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Accurate effective pair potentials for polymer solutions
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Dilute or semidilute solutions of nonintersecting self-avoiding wedW) polymer chains are
mapped onto a fluid of “soft” particles interacting via an effective pair potential between their
centers of mass. This mapping is achieved by inverting the pair distribution function of the centers
of mass of the original polymer chains, using integral equation techniques from the theory of simple
fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the
radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of
the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The
effective potential is used to derive the osmotic equation of state, which is compared to simulation
data for the full SAW segment model, and to the predictions of renormalization group calculations.
A similar inversion procedure is used to derive an effective wall-polymer potential from the center
of mass density profiles near the wall, obtained from simulations of the full polymer segment model.
The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration
when polymer—polymer correlations are taken into account, leading to a considerable enhancement
of the effective repulsion with increasing concentration. The effective polymer—polymer and wall—
polymer potentials are combined to calculate the depletion interaction induced by SAW polymers
between two walls. The calculated depletion interaction agrees well with the “exact” results from
much more computer-intensive direct simulation of the full polymer-segment model, and clearly
illustrates the inadequacy—in the semidilute regime—of the standard Asakura—Oosawa
approximation based on the assumption of noninteracting polymer coils20@ American
Institute of Physics.[DOI: 10.1063/1.1344606

I. INTRODUCTION an effective interaction acting between the centers-of-mass
(CM) of different polymer coils as shown schematically in
Polymer solutions have attracted the attention of theofig. 1. Similarly, an effective interaction must be worked out
rists and experimentalists alike for many decades, and a théetween the “soft” polymer coils and the “hard” colloidal
oretical understanding of their structure and phase behavioparticles. Such a drastic reduction in the number of degrees
based on mean-field and on scaling or renormalization groupf freedom, achieved by formally averaging over the coordi-
arguments, is by now well establishtd.Recently, there has nates of individual polymer segments, leads to a considerable
been a growing interest in the structure, phase behavior argimplification of the initial problem involving\, colloidal
rheology of binary systems involving colloidal particles and particles and\L polymer segments, whei¢ is the number
nonadsorbing polymers?? In such mixtures the mean size of polymer coils and. the number of monomers or segments
of the polymer coils, i.e., their radius of gyratidR,, is  per polymer(i.e., the length of a polymgrThe idea of rep-
comparable to, or smaller than the diametef the colloidal  resenting a polymer coil by a single particle of radius of the
particles. Since the latter may, for most purposes, be modsrder ofRy goes back to the work of Flory and Krigbaufrh,
eled as “hard” convex bodies dominated by excluded vol-who considered the infinite dilution limit of two isolated in-
ume effects on the mesoscopic scalgit is clear that a teracting polymers. A brief outline of subsequent theoretical
statistical description of the polymer coils requires a highand numerical work on the two-coil problem is given in Sec.
degree of coarse-graining to provide a tractable theory ofil. In this paper we generalize the idea to finite concentra-
these mixtures. Such coarse-graining is, more generally, deions, i.e., to dilute and semidilute polymer solutions. The
sirable for theoretical investigations of large scale phenomeffective interaction between the CM of polymer coils is de-
ena involving large numbers of interacting polymer chains intermined by a combination of Monte CarlbIC) simulations
the dilute of semidilute regimes. In particular, simulations ofof a detailed segment model of interacting polymers, and of
solutions involving many interacting polymer chains becomean inversion technique which allows the effective pair inter-
rapidly intractable if a detailed description at the level ofaction to be extracted from the MC results for the center of
monomers or even of Kuhn segments is retained. It is theremass pair distribution function. A similar inversion tech-
fore tempting to consider polymer coils as “soft” particles, nique is applied to the density profiles of the CM of the
and to replace the detailed interactions between segments Ipplymers near a hard wall to determine the effective in-
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Within the lattice model, the monomer packing fraction
. is equal to the fraction of lattice sites occupied by polymer
segmentsc=NXL/M, while the concentration of polymer

chains isp,=c/L=N/M. For a single SAW chain, the ra-
dius of gyration scales &,~L", wherev=0.6 is the Flory
exponent: The overlap concentratiqe®, signaling the onset
of the semidilute regime, is such thatr4* R§/3~—~1, and
hencep* ~L 3.3

To sample the configuration space of the polymer system
FIG. 1. Modeling polymer coils by effective “soft particles.” THepoly-  we employ the Monte Carlo pivot algoritifit? which at-

mers, each made up &f segments, are replaced byparticles interacting tempts to rotate part of the polymer around a random seg-
with an effective pair potential. The centers of the particles correspond to

the polymer CM. The interaction of the polymers with a hard wall is mod- ment (the inOl). If the new trial Conﬁguraﬂon shows no
elled by a single soft particle—wall interaction. overlap, the move is accepted, otherwise the old configura-
tion is restored. This simple scheme turns out to be very
effective for single polymers and dilute polymer solutions
teraction between a wall, impenetrable to the polymer segwhere we found that it efficiently samples configurational
ments, and the CM of interacting polymers. The effectivespace up to densities,/p*~1 for L=500 polymers. Be-
polymer—polymer and wall—polymer interactions provide acause the polymers are restricted to a cubic lattice, the pivot
first step towards a complete description of colloid—polymermnove can only take place in five possible directions. For
mixtures, with the hard wall considered in this paper repre£fficiency we store the complete lattice in memory, so that
senting a single colloidal particle of infinite radius. The ulti- overlap between different polymers can be easily checked
mate goal is to go well beyond the familiar Asakura—Oosawdor. In this way one has only to check of ordersites per
(AO) model which considers polymers to be noninteractingPolymer move, which is much more efficient than fké>
point particles, excluded from a sphere of radin®+ R, sites needed when each pair of segments has to be tested for
around each colloidal particf. This model leads to the overlap.
well-known AO depletion interaction between hard sphere  In addition to the pivot moves, we also attempt to trans-
colloids?#=2® As an application of the general method out- late the polymer. This Monte Carlo move enhances the re-
lined in this paper, the limitations of the AO picture will be laxation to equilibrium of the polymer solution, although the
illustrated in a calculation of the depletion interaction be-acceptance ratio for this move decreases rapidly if the den-
tween two parallel hard walls. The effective interaction be-Sity exceedgy,/p* ~1 (for L=500 polymers For densities
tween polymer coils will be shown to lead to considerabledeep in the semidilute regimpy,/p*>1, we therefore also
deviations from the AO results, even in the dilute regime. perform configurational bias Monte CarldCBMC)

A preliminary account of parts of the present work hasmoves;>>*in which part of the interior polymer is regrown.
been published elsewhefe A related soft particle picture In addition, we attempt reptation moves where a limited
has recently been applied to polymer melts and polymenumber of segments at one end of the polymer are removed
blends?® However, the phenomenological coarse-grainingand regrown at the other end. By regrowing the polymer a
procedure proposed by these authors, and its practical impl&ias is introduced, which is then corrected for in the
mentation, differ considerably from the present “first prin- Sampling®>3* In the simulations at high densities, we find
ciples” approach, which is better adapted to dilute and sethat we can regrow groups of up to about 20—40 segments in
midilute polymer solutions. Both methods are gooda CBMC move with a reasonable acceptance raiioout
examples of current efforts to bridge widely different length40%—50%. More sophisticated algorithms for very dense
and time scales in complex fluids. polymer systems are availabfebut are not necessary in our

relatively dilute systems.

II. SIMULATION MODELS AND METHODS

) ) ) ) Ill. EFFECTIVE POTENTIALS: TWO ISOLATED
Many physical properties of polymers in solution al- poLYMERS

ready emerge from simple models which ignore chemical

detail and describe the polymers as self-avoiding walks The theory of the effective interactions between two
(SAW) with hard segments interacting through a simple po-Polymer coils in dilute solution has a long history. The first
tential. For example, solutions of linear polymers in a goodcalculations were by Flory and Krigbaum in 1950who
solvent are well modeled by athermal SAW's, each made showed that, within a mean-field picture, SAW polymers in a
up of L nonintersecting segments, on a cubic latticeMof good solvent have a strongly repulsive interaction of the
sites, with periodic boundary conditions. This model cap-form,

tures the leading scaling behavior and has been used for 3 3 r2

many decades to describe polymer solutibifsSlightly Bv(sz)(r)~L2(4 Rs)(l—ZX)eXP(—Z@). 1)
more sophisticated models exist, such as the fluctuating bond g 9

modef® or off-lattice hard sphere chaifi$put the SAW lat-  wherer is the distance between the CM of the two polymer
tice model is simple, efficient and allows for comparisonscoils, y is the usual Flory parameter, amgk 1/kgT is the
with previous studies. reciprocal temperature, witkg denoting Boltzmann’s con-
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stant. As long as the polymers are in a good solvent, the 3 . . .
chains can be regarded as athermal, and for that reason we 15 . . .
setB=1 in the rest of this paper.

The interaction strength at full overlapl™(r =0), can
be understood from the following argument: each polymer
coil has a density of monomecs-L/V, while the volume of
a polymer scales agx L3, so thatccL1™3” (herer~0.6 is

anrv,(r)

(4]
T
L

the Flory exponent If two polymers overlap completely < /R,
then the mean-field free-energy of interaction would be pro-
portional to the number of monomers times the probability of s L — L=100 i
contact of two monomers on different chains, e
v (r=0)xLcxl2 3~ O(L?), ) T
o——o RG order ¢’

which implies that the polymer repulsion increases with po-

lymerizationL, and is typically much larger thakgT. o >
In an elegant paper, Grosberg, Khalatur, and Khokiflov r/Rg

showed that Flory’s argument was in fact incorrect. From

scaling theory it follows that the probability of an interaction FIG. 2. Effective CM—CM pair potential,(r) for two isolated SAW poly-

between two monomers on different chains scales ag;lers, here shown f%: diffe_’e’_“t'engtt'_ls T(h‘)? x-axis is S?a'etdIWigRgv to
1(3v—1) _ ~1.3 ; ; allow comparison. The pair interactiany(r) is approximately Gaussian.
¢ C (Ref' 37) instead of SlmpI)C, so that the free The height of the potential at=0 decreases with length. Also shown is the
energy of interaction scales as RG result from an orde®(e?) expansion(Ref. 38. Inset: 4mr2v,(r),
_ U3v—1)__ 1-3m 1(3v—1) _ which is more relevant to the thermodynamics of polymer solutions, shows
va(r= 0)<Le L(L ) O(1). ) much less variation with length thanuv,(r).

In other words, the free energy of interaction at full overlap
of two equal-length polymers is independent of the degree of

polymerization; polymer coils are not nearly as “hard” as actions between two polymers of various lengths are plotted
one might naively expect. in Fig. 2; the distance is scaled with the measured radius of

Kriiger, Scfiger, and Baumganer’® put these ideas on a gyration Ry. As expectedy,(r) has a Gaussian shape cen-
firmer footing using elaborate renormalization grol®G)  tered orr =0. The potentials are almost indistinguishable for
calculations. In particular they calculated the full free—energyr/Rg> 1, but for smallerr the potentials differ slightly for
of overlap of polymers as a function of the CM distance.different L. This is most pronounced at full overlap of the
They foundv,(r=0)=1.53¢ from anr-spacee expansion polymers, wheres,(r =0) decreases with length. In the
and v,(r=0)=0.94¢+0.62* from a k-spacee expansion scaling limit L—, v,(r=0) is expected to reach a finite
(e=4—d, soe=1 for three dimensionsAlthough there are value. For finiteL, we expectv,(r=0) to scale as
still significant quantitative differences between@fe) and
an O(€?) calculation, implying that the expansion has not vy(r=0)x—LIn(1—ac’® V)~ —LIn
quite converged, the qualitative picture is clearly that of a
repulsive Gaussian-type potential, as shown in Fig. 2. These
calculations were confirmed by a number of computer simu-
lation studies, notably those by Olaj and collaborafband
by Dauntenhahn and Haf.

We repeated the calculation of the effective interaction
between two isolated SAW polymer coils, to make sure that
the simulations are carried out under conditions sufficiently 1
close to the scaling limit. For two polymers at infinite dilu-
tion, the effective interaction can be determined by calculat-
ing the normalized probability?(r) of finding their respec-
tive CM'’s at a separation. The effective potentiab,(r) is
then defined as

vo(r)=—In(P(r)). (4 0.98 | |

In the course of the simulation we sample configurations of

two polymers infinitely far apart using only the pivot algo-

rithm. After every 1000 pivot moves, we calculate the over- 0.97

lap probability as a function of CM distance, by moving the

polymers towards each other while checking for overlap. In o _ _ _ _

addition, the radius of gyration is calculated for each IengtH:'G' 3. F|n|te-§|ze s::al|ng for the_mteracnon bzitween two isolated polymers
. . at full overlap:v,(r=0). By plotting exp—uv,(r=0)/L] vs 1L, the agree-

considered, fronlL = 190 to L=8000. This rePrO_dUC_eS the  ment between the scaling relation of E§) and the simulations is demon-

well known Flory scaling lawRy~L". The effective inter-  strated.

a
1—[), )

0.99 - -

exp(-v,(0)/L)

0 0002 0004 0006 0008 001
1/L
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6 ; , - - ments in the present case. The effective total interaction po-
tential energyVy({ri};pp) is in fact afree energy which
depends here on the polymer densiy=N/V and on the
configuration{r;} of the polymer CM’s. The bare pair-
HE interaction ternv,(r) can be defined as the effective poten-
5.8 | _ tial between two isolated polymers, the bare triplet interac-
tion term v(r;,rj,r) can be defined for three isolated
polymers and so forth. One could in principle calculate
higher and higher ordem-body terms, but this rapidly be-
comes intractable. Even if explicit expressions for each of
the terms were obtained, the total interaction energy would
be very difficult to evaluate because the numbenafiple
coordinates increases exponentially.

Instead, we follow a different route and approximate the
pair and higher order terms by an effecti{gtate dependent
pair interactionv(r;p,) which is constructed to exactly re-

FIG. 4. The reduced osmotic virial coefficieRp /RS vs 1L. produce the two-body correlations of the full underlying
many-body system. In fact, it can be proven that for any
given pair distribution functiorg(r) and densityp,, there

wherea is a (positive) constant. This finite-size scaling be- exists a correspondinginique two-body pair potential
havior is confirmed in Fig. 3 and in the—oeo limit this v(r;py) which reproduces(r) irrespective of the underly-
equation goes over to E@3). Using a nonlinear fit of the jng many-body interactions the systenf* Of course g(r)

MC data to Eq.(5) we estimatev,(r=0)=1.80+0.05, a will contain contributions not only from the bare pair-
value slightly higher than the be€¥(€®) RG calculations?  potential v,(r), but also from the three and more body
which give v,(r=0)=1.53. The difference is most likely terms. As a consequence, the effective pair interaction
due to a lack of convergence of tleexpansion. v(r;py) will also be state dependefin the polymer case,

The quantityr?v,(r) is actually more relevant for the density dependentand a new effective potential must be
thermodynamic properties of polymer solutions thay{r  calculated for each density. Nevertheless, the effective po-
=0),"and, as demonstrated in the inset of Fig. 2, the formefential leads back to the true thermodynamics of the full

varies less with than the latter, such that farv,(r) the  many-body system through the compressibility relation,
scaling limit appears to be reached even for chains as short

asL=>500. all, 1
Similarly, with the effective pair-potentials we can cal- ap :1_ A(k=0
culate the second osmotic virial coefficient, b/NT puh(k=0)

59 p

B,/R,’
fm

56

55

0 0.002 0.004 0.006 0.008 0.01
1/L

=1-ppt(k=0), )

% whereh(k) is the Fourier transfornfFT) of the pair corre-
Bz=—27rfo rédr(exp(—vy(r))—1). (6)  Jation functionh(r)=g(r)—1, and&(k) is the FT of the
direct correlation function. Using a variational argument,
Since the potentials scale withiR, this means thaleRg Reattd® has shown thai (r;p,) may also be viewed as the
should be independent &f in the scaling limit. As demon- “pest” pair representation of the true interactions. However
strated in Fig. 4, the scaling limit appears to be practicallythis inversion approach says nothing about a possible volume
reached forL=500. We estimate that fok —c, B,/R}  term Vy(pp,), in the coarse-grained total potential energy,
~5.85+0.05, which is consistent with other results obtainedwhich contributes to the e.o.s., but ndirectly to the
from simulations[BZ/RS%S.SO (Ref. 41] or RG calcula-  pair-correlationd® Of course the volume terms may still
tions [BZ/R§%5.99(Ref. 42]. Note that althouglB, scales  contributeindirectly, for example when they induce phase-
asB,~R?, as required by scaling theoty; this does not transitions.
mean that the polymer—polymer interaction is hard-sphere-  The inversion ofy(r) to extractv(r;py) is a well known
like, as is sometimes implied in the literatire. procedure and has been studied extensively in the field of
simple fluids®™#” We invert g(r) using the hypernetted-

IV. EEFECTIVE POTENTIALS: POLYMER SOLUTIONs  ¢hain(HNC) closure,
A. Deriving effective potentials from  g(r) g(r)=exp(—v(r)+g(r)—c(r)—1), (8)

Having derived the effective potential between two iso-of the Ornstein—Zernike equatiéfWhile the simple HNC
lated polymers, we now attempt the same for polymers innversion procedure would be inadequate for dense fluids of
solution at finite concentration. Whereas for simple fluids,hard core particles, where more sophisticated closures or it-
the interaction potential is generally independent of the thererative procedures are requir€d,’ we are able to demon-
modynamic state, this is not true for effective potentials instrate the consistency of the HNC inversion in the present
complex fluids. The latter typically follow from a coarse- case.
graining procedure, which amounts to averaging out certain ~ We performed Monte Carlo simulations HfSAW poly-
degrees of freedom, the individual microscopic polymer segmers of lengthL =500 on a cubic lattice of siz& =240
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FIG. 5. This figure compares the e.oz&=11,/p, from simulations forL
=40 SAW polymers(Ref. 50, with the e.o.s. fol.=500 SAW polymers
(see Sec. IV B and with the Bawendi—Freg@F) e.o.s. for lattice models
(Ref. 51, which is accurate for larger values of The latter gives an
indication where finitec correlations become important, and where one
would expect the melt-regime to start fdc=40, L=100, and L )
=500 SAW polymers. In the melt regime the des Cloizeaux scalingdaw Procedure. The(r) for r<r is then replaced by the mea-
~(pp/p*) Y~ will break down(Ref. 6. Clearly, theL=40 data do not  suredg(r), and the process is repeated until convergence.
follow the Qe_s Cloizgaux scaling law, demonstrating that there is no meanggr |ow density,g(r) andv(r ;Pb) converge very quickly,
Tgful semidilute regime folL =40 polymers, whereas there is one for but for higher densities, say, /p*>1, the convergence is
=500 polymers. . L
slower, and the mixing factor of the old solution into the new
one has to be increased to a value as large as 99%. In fact,
X 240% 240. The number of polymers was varied frdtn  because of the finite box-size, the inversion process is under-
=400 (p,/p*=0.54) toN=6400 (p,/p* =8.7). Note that determined, and our ansatz thafr;p,)=0 for r>r, is
at the highest density the monomer packing fractiorc is needed to find a unique solution. This is not unreasonable
~0.23, meaning that the conditions for the semi-dilute re-since we do not expect the interactions between the polymer
gime, namely,p,>p* and c~0 begin to be violated. At coils to be significant beyond a distance a few times the
even higher densities the system will approach the melt reradius of gyration. However, to make sure that this is actu-
gime where monomer packing effects become impoftant. ally the case, we found that relatively large simulation boxes
More generally, for finite length SAW polymers, there is awere needed, with a lattice size of up to-105R,. This is
limited density regime for which both conditions for the especially important at high density, where the inverted po-
semi-dilute regime can be simultaneously satisfied. We findential becomes longer ranged and more sensitive to small
empirically thatRy~0.39.%€ for SAW polymers on a simple changes in the radial distribution functig{r). In all our
cubic lattice, so that the monomer packing fraction at thenversions we checked explicitly that(r;p,) becomes ef-
overlap concentration is given by fectively zero for arr <r, confirming our initial ansatz.
o* ~ )08 ) The_ re_sultlng radial _d|§tr|putlon functiong(r) are
' shown in Fig. 6, and are similar in shape to those of the pure
Thus, forL =100 chains we find* ~0.1 so that there is only Gaussian core mod&].As the density goes up the correla-
a very small density range which might be called semidilutetion hole at smalt decreases in range and height. Except for
while for L=500 chainsc* ~0.027 and a meaningful semi- a small maximum around~ 2R, the pair correlation func-
dilute regime exists. The literature contains several claims ofions do not show oscillations within the statistical noise of
semi-dilute scaling behavior for SAW lattice polymers with about 0.1%, for any density considered here.
L <100, but, as the analysis above shows, these polymers do The effective polymer—polymer potentiaigr;py), ob-
not have a semidilute regime large enough to derive scalintained from theg(r)’s, are shown in Fig. 7. Careful inspec-
relations. An example of this is shown in Fig. 5. tion of the figure reveals that the effective pair potential is
In the course of the simulations the CM of each polymernot very sensitive to the polymer concentration. The value at
was tracked in order to construct the CM radial pair distri-r =0 first increases slightly with,,, before decreasing again
bution functiong(r). The latter is only known up to a cutoff at the highest concentrations, as is depicted in the inset of
radiusr., which corresponds to half the size of the simula-Fig. 7, while the range af(r;py,) increases wittp,. A more
tion box (lattice size. For the inversion, we neeg(r) for all subtle feature, highlighted in Fig. 8, is that the effective po-
r, so we employ the following iterative scheme to extendtential becomes slightly negative?(10 3kgT)) for /Ry
g(r). First we setg(r)=1 for r>r. and calculate the cor- =3 at the higher concentrations. These effects become ap-
respondingu(r;py,) by inversion. We then seai(r;p,)=0  parent only when large enough box-sizes are used. Although
for r>r. and determine the correspondimygr) for 0<r the negative tails seem very small, they are nevertheless sig-
< by a regular HNC calculation, using a simple iterative nificant since the thermodynamics depend on the integral of

FIG. 6. The polymer CM pair distribution functiog(r) calculated forL
=500 SAW polymers and used to generatl;p,). The x-axis denotes
r/Ry, whereR is the radius of gyration of an isolated SAW polymer.
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FIG. 9. The effective radius of gyration fdr=500 SAW polymers de-
FIG. 7. The effective polymer CM pair potentialr;p,) derived from a  Creases as a function of densjiy/p" . (Insed At high densities the effec-
HNC inversion ofg(r) for different densities. The-axis denotes /Ry, tive radius of gyration asymptotically follows the scaling I&y~p™".
whereRy is the radius of gyration of an isolated SAW polyménse) The
value of the effective polymer CM pair potential a0, as a function of
density p,/p*. The maximum of the potential initially increases before

. . . ues of the nodes are not known in advance, except for the
decreasing at high concentration.

boundariesr=0 andr=r.. Additional constraints on the
spline fit werev(r.)=0, dv(r=r.)/dr=0 andv(r=0)/dr
12, (r:py). For example, leaving them out can easily induce 0. We optimized the spline fit by moving the nodes on the

. . x-axis using a Monte Carlo procedure. The parameters for
a 5% change in the pressure. It is, therefore, paramount tﬁwe fits aregavailable eIsewheEr)% P

include these effects ifquas)-analytical representations of Note that in Fig. 7, the polymer—polymer interaction

tg: eff(:;:'\éer ;)Oterr:k’:l)lfs 'Gzor tg"’r‘]t r.eaf](;?’agcs'rgtglee:é toha r;pp) is plotted vsr/Ry, whereRy is the radius of gyra-
Ussl su ussians s u 49 n of isolated polymers in the infinitely dilute limit. In a

reproduce the potentials and hence the thermodynamics Aense solution, the effective radius of gyration of the poly-
the SAW polymer systems and consequently, we chose 19 ers contracts according to the power—leﬂgfvp’l’s 2,37,54
use an interpolation spline fit to describe the potentials. Firstas shown in Fig. 9 P Pb

the raw effective potential data were fitted to a Gaussian, The accuracy of the effective potentials are tested by

ves(r)=aoe‘alr2. (100  performing a direct molecular dynami@8ID) simulation of
the “soft colloids” interacting viav(r;pp). In Fig. 10 the
air distribution functiongy,p(r) from MD simulations is
ompared with the original SAVg(r) for two densities in

Subsequently, the differencAuv(r;pp)=v(r;pp) —ves(r)
was fitted by employing a least squares spline procedure wit
8 nodes(the “dfc” routine of the slatec library). The val-

15
l [-So— pjp*=g .
............ ofpr =054 |
0.005 -~ pJp*=1.09 [
——- pfpr=2.18
—-— pjp*=435 | — pJp*=2.18
- —pfo*r=870 . |  osL 7 | p/o*=1.09 |]
a
=
>
0
. 0 . . .
p -
= 001 i
o
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= -o01 .
-0.005 : : . : o . ‘ . .
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1R, I'/Rg

FIG. 8. The negative part of the effective polymer CM pair potential FIG. 10. Theg(r) of a system interacting via the effective potentiét; py)
v(r;pp) derived from an HNC inversion aj(r) for different densities. The  compared with the CM pair distribution of a SAW simulation for two poly-
x-axis denotes/R,, whereRy is the radius of gyration of an isolated SAW mer concentrations. The differences are shown in the lower panel and are
polymer. typically less thant0.01.
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the semidilute regime. The difference between the two dis- 100 T ' .
tribution functions shows an oscillation at smallBecause
this occurs in the same way for both densities it is possibly
introduced by the inversion procedure. Even so, the differ- O direct SAW simulation
ence between the two distribution functions is still typically T C’,_Z‘;t‘omr‘;i’ F‘G €.0.8.
less than+0.01. We conclude that the HNC inversion pro- - (pb/p*')Bgv_‘?e oo
cedure yields very accurate effective potentials for soft par-
ticles, capable of describing the structure of the fluid with an
absolute error of less thah0.01.

In a previous papé? we have shown that the HNC clo-
sure is very accurate when applied to the Gaussian niddel,
whereby particles interact via the repulsive potentiét)
=eexp[—a(r/Rg)2], and is in fact quasiexact in the regime
relevant to the effective potentials shown in Fig?®ZEven
the much cruder RPA closure(r)=—uv(r), yields semi- 0 1 10
quantitatively accurate results for correlations and thermody- p/P*
namics in the regime of interest. Thus polymer solutions in _ ,
the dilute or semidilute regime fall into the class of meanFI_G' 11. Log—log plot of the €.0.2=11/p;, as a function of the density for
. . . . . L =500 polymers. The soft-particle e.o.s. gives a good representation of the
field fluids according to the nomenclature introduced in Refsy saw polymer simulations. At the highest densities there is a slight
40. deviation from the expected des Cloizeayx, {p*)¥®*~ Y scaling law

The inversion procedure guarantees that the tWO-bOdV’hiCh we attribute to the effects of a finite monomer concentratioflso
correlations are accurately reproduced by the effective poterV" 'S the RG e.0.s. of Ohta and OdfRefs. 60, 61
tial, but this does not necessarily imply that higher order
correlations are also well represented. As a first test we per-
formed preliminary simulations of the three-body correlation_ -2 dInZ(N,L,D.H)
functions for both full SAW walks and our soft particles. The dH
two a_pproe_lches Ieat_:l to identical results_ within statistical er- ~D~2(InZ(N,L,D,H)~InZ(N,L,D,H—1)). (11)
rors, implying that higher order correlations are much more
accurately reproduced than one might initially expect. WeThe model is modified by associating an additional repulsive
have also performed some preliminary calculations of theootential—In\ with each occupied site in the plame=H,
three-body interactioms(ry,r,,r3). Even at full overlap of Wwhere 0<\<1. The partition function then becomes
the three centers of mass, the three-body interaction term is
only about 10% of the pairwise interaction. This is consistent ~ Z(N,L,D,H\)= Z e U™, (12
with the results found for star-polymetsand was foreshad- polymer conf
owed by the relatively weak density dependence of the efwheren,=D?p()\) is the number of occupied sites in the
fective pair interaction (r;py,). x=H plane, ancp(\) is the corresponding number density

Besides accurately describing the structure, it is also imin this plane. The pressure can now be estimated as
portant that the thermodynamics are captured by the effec-

. : : (1 [dInZ 1 pu(N)
tive potential. In the next section we therefore focus on the 11, —p 2[ d)\( )ZJ gy 22 (13)
equation of statée.o.s) for polymer solutions. 0 2 0 A

[1/p,

Z

We performed SAW simulations of polymers with lendth

B. Equation of state =500 on anM=160x100x 100 cubic lattice forN=50,
100, 200, 400, 600, and 800. For each density we determined
1. Equation of state from direct SAW simulations the value ofpy(\) for 5 different values ok, corresponding

We measured the e.o.dl,/p,, directly for a SAW to the abscissaef @ 5 point Gaussian quadrature which was

simulation by using the thermodynamic integration approactySed (0 evaluate the integral in B43) The resulting e.0.s. is
of Dickman®® In this method the bulkosmotio pressurdl, ~ Plotted in Fig. 11 and Fig. 12.

is measured by taking the derivative of the free endrgy

with respect to volume of a system of SAW polymers be-2. Equation of state from the soft-particle picture

tween two hard walls. The polymers live on a rectangular
cubic lattice of sizeM =H XD X D, which is periodic in the

y andz directions. The two walls are represented by an infi-
nitely repulsive potential at=0 and atx=H + 1, so that the
polymer segments cannot penetrate the walls. The volume of Pb A , ,
a lattice can only change discretely, and the free energy de- 116(Pb)= fo (1=p'€(0p"))dp".
rivative changes to a finite difference,

To calculate the e.o.s. within the soft-particle picture, we
use the compressibility relatiofr), which must now be in-
tegrated w.r.t. the density,

(14
We used the quasiexact HNC approximation to calculate
_dInZ(N,L,D,H) c(r) from the inverted effective potentialr;p;,) for several

b oM state-points, fitted the values @f0;p,), and integrated
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w.r.t. density. As demonstrated in Fig. 11, the e.o.s. is very 80 i v . T

close to the one obtained by direct SAW simulations, imme- Oh,/\lﬁl?:simulition? of )soft-potentials

; : ; ; iodand ranra. [ e.o.s for v(r;p
diately suggesting that our inversion procedure indeed repro- O direct SAW simuiation
duces the true thermodynamics of the full many-body sys- 60 L compressibility route e.0.s. for v(r;p,) .
tem. This success also implies that the volume terms are ——- Ohta-Ocno RG e.0.s. 5

---- MFe.o0s. forv,(rp,=0)

small, possibly smaller than the statistical error in our
present simulations and inverted potentials. In fact, using a %
simple scaling theory, Likos has argued that the contribution = 4°
of volume terms to the e.o.s. scales asg /(p*)%® in the N
semidilute regime, and so contributes little to the full €%3.s.

Also shown in Fig. 11 is the RG result by Ohta and 20 L
Oono®® we use a slight improvement with correct
exponent$! The one remaining fit parameter is determined
by the second osmaotic virial coefficieBt for L=500 SAW
polymers, a procedure similar to that used when comparing
to experiment§? The agreement is seen to be fairly good, Py/P*
although the SAW e.o.s. is somewhat higher than the RG ) ] )
results. This is most likely due to the fact that the monomelf'G 12. Linear plot of the the e.0.8=11,/p, as a function of the density

or L=500 polymers. Several approximations to the e.o.s., discussed in the
densityc is not zero, which induces small corrections to theex;, are compared.
full scaling limit (see the discussion in Sec. IVA

Instead of the compressibility route, one could also use

the virial route to the e.0.§8

tal e.o.s. First, the virial equation has a very small radius of
I, dVo(pp) convergence for soft-core fluid8.Second, the range of the
E =1+ d—Pb effective potentiab (r; pp) increases with density. These two

effects imply that a naive linear fit to all but the very lowest
- _2 < _ v (rij;pp) 3, (1 ;pb)> (15 polymgr densities' yvill Ieaq '.[O an overestimate of the true
ar; PN : osmotic second virial coefficieri,.

315

which includes not only the density dependence of the effec-
tive pair potential, but also the density dependence of the/ EFFECTIVE WALL—POLYMER POTENTIALS
volume term. The full density dependence of the potentials is
at present hard to calculate, so instead we initially ignore thé" POlymer coils near a wall
density derivative and the volume terms. First, we directly ~ Polymer coils near a nonadsorbing hard wall exhibit a
measured the e.o.s. of the soft-particle fluid by a MD simu-depletion layer due to entropic effects. This is true even for
lation with the spline-fit potentials. The pressure followsideal Gaussian polymers, and if one were to model these by
from the usual virial theorem, when the density derivativeseffective CM potentials, the polymer—polymer potential
in Eq. (15 are neglected. The e.o.s. from this approach isvould be zero, but there would still be a polymer—wall po-
depicted in Fig. 12, and compared to the simple mean-fieldential of the forme¢(z) =In(p(2)/p,), Wherep(z) is the CM
(MF) form, density profile near the wall ang, is the uniform density far
—1.1r0- from the wall (see the Appendix for more detgilsThus a
Zur=1%20(05pp)p, (16) complete description of polymer coils in confined geometries
which gives a good fit to the simulations, as expected forequires not only the polymer—polymer interactions derived
soft-core fluids in the MFF reginf®.Here(0;p;,) is thek in the previous section, but also effective polymer—wall po-
=0 component of the FT of the pair interaction. However,tentials ¢(z; pp).
by including only the explicit density dependence of the ef-  We follow a strategy similar to that used in the homo-
fective pair potentials while ignoring the density derivative geneous case, and first calculate the wall-polymer density
terms in the viral equation, weverestimatehe e.o.s. com- profile p(z), from which we then extract an effective poten-
pared to the full SAW simulation. tial ¢(z;pp). Using the same explicit SAW polymer model
The density dependence can be neglected even furthes in Sec. I, we performed MC simulations of polymers of
by simply taking thep,— 0 form of the pair potential ,(r), lengthL =500 on a lattice of siz&1 =160x 100X 100 with
and applying it at all densities. The resulting e.o.s. now  hard walls atx=0 andx=160. The polymer segments were
derestimatesthe e.o.s. when compared to the full SAW not allowed to penetrate the walls. The simulations were
simulation, as demonstrated in Fig. 12. We note that a simidone forN=50, 100, 200, and 500. During each simulation,
lar approach was employed in recent work on the phasewe computed the density profilggz), wherez denotes the
behavior of star-polymers, where tpg— 0 limit of the pair  distance of the polymer CM from the wall apg is the bulk
potential was used to calculate the structure and phaseensity far from the wall. The normalized profildgz)
behavior at finite concentratidti. =p(2)/pp—1, for different bulk concentrationg,/p* are
Finally, we comment on the common practice of extract-shown in Fig. 13.
ing osmotic virial coefficients from the measured experimen-  The polymer coil adsorptiof is defined by
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—_— pb/p* =0

............ pb/p* =0.67
_—— pb/p*= 1.28
—-— pfo*=6.05

FIG. 13. The wall-polymer CM density profit&z) = p(z)/pp— 1 for SAW
polymers at different bulk concentrations. Frdrfz) we can calculate the
corresponding polymer absorptiohsand find —I"'=0, 0.094, 0.13, 0.16,

2
z/F{g

Bolhuis et al.

lengttf in the semidilute regime. Although the profiles do not
show such a clear correlation-induced oscillation as the CM
profiles, there is nevertheless still a small maximum in the
depletion layer as illustrated in the inset of Fig. 14. The peak
in the monomer profile is less than 1% of the bulk density,
and seems to decrease with higher overall polymer concen-
tration. The range is aboR,, implying that it arises from
correlations between polymer coils. We observe only one
peak, although due to statistical noise, we cannot rule out the
possibility of more oscillations in the density profiles. Re-
cently self-consistent field calculations, valid for polymers in
a theta solvent, found a similar small oscillation in the mono-

mer profiles>*

B. Deriving ¢(z;pp) from p(2)

From a knowledge of the concentration profilez), and
the bulk direct correlation function between polymer CM’s,
cp(r), one may extract an effective wall—polymer potential

and 0.20 in units ong’z, respectively. The relative absorptions are ¢(z;p,) by combining the wall-polymer OZ relatiotfawith
—I'/p,=0.84, 0.59, 0.41, 0.27, and 0.1, respectively, and decrease the HNC closure. For a binary mixture of two components

with increasing density as expected.

IQIA)
-

—pbf:mz)dz,

labeled 0 and 1, in which component 0 is infinitely dilute
(xo—0), the Ornstein—Zernike equations becfme

h11(1,2)=c44(1,2 + be h11(1,3)c14(2,3)d3, (18a

th( 112) = C10( 112) + pr’ I"Ill( 1!3)C10(213)d3! (18b)

where QYA is the excess grand potential per unit area and
n the chemical potential of the polymers. As the density
increases, more polymer is adsorbed at the wall as expected,
but the relative adsorption;/p,,, decreases.

The normalized monomer density profiles for SAW'’s are
shown in Fig. 14 for the same polymer densities as the CM
profiles shown in Fig. 13. As expected, the profile moves
closer to the wall for higher density; the width of the mono-

ho1(1,2)=Cp1(1,2 + be ho1(1,3)¢14(2,3)d3, (189

hoo(1,2) =Coo(1,2) + be hoi(1,3)¢19(2,3d3. (180

In the limit Ry—o0, Eq. (180 becomes an equation for the

mer depletion layer shifts from arourir}, at the lowest den-
sities, down to values dictated by the segment correlatio

yvall-density profile, sometimes called the wall-OZ relation,

h(Z)=001(Z)+pbj dr’hoy(z")ep([r=r'|), (19

15 ; ; ;
—— pp* =067 where h(z)=p(2)/p,—1. The wall-OZ equation can be
T ppe=128 solved, given the bulk correlation functiag(r), and a clo-
S 252*;6@5 sure relation. In Sec. IV A we showed that the HNC closure
gives excellent results for effective polymer—polymer inter-
. ‘r s z/R, actions, and it is therefore natural to apply the same approxi-
oy / 0 ; 2\ 3 mation here. Combining Eq8) with Eq. (19) we obtain
N |- 1.01 ; :
= ] - $(Z:py) = ¢MF(z;pb>+pbf dr'h(z)eo(|r=r']). (20
05 -/, & ) ) .
1 N The first term is the usual potential of mean force
1 & dMF(z;pp) = —In[p (D)/pp], to Which ¢(z;p,,) would reduce
,’l/;" in the pp,— 0 limit, while the second term arises from corre-
W lations between the polymer coils next to the wall. An iden-
%0 p 5 : tical equation results from the HNC density functional theory
(DFT) approactf® and a similar one, witle,(r) replaced by

FIG. 14. The wall-monomer density profilg(z; p,) = p(z)/pp— 1 for the
same set of densities as in Fig. I&se) A magnification of the region

v(r;pp) obtains if a mean field DFT is used. In contrast to
simple fluids, where Eq(20) is not very reliable, the wall-
NC closure works remarkably well for the Gaussian core-
luid in the regime relevant to polymer solutiotfdJsing the

where there is a small correlational bump in the density profiles. The heigh
is less than 1% of the total density while the range is atfqut implying

that the bump arises from polymer—polymer correlations. cp(r) extracted from the earlier bulk simulationsg(fr) (see
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FIG. 17. The profileh(z) of soft colloids atp/p* —1.28 near a wal{dashed
line). The particles interact with each other viér), and with the wall via

FIG. 15. The wall-polymer potentiab(z;p,) as obtained from the inver- #(z;pp). This is compared with the wall-CM distribution of an explicit
sion of h(z) via the HNC expression, E¢20). SAW simulation(solid ling). The difference is shown in the lower panel and

is less thant0.02.

Sec. IV A), together with Eq.(20), we are able to extract

&(z;pp) from the density profiles. In order to calculate the the wall—polymer potential becomes more repulsive with
integral in Eq.(20), we use the procedure outlined by Sulli- density. This is due mainly to the correlation term, which is
van and Stelf® In contrast to the inversion of the buir), nearly linear inp,, and so becomes relatively more impor-
where we had to iterate until convergence, the wall-polymetant as the density increases. Nevertheless at shorter dis-
inversion requires only one step sincg(r) is given once tances thep"(z;p;,) term still dominates. The importance
and for all. Results for various bulk concentrations are plot-of including both the potential of mean force, and the
ted in Fig. 15. The range of the effective wall-polymer re-correlation-induced component of the effective potential is
pulsion increases with increasing concentration, while thelemonstrated in Fig. 16. At very low densities the potential
density profiles actually move in closer to the wall. The com-of mean force is adequate, but at higher densities the corre-
pression and enhanced correlation in the density profiles witkation term becomes increasingly important.

increasing density resembles that of the pure Gaussian core The effective potentials decay exponentially, and to ob-
fluid in a fixed external potentidf but the effect is less tain a useful analytic form for the effective potential, the
pronounced in the former case since for polymer solutiondogarithm of ¢(z;pp) can be fitted to a cubic polynomial,
which describes the potential very well. However, as in the
bulk case, the wall—polymer potentigl(z; p,) has a small
negative component that cannot be described by an exponen-
tial function. Although in this case the tail is probably not
very important, in order to be consistent, weditz; p,,) by a
least squares spline fit similar to the one described Sec. IV A.
The parameters for this fit are available elsewhére.

C. Consistency of the wall-polymer inversion

To test the validity of the inversion procedure for the
wall—polymer p(z), we performed Molecular Dynamics
simulations of a system of “soft colloidal” particles inter-
acting with each other via the effective pair potentiéd, p,,)
and with a wall via the inverted potential(z;p,) for the

4 . \ appropriate bulk concentratigny,. Such effective potential
2/R simulations are at least an order of magnitude faster than
9 simulations of the original SAW model. The resulting con-
FIG. 16. Comparison between the contributions to the effective wall-Ceéntration pI’OfIlE‘l of _the effective par.tlcles is shown in Fig.
polymer potentials from the potential of mean forselid lines and from 17 for one density; it agrees to within an absolute error of
the correlation partdashed lines[cf. Eq. (20)] for polymer conce_ntrz_;\tions roughly +0.02 with thep(z)/p,, obtained from the detailed
pp/p*=0.67, 1.28, 2.49, and 6.05. From top to bottom the solid lines cor-g A\W simulations. The corresponding adsorptidmlso dif-
respond to increasing density and the dashed lines correspond to decreasing ' o .
density. The solid line with the small squares denotes the potential of meat!S bY_IeSS than 1% from 'Fhe value obtained by the SAW
force for infinitely diluted systems. simulation, thus demonstrating the adequacy of the soft col-

components of ¢(z;p,)
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loid representation of the interacting polymer coils, and the 0.5 - T
accuracy of the HNC inversion for polymer coils near a hard 22{2:::5985
wall. Ooygpr =024

VI. DEPLETION POTENTIAL BETWEEN TWO WALLS N

. . (o))
A. Full SAW simulations o
)

One of the aims of this work is to show that the soft
particle description of the polymers provides a useful route <
to the colloid—colloid depletion potential in mixtures of col- ' ;
loidal particles and nonadsorbing polymers. Calculating v
these depletion interactions poses a severe test of the soft ; ~
colloid representation.

As a first step we calculate the depletion potential be- 1 y > 3 4
tween two planar walls, which can ultimately be applied to d/R
spherical colloids through the Derjaguin approximation. We
confined the polymers within a slit of widttl, and, using  FIG. 18. Depletion free-eEerg&F(d)/Rf,* between two*plates separated by
direct grand-canonical simulations of the full SAW polymer % CTEC S0 53 - S0 " et Gashed. dashed: dotied,
model, we computed the osmotic pressure exerted by th§1d solid lines are the soft-colloid simulations for the same densities?
polymer coils on the walls. The insertion of polymers wasar(d)/aF(0) for the SAW simulations, the solid lines are to guide the eye.
achieved by the configurational bias Monte CarloThe long-dashed line is the ideal Gaussian polymer result calculated in the
techniqué3 The (osmotig pressurd1(d) was calculated for Appendix. Note that the_range decreases with deqsity, and th_at, even for_the

. . lowest density, the AO ideal polymer approximation overestimates the in-
different values of the spacing between the walls by @ i¢raciion range.
thermodynamic integration technique similar to the one ex-
plained in Sec. IVB. Details of these simulations can be
found in Ref. 67. The interaction free energy per unit area A=2R, where the soft particle picture shows a larger repulsive
AF/A, is then obtained by integrating the osmotic pressuréarrier. The barrier height is, however, small compared to the

AF(d)/AF(0)
\

as a function of, attractive minimum at contact, which agrees well with the
" “exact” data, as does the slope of the attraction.
AF(d)/A:f dz(I1(z)—II()), (22) Liquid state theories for fluids with repulsive particle—
d particle interactions predict a repulsive barfiéso it is not

wherellI () denotes the bulk osmotic pressuig. These surprising that the soft particle picture shows a small repul-

explicit SAW simulations are rather computer intensive, andsive barrier as well. Instead, it is the lack of a significant
were only carried out fot. =100’ barrier for the pure SAW polymer simulations which re-

quires explanation. We trace the repulsive barrier to the
) o ) breakdown of the “potential overlap approximatioiPOA)
B. Effective potential simulations described in the Appendix. Under close confinement, the in-
In the soft colloid picture, the interactions of the polymer teraction of the soft particles with two parallel walls a dis-
CM's with each otherp(r;py), and with a wall,¢(z;pp), tanced apart can no longer be written as the sum of the two
are calculated once with the HNC inversion procedures from
theg(r) andp(z) of a full SAW polymer simulation at the
bulk densityp,. These potentials are then used in grand-
canonical MC simulations of soft particles between two
walls. The imposed chemical potential is chosen such that
for infinitely separated walls the bulk density is recovered.
The (osmotig virial pressure is measured as a function of 0.75
wall separationd, and the interaction free energy per unit Eﬂ
areaAF/A, is again obtained by integration of the pressure & o5

) - & - - SAW MC simulati

via Eq. (_21)- _ o o o o Soft particla MC simuiatons
In Fig. 18 the soft colloid depletion interaction is com- 0.25

pared to that of the “exact” grand-canonical MC simula-

tions of L=100 SAW polymers, for three different densities, 0

pp/p*=0.28, 0.58, and 0.95. The two approaches are in
good agreement, but the soft colloid calculations are at least . . l
two orders of magnitude faster than the SAW simulations. 0 2 4 6 8

As expected, the depth of the potential increases, whereas the 9

range of the mteractlon.c'iecreases as the density InCrgg‘:"'seqilG. 19. Comparison of normalized pressure between the wa(i8)/I1,,
At the two lowest densities, the two approaches agree Verys a function of separatiod, for SAW polymers and soft particles for a
well, but for p,/p*=0.95 they differ slightly aroundz densitypy, /p* =0.95.
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FIG. 20. Depletion free-energgF(d)/RS between two plates separated by FIG. 21. Depletion free-energ@(F(d)/Ré between two plates separated by

d based on the soft particle representation for polymers of lehgtt100 d for p,/p*=0.95. Circles are the “exact” MC simulations of SAW poly-

andL=500. Herep, /p* =0.95. mers. The long-dashed and dashed—dotted lines denote the two AO approxi-
mations mentioned in the text. The short-dashed line denotes the more ac-
curate wall-HNC approximation of E424), which is, in fact, very close to
the simulations in the soft particle picture shown in Fig. 18.

individual wall—particle interactions as would be the case for

simple liquids. This is caused mainly by the deformation of

the polymers due to the two walls, and also holds for ideal ) o ) .
polymers. The failure of the POA can be clearly seen in FigWhereAVig(d) is the gain in volume accessible to an ideal
19, where we compare the press(meforce profiles for the Gaussian polymer of siZg,, dug to overlap of the exclusion
SAW calculations and the effective potentials. In the softvolumes close to the plates. This can be exactly calculated as
particle picture the pressure starts to rise at a larger interwafinown in the Appendix. To treat interacting polymers, a
distance than the pressure for the SAW polymers, an effeddidely used phenomenological improveme(see for ex-
also seen when noninteracting polymers are represented §ynpPle Ref. 10 replaces the ideal polymer density by the
an effective particle representation based on the (€a& the Pulk osmotic pressurél,, of the interacting polymers in the
Appendix. Note that the over and underestimates of thel€ft over free-volume,

pressure cancel each other, so that the free energy at contact, AfF(d)/A=TI,AV4(d). (23
AF(0), for theeffective potentials is in good agreement with ) ) )
the SAW calculations. In Fig. 21 we plot these two versions of the AO approxima-

The MC simulations for the soft colloid model were car- fion for the largest density considered abopg/p* =0.95,
ried out with effective wall—polymer and polymer—polymer @1d compare them to the effective potential and “exact
potentials appropriate fdr=100, since longer polymers are SAW simulation results. The two approaches result in rather
not easily handled in the full SAW model. However, we PO repregentatlons of both the depth qnd the range of the
checked that the data obtained with effective interactions agfue Potential, even though we are technically not yet in the
propriate for longer polymerd_(=500), are very close to the semidilute regime where one might e_xpect the approaches to
L=100 results, as is shown in Fig. 20. Therefore, we ardréak down(see also the inset of Fig. 18For the lower

confident that we are close enough to the scaling regime fdf€nsities the AO approximation works somewhat better, as
the properties under consideration. expected.

C. Comparison with the Asakura—Oosawa approach D. HNC wall-wall approximation

The first(and still most popularapproach to the deple-

o A X | . Following arguments similar to those used to derive the
tion interaction in colloid—polymer mixtures was pioneered

, &5, ) wall-polymer HNC equations of Sec. V B, one can also de-
by Asakura and Oosawa in 1954when they approximated e 5 HNC-type equation for the depletion interaction free

the polymers as idedGaussiajy and calculated the induced energy per unit area between two walls separated by a dis-
attraction between two walls. We shall refer to this neglect of; | .o 70

polymer—polymer repulsion as th&0O approximation in
contrast to theAO mode] where a further step is taken and ~ AF(d) f“ h(s)h(d—s)ds
the polymers are approximated as inter-penetrable spheres of A Pof |

radiusRy .%*
The exact depletion potential induced by ideal polymers I f“ h(d— . N 4MF[ o d
between two plates of are®a distanced apart is given by Poj . (d=9)[¢(Sipo) — 6T (Sipp) Ids.
AF(d)/A=ppAVig(d), (22) (24)
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Here h(s)=p(s)/pp—1 is the single wall density profile, Finally, it must be stressed that the present inversion
¢(s;pyp) is the corresponding effective wall-polymer poten- procedure is by no means restricted to the simple SAW
tial, and "7 (s;py,) is the corresponding potential of mean model of nonintersecting polymers. We are in fact planning
force. The first term on the r.h.s. of E(®4) represents the to extend the coarse-graining procedure to the case where the
density overlap approximation discussed in the Appendixsegment-segment coupling has an attractive component to
and is the only contribution in the case of ideal Gaussiardescribe the situation of polymer coils in poor solvent. The
polymer coils. The second term arises from correlations beease of semidilute solutions of polymers of different lengths
tween the polymer coils, and dominates the first term fomwill also be considered within the same theoretical frame-
larger densities. Note that only information from one singlework with the objective of studying possible demixing, as
wall enters into this HNC wall-wall approach. We use thesuggested by our recent investigation of binary Gaussian-
effective wall—polymer potentiatp(z;p,) and the related core system& A final extension is to consider explicitly
density profileh(z) from the soft-colloid picture together colloid—polymer mixtures, by determining the effective
with Eq. (24) to derive the HNC wall-wall depletion free hard-sphere/polymer potential along the lines set out in this
energy. As shown in Fig. 21, this compares well with thepaper. More generally, our methodology should be appli-
MC simulations of the soft particles except at short distancesable to dilute and semidilute solutions of linear, branched or
where a small deviation develops that can be traced to thstar polymers in confined geometries.

fact that only information from a single wall is used. A more
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teractions obtained by a systematic inversion procedure

based on fluid integral equations, yield pair distribution func-

tions and concentration profiles which agree closely with theé\PPENDIX: DEPLETION POTENTIAL FOR IDEAL
results from simulation of the full SAW segment model, POLYMERS

while aIIowing a massive reduction in computer time com- In this Appendix we pursue a program similar to that of
pared to the lattice simulations. Much of the success of théhe main text, but now for the simpler case of ideal Gaussian
present coarse-graining procedure lies in our finding that thgolymer coils of sizeRy. Consider two parallel walls of area
optimum effective pair potential between the CM’s of neigh-A:|_x|_y a distancel, apart. In the limitL,,L, >Ry, the

boring coils does not depend strongly on polymer concentrafyll partition function for a single polymer is given By
tion, and is reasonably close to its infinite dilution limit. The

» 2
effective polymer—polymer and wall—-polymer interaction 8 1 p(— WzRgpz)

. L Z=L,L,L,— — Al
lead to a rather accurate description of the depletion interac-  ~* ~*7Y"272, 2 e LZ (A1)

=13,..P
tion between two hard walls, despite the implicit potential rom this. vari roperti h as the depletion inter
superposition assumption and the fact that the coarséfo S, Various properties, such as the deplietio erac
tion between two walls, can be exactly calculated.

graining procedure in its present form does not allow for the Similarly, from the underlying Green's functiofsee
deformation of the polymer coils, away from the spherical .. p. 19 of Ref. B the polymer end-point and midpoint

shape, in the vicinity of an impenetrable surface. Such shap itv distributi inal I found to b
fluctuations are allowed in the alternative procedure by Mu- ensity distributions near a single wall are found to be

rat and Kremé? but the remarkable agreement between the  p(l(z) z

original full SAW model and the coarse-grained model illus- =erf SR/ (A2)

trated in Fig. 18 seems to indicate that shape deformation of 9

confined polymers may not be crucial to reproducing con-  p{t(z) . z z A3)
' ' = — | . A3

centration profiles. o VIR,

The present inversion procedure yields concentration de-
pendent effective pair potentials, but does not provide direcAs shown in Fig. 22, both show a clear depletion layer where
access to the internal free energy of polymer c@ilghich ~ polymer configurations are entropically excluded near the
plays a role rather similar to that of the “self-energy” or wall. In principle the CM distribution could also be calcu-
volume term of electric double-layers in charge-stabilizedlated, but we have not yet succeeded in finding an analytic
colloidal dispersions or solutions of star polym&tsThis  expression for it. Instead a polymer lattice model simulation
concentration-dependent term contributes to the osmotiwith L=500 was used to generate tbél,\)l(z) depicted in
equation of state, but the good agreement between full SAVFig. 22.
model simulations and the results based on the effective pair Using either the end-points, midpoints or the CM as the
interaction without the volume term would indicate that thecenters of “effective particles,” an analogy with the full
concentration dependence of the latter is weak. “soft particle” picture can be made. The particle—particle
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FIG. 23. A comparison of the normalized depletion interacfidf(L,)/Apy,
FIG. 22. Normalized densitie,s(l)(z)/pb for ideal polymers near a wall.  as a function of the wall-wall separatitn /R, for various approximations
Also shown is the normalized monomer dengi®ef. 71 which falls, not discussed in the text. Theaxis denotes the distandtg between the two
unexpectedly, between the end and midpoint densities. The CM profile is thplates, divided by the radius of gyratidt, .
steepest since the CM cannot easily approach the wall as closely as the end
or midpoints can.

pop(2)=pP(2)pM(L,~2). (A7)

effective interaction is of course zero, while the effectiveIn contrast to the POA, this approximation is incorrect even

¢z =~In

dH(z)=—21In| erf

particle—wall interaction can be inverted from the densitiesf.Or simple atom|g or moIecu]ar s_ystems, although it is some-
in Eqs.(A2) and (A3) with the result, jumes a u§eful first approximation. On the ot_her hand, for
ideal particles the POA and DOA approximations are
z equivalent.
erf( ﬁ) } (A4) The original Asakura Oosawa moéeapproximates the
’ density profilep*)(z) next to a single wall by a step function
z of rangeR=Ry. The depletion potential is then calculated
AR (A5)  within the DOA. This can be improved by adjusting the
9 range of the step-function such that it excludes exactly the
The potential¢§;1,3|(z) for the CM profile can be obtained Same amount of polymer as the true density profile. For flat
numerically. In contrast to the soft-particle picture for inter- walls this implies a step-function of range=2R,/\/7.
acting polymers, the inversion here is trivial, since for ideal ~ In Fig. 23 we plot the depletion free-energy induced by
particles the effective potential is simply the potential of noninteracting polymers between two walls a distahge
mean force. The interactioab(cl,g,(z) for the Gaussian par- apart. The exact expression was first calculated by Asakura
ticles is in fact quite similar to the potential of mean force forand Oosawé’ here we approximate it by the following
SAW polymers at infinite dilution, shown in Fig. 16. But, Simple analytical expression,
whereas the wall-polymer interaction for interacting poly-

mers changes with the bulk density, #€")(z) for Gaussian AF(L,) 4 8 (n2R2L2)
chains is independent of density. A P Jr LZ( 1= g ) ;
Within the effective particle picture, two ways of calcu-
lating the interaction between two parallel walls are: L.<433R
(1) The Potential Overlap ApproximatiofPOA): Here, the zor g
partition function of the effective particles confined between AF(L,)
two walls, a distancé , apart, is calculated for a total exter- — % -0; L,>433R,, (A8)
nal potential given by A o
B(2)=D(2)+ ¢ V(L,~2), (A6) which arises from taking only the “ground state” of the

partition function in Eq.(Al), and cutting the potential off
where z is the distance from one of the walls. For simple where it crosses 0. This approximation is so accurate that the
atomic or molecular fluids this superposition approximationdifference with the exact interaction cannot be resolved in
would be exact and lead to the correct partition function and-ig. 23. The effective particle representations, based on end-
related equilibrium properties. However, for effective par-points, midpoints or the CM, provide a fairly good approxi-
ticles this is not necessarily the case as we shall see later omation to the full depletion interaction, while the two ver-
(2) The Density Overlap ApproximatiofDOA): Here, the sions of the AO model do not perform as well.
density between two parallel walls is approximated by the  The pressure profiles shown in Fig. 24 demonstrate that
product of the densities near a single wall, the end and midpoint effective particle approaches underes-
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