plates separated b

d based on the soft particle representation for polymers of lengthL5100
andL5500. Hererb /r* 50.95.
Downloaded 22 Feb 2001 to 131.111.116.196. Redistribution subject 
r
f
l
.

t
ll

ct
by

e
act,

p-

e
or

f

of

s

whereDVid(d) is the gain in volume accessible to an ide
Gaussian polymer of sizeRg , due to overlap of the exclusion
volumes close to the plates. This can be exactly calculate
shown in the Appendix. To treat interacting polymers,
widely used phenomenological improvement~see for ex-
ample Ref. 10! replaces the ideal polymer density by th
bulk osmotic pressurePb of the interacting polymers in the
left over free-volume,

DF~d!/A5PbDVid~d!. ~23!

In Fig. 21 we plot these two versions of the AO approxim
tion for the largest density considered above,rb /r* 50.95,
and compare them to the effective potential and ‘‘exac
SAW simulation results. The two approaches result in rat
poor representations of both the depth and the range of
true potential, even though we are technically not yet in
semidilute regime where one might expect the approache
break down~see also the inset of Fig. 18!. For the lower
densities the AO approximation works somewhat better,
expected.

D. HNC wall–wall approximation

Following arguments similar to those used to derive
wall–polymer HNC equations of Sec. V B, one can also d
rive a HNC-type equation for the depletion interaction fr
energy per unit area between two walls separated by a
tanced,70

DF~d!

A
52rbE

2`

`

h~s!h~d2s!ds

1rbE
2`

`

h~d2s!@f~s;rb!2fMF~s;rb!#ds.

~24!

FIG. 21. Depletion free-energyDF(d)/Rg
2 between two plates separated b

d for rb /r* 50.95. Circles are the ‘‘exact’’ MC simulations of SAW poly
mers. The long-dashed and dashed–dotted lines denote the two AO app
mations mentioned in the text. The short-dashed line denotes the mor
curate wall-HNC approximation of Eq.~24!, which is, in fact, very close to
the simulations in the soft particle picture shown in Fig. 18.
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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Here h(s)5r(s)/rb21 is the single wall density profile,
f(s;rb) is the corresponding effective wall-polymer pote
tial, andfMF(s;rb) is the corresponding potential of mea
force. The first term on the r.h.s. of Eq.~24! represents the
density overlap approximation discussed in the Append
and is the only contribution in the case of ideal Gauss
polymer coils. The second term arises from correlations
tween the polymer coils, and dominates the first term
larger densities. Note that only information from one sing
wall enters into this HNC wall–wall approach. We use t
effective wall–polymer potentialf(z;rb) and the related
density profileh(z) from the soft-colloid picture togethe
with Eq. ~24! to derive the HNC wall–wall depletion fre
energy. As shown in Fig. 21, this compares well with t
MC simulations of the soft particles except at short distan
where a small deviation develops that can be traced to
fact that only information from a single wall is used. A mo
promising approach, without this shortcoming, would be
directly use the MF or HNC DFT approaches applied in R
40 to Gaussian-core potentials.

VII. DISCUSSION AND CONCLUSION

The coarse-grained representation of polymer coils
soft colloids, put forward in this paper, has proved very
liable. The effective polymer–polymer and wall–polymer i
teractions obtained by a systematic inversion proced
based on fluid integral equations, yield pair distribution fun
tions and concentration profiles which agree closely with
results from simulation of the full SAW segment mode
while allowing a massive reduction in computer time co
pared to the lattice simulations. Much of the success of
present coarse-graining procedure lies in our finding that
optimum effective pair potential between the CM’s of neig
boring coils does not depend strongly on polymer concen
tion, and is reasonably close to its infinite dilution limit. Th
effective polymer–polymer and wall–polymer interactio
lead to a rather accurate description of the depletion inte
tion between two hard walls, despite the implicit potent
superposition assumption and the fact that the coa
graining procedure in its present form does not allow for
deformation of the polymer coils, away from the spheric
shape, in the vicinity of an impenetrable surface. Such sh
fluctuations are allowed in the alternative procedure by M
rat and Kremer28 but the remarkable agreement between
original full SAW model and the coarse-grained model illu
trated in Fig. 18 seems to indicate that shape deformatio
confined polymers may not be crucial to reproducing c
centration profiles.

The present inversion procedure yields concentration
pendent effective pair potentials, but does not provide dir
access to the internal free energy of polymer coils,28 which
plays a role rather similar to that of the ‘‘self-energy’’ o
volume term of electric double-layers in charge-stabiliz
colloidal dispersions or solutions of star polymers.46 This
concentration-dependent term contributes to the osm
equation of state, but the good agreement between full S
model simulations and the results based on the effective
interaction without the volume term would indicate that t
concentration dependence of the latter is weak.
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Finally, it must be stressed that the present invers
procedure is by no means restricted to the simple SA
model of nonintersecting polymers. We are in fact plann
to extend the coarse-graining procedure to the case wher
segment-segment coupling has an attractive componen
describe the situation of polymer coils in poor solvent. T
case of semidilute solutions of polymers of different leng
will also be considered within the same theoretical fram
work with the objective of studying possible demixing,
suggested by our recent investigation of binary Gauss
core systems.40 A final extension is to consider explicitly
colloid–polymer mixtures, by determining the effectiv
hard-sphere/polymer potential along the lines set out in
paper. More generally, our methodology should be ap
cable to dilute and semidilute solutions of linear, branched
star polymers in confined geometries.
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APPENDIX: DEPLETION POTENTIAL FOR IDEAL
POLYMERS

In this Appendix we pursue a program similar to that
the main text, but now for the simpler case of ideal Gauss
polymer coils of sizeRg . Consider two parallel walls of are
A5LxLy a distanceLz apart. In the limitLx ,Ly@Rg , the
full partition function for a single polymer is given by25

Z15LxLyLz

8

p2 (
p51,3,...

`
1

p2 expS 2
p2Rg

2p2

Lz
2 D . ~A1!

From this, various properties, such as the depletion inte
tion between two walls, can be exactly calculated.

Similarly, from the underlying Green’s function~see,
e.g., p. 19 of Ref. 3!, the polymer end-point and midpoin
density distributions near a single wall are found to be

rend
~1!~z!

rb
5erfS z

2Rg
D , ~A2!

rmid
~1! ~z!

rb
5S erfS z

&Rg
D D 2

. ~A3!

As shown in Fig. 22, both show a clear depletion layer wh
polymer configurations are entropically excluded near
wall. In principle the CM distribution could also be calcu
lated, but we have not yet succeeded in finding an anal
expression for it. Instead a polymer lattice model simulat
with L5500 was used to generate therCM

(1) (z) depicted in
Fig. 22.

Using either the end-points, midpoints or the CM as t
centers of ‘‘effective particles,’’ an analogy with the fu
‘‘soft particle’’ picture can be made. The particle–partic
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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effective interaction is of course zero, while the effecti
particle–wall interaction can be inverted from the densit
in Eqs.~A2! and ~A3! with the result,

fend
~1!~z!52 lnFerfS z

2Rg
D G , ~A4!

fmid
~1! ~z!522 lnFerfS z

&Rg
D G . ~A5!

The potentialfCM
(1) (z) for the CM profile can be obtaine

numerically. In contrast to the soft-particle picture for inte
acting polymers, the inversion here is trivial, since for ide
particles the effective potential is simply the potential
mean force. The interactionfCM

(1) (z) for the Gaussian par
ticles is in fact quite similar to the potential of mean force f
SAW polymers at infinite dilution, shown in Fig. 16. Bu
whereas the wall–polymer interaction for interacting po
mers changes with the bulk density, thef (1)(z) for Gaussian
chains is independent of density.

Within the effective particle picture, two ways of calcu
lating the interaction between two parallel walls are:
~1! The Potential Overlap Approximation~POA!: Here, the
partition function of the effective particles confined betwe
two walls, a distanceLz apart, is calculated for a total exte
nal potential given by

f~z!5f~1!~z!1f~1!~Lz2z!, ~A6!

where z is the distance from one of the walls. For simp
atomic or molecular fluids this superposition approximat
would be exact and lead to the correct partition function a
related equilibrium properties. However, for effective pa
ticles this is not necessarily the case as we shall see late
~2! The Density Overlap Approximation~DOA!: Here, the
density between two parallel walls is approximated by
product of the densities near a single wall,

FIG. 22. Normalized densitiesr (1)(z)/rb for ideal polymers near a wall
Also shown is the normalized monomer density~Ref. 71! which falls, not
unexpectedly, between the end and midpoint densities. The CM profile i
steepest since the CM cannot easily approach the wall as closely as th
or midpoints can.
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In contrast to the POA, this approximation is incorrect ev
for simple atomic or molecular systems, although it is som
times a useful first approximation. On the other hand,
ideal particles the POA and DOA approximations a
equivalent.

The original Asakura Oosawa model24 approximates the
density profiler (1)(z) next to a single wall by a step functio
of rangeR5Rg . The depletion potential is then calculate
within the DOA. This can be improved by adjusting th
range of the step-function such that it excludes exactly
same amount of polymer as the true density profile. For
walls this implies a step-function of rangeR52Rg /Ap.

In Fig. 23 we plot the depletion free-energy induced
noninteracting polymers between two walls a distanceLz

apart. The exact expression was first calculated by Asak
and Oosawa:25 here we approximate it by the following
simple analytical expression,

DF~Lz!

A
52rbH 4

Ap
2LzS 12

8

p2 e2~p2Rg
2/Lz

2
!D J ;

Lz,4.332Rg ,

DF~Lz!

A
50; Lz.4.332Rg , ~A8!

which arises from taking only the ‘‘ground state’’ of th
partition function in Eq.~A1!, and cutting the potential off
where it crosses 0. This approximation is so accurate that
difference with the exact interaction cannot be resolved
Fig. 23. The effective particle representations, based on e
points, midpoints or the CM, provide a fairly good approx
mation to the full depletion interaction, while the two ve
sions of the AO model do not perform as well.

The pressure profiles shown in Fig. 24 demonstrate
the end and midpoint effective particle approaches unde

he
end

FIG. 23. A comparison of the normalized depletion interactionDF(Lz)/Arb

as a function of the wall–wall separationLz /Rg for various approximations
discussed in the text. Thex-axis denotes the distanceLz between the two
plates, divided by the radius of gyrationRg .
to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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timate the steepness of the pressure profile, while their
counterpart overestimates the steepness. The difference
tween the effective particle representations and the exac
sults arise from our use of the POA. Because the underly
polymer configurations can easily extend to distances gre
than 2Rg , the POA, which implicitly assumes that the inte
action of an effective particle with one wall is not direct
affected by the presence of a second wall, begins to br
down for strong confinement. Interestingly, the trend sho
in Fig. 24 for the CM effective particle representation of t
Gaussian coils mirrors the trend shown in Fig. 19 for int
acting SAW polymers, suggesting that the differences for
latter also arise from the breakdown of the POA approxim
tion.

We note that end-points or midpoints could also be u
to construct an effective particle picture of interacting po
mer solutions. For example, the mid-point representa
would be very similar to the two-arm limit of a star-polyme
for which a number of results have been recen
derived.57,59,63There are differences with the CM represe
tation; for example, the midpoint equivalent of Eq.~4! would
scale as59,72

v2~r !;2
5&

9
lnS r

RD ~A9!

at short distances. HereR is a length scale proportional to th
polymer sizeRg . In contrast to the CM case, this interactio
diverges at full overlap so that one would expect some qu
tative differences in the behavior of the underlying soft p
ticle fluids. However, the two approaches should, in pr
ciple, produce similar results for the thermodynam
properties of polymer solutions. The relative merits of us
midpoints vs the CM to describe polymer solutions are c
rently under investigation.

Finally we note that several results for ideal polyme
obtained here by using end-point or midpoint densities,
be also obtained by using the exactmonomerdensity profiles
near one wall71 together with the DOA approximation.73

FIG. 24. Comparison of the reduced pressureP(Lz ;m)/Pb between the
walls as a function of wall–wall separationLz /Rg . Pb is the bulk pressure.
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