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Can Polymer Coils Be Modeled as “Soft Colloids”?
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We map dilute or semidilute solutions of nonintersecting polymer chains onto a fluid of “soft” par-
ticles interacting via a concentration dependent effective pair potential, by inverting the pair distribution
function of the centers of mass of the initial polymer chains. A similar inversion is used to derive an
effective wall-polymer potential; these potentials are combined to successfully reproduce the calculated
exact depletion interaction induced by nonintersecting polymers between two walls. The mapping opens
up the possibility of large-scale simulations of polymer solutions in complex geometries.

PACS numbers: 61.25.Hq, 61.20.Gy, 82.70.Dd
A statistical description of polymer solutions in complex
geometries, such as the colloid-polymer mixtures which
have recently received much experimental attention [1–3],
generally relies on a nanometer scale segment representa-
tion of the polymer coils, a computationally very demand-
ing task except in the special case of ideal (nonintersecting)
polymers obeying Gaussian statistics [4]. This obviously
follows from the fact that, although the colloidal particles
may reasonably be modeled by hard impenetrable spheres
or other complex shapes lacking internal structure, each
polymer coil involves L segments which must satisfy a
nonintersection constraint. It thus appears natural to at-
tempt a mesoscale coarse graining, whereby polymer coils
interact via effective pair potentials acting between their
centers of mass (CM). Since polymers can interpenetrate,
the effective potential by�r� is expected to be soft, with a
range of the order of the radius of gyration Rg of individual
coils. Such a coarse-grained description has been a long-
time goal in the statistical mechanics of polymer solutions,
dating back to the first attempts by Flory and Krigbaum [5]
who employed mean-field theory to find an interaction for
which the strength at overlap scales as by�r � 0� � L0.2.
Later, scaling arguments [6], field-theoretical renormaliza-
tion group calculations [7], and simulations [8] confirmed
that the range of the interaction between two isolated poly-
mer coils is of the order of Rg, but found that in the scaling
limit the strength by�r � 0� is independent of L and of
order kBT .

In this Letter, we show that a meaningful “soft colloid”
picture of polymer coils may be built on a coherent “first
principles” statistical mechanical foundation. We derive
both the effective wall-polymer CM interaction bf�z�,
and the “best” local effective pair potential by�r� between
polymer CM’s for finite polymer concentrations. These
potentials are then applied to simulate bulk polymer so-
lutions, as well as inhomogeneous polymers near a hard
wall and polymers confined between two parallel walls
to extract the effective depletion potential between plates.
The soft colloid approach turns out to be successful not
only in the dilute regime but also, perhaps more surpris-
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ingly, well into the semidilute regime. A related “soft par-
ticle” picture has been applied to polymer melts and blends
[9], but the corresponding phenomenological implementa-
tion differs substantially from the present first principles
approach.

We consider a popular model for polymers in a good
solvent [10], namely, N excluded volume polymer chains
of L segments undergoing nonintersecting self-avoiding
walks (SAW) on a simple cubic lattice of M sites, with
periodic boundary conditions. The packing fraction is
equal to the fraction of lattice sites occupied by poly-
mer segments, c � N 3 L�M, while the concentration of
polymer chains is r � c�L � N�M. For a single SAW
chain, the radius of gyration Rg � Ln , where n � 0.6 is
the Flory exponent [10]. The overlap concentration r�,
signaling the onset of the semidilute regime, is such that
4pr�R3

g�3 � 1, and hence r� � L23n . We have carried
out Monte Carlo (MC) simulations for chains of length
L � 100 and L � 500, and covered a range of concentra-
tions up to r�r� � 5. The pair distribution function g�r�
of the centers of mass was computed for several concen-
trations; g�r � 0� is always nonzero, thus confirming the
“softness” of the effective pair potential by�r�. The lat-
ter was then derived from g�r� by an inversion procedure
based on the hypernetted-chain (HNC) approximation clo-
sure relation [11]:

g�r� � exp�2by�r� 1 g�r� 2 c�r� 2 1� , (1)

where b � 1�kBT , while c�r� is the direct pair correla-
tion function, related to g�r� by the Ornstein-Zernike (OZ)
relation [11]. To any given g�r� and density there corre-
sponds a unique effective pair potential by�r�, capable of
reproducing the input g�r�, irrespective of the underlying
many-body interactions in the system [12]; in a variational
sense this by�r� provides the best pair representation of
the true interactions [13], and leads back to the true ther-
modynamics via the compressibility relation [11]. While
the simple HNC inversion procedure would be inadequate
for dense fluids of hard-core particles, where more sophis-
ticated closures or iterative procedures are required [13],
© 2000 The American Physical Society
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we are able to demonstrate the consistency of the HNC in-
version in the present case [14]. If the resulting effective
by�r�, examples of which are shown in Fig. 1, are used
directly in MC simulations, the calculated “exact” g�r�
for this effective representation coincides within statisti-
cal errors with the g�r� derived from the simulation of the
full initial polymer segment model. In fact, the HNC clo-
sure turns out to be quasiexact when applied to the simple
Gaussian model [15] whereby particles interact via the po-
tential by�r� � e exp�2a�r�Rg�2	, which yields a rea-
sonable fit to the effective pair potentials shown in Fig. 1.
Even the much cruder random-phase approximation clo-
sure, c�r� � 2by�r�, yields semiquantitatively accurate
results in the regime of interest [16,17]. Careful inspection
of Fig. 1 reveals that the effective pair potential is not very
sensitive to the polymer concentration. The value at r � 0
first increases slightly with r, before decreasing again at
the highest concentration. More strikingly, and perhaps not
surprisingly, the range of by�r� increases with r. The ef-
fective potential becomes slightly negative �O �1023kBT �	
for r�Rg * 3 at the higher concentrations.

The properties of soft-core fluids are significantly dif-
ferent from their hard-core counterparts. For example, for
potentials of the type shown in Fig. 1, the pressure is very
well described by bP � r 1 1�2bV̂ �0�r2 over the entire
density range [16,17]. Here V̂ �0� is the Fourier transform
of the potential, at k � 0. Our observation that potentials
become slightly longer ranged at higher densities implies
that the pressure scales with an exponent slightly higher
than 2, so that the equation of state (e.o.s.) is consistent
with the well-known r2.25 law [10], and reproduces the
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FIG. 1. The effective polymer CM pair potential by�r�Rg�
derived from an HNC inversion of g�r�Rg� for different densi-
ties. The x axis denotes r�Rg, where Rg is the radius of gyration
of an isolated SAW polymer. Inset: The polymer CM pair dis-
tribution function g�r� calculated for L � 500 SAW polymers
and used to generate by�r�.
e.o.s. of the full SAW simulations [16]. At first sight it
may seem surprising that a two-body potential could re-
produce the full e.o.s. without explicit many-body terms.
However, the effective potential we use is constructed to
reproduce the true thermodynamics through the compress-
ibility relation (ignoring small volume terms); the relative
insensitivity of by�r� to concentration implies that many-
body interactions are not very important [16].

This insensitivity to concentration makes it possible to
apply the effective potential appropriate for a given mean
concentration to inhomogeneous cases, where the local
polymer concentration deviates from the mean. Such a
situation occurs when a polymer solution is confined by a
hard wall. Using the same explicit SAW polymer model
in MC simulations, we have computed the exact profiles
h�z� � r�z��r 2 1, where z denotes the perpendicular
distance of the polymer CM from the wall. Examples of
h�z� for several bulk concentrations are shown in the inset
of Fig. 2. The corresponding adsorptions G are defined by

G � 2
≠�Vex�A�

≠m
� r

Z `

0
h�z� dz , (2)

where Vex�A is the excess grand potential per unit area,
r the bulk concentration of the polymers, and m their
chemical potential. From a knowledge of the concentra-
tion profile r�z�, and the bulk direct correlation func-
tion between polymers CM’s c�r�, one may extract an
effective wall-polymer potential bf�z� by combining the
wall-polymer OZ relations [11] with the HNC closure, re-
sulting in

bf�z� � bfMF�z� 1 r
Z

dr0 h�z0�c�jr 2 r0j� . (3)
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FIG. 2. The wall-polymer potential bf�z�Rg� derived from an
HNC inversion of h�z�. Inset: The wall-polymer density profile
h�z� � r�z��r 2 1 for different densities. The corresponding
adsorptions G are 0, 0.096, 0.132, 0.178, and 0.248 in units of
R22

g , respectively.
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The first term is the usual potential of mean force
bfMF�z� � 2 ln�r�z��r	, to which bf�z� would reduce
in the r ! 0 limit, while the second term arises from
correlations between the polymer coils next to the wall.
Using the c�r� extracted from the earlier bulk simulations
of g�r�, together with Eq. (3), we are able to extract bf�z�
from the density profiles. Results for various bulk concen-
trations are plotted in Fig. 2. The range of the effective
wall-polymer repulsion increases with increasing concen-
tration, while the density profiles actually move in closer
to the wall. It is important to stress that the correlation
term considerably enhances the repulsion compared to the
potential of mean force. We have tested the consistency of
the inversion procedure (which, to the best of our knowl-
edge, has not been attempted before for any wall / fluid
interface) by using bf�z�, and the pair potential by�r� for
the appropriate bulk concentration, in MC simulations
based on these effective interactions (such simulations are
at least an order of magnitude faster than simulations of the
initial segment model). The resulting concentration profile
of the effective soft colloids agrees to within statistical
accuracy with the initial r�z� obtained from the detailed
segment simulations, and the corresponding adsorption G

differs by less than 1% from the exact value, thus demon-
strating the adequacy of the soft colloid representation of
the interacting polymer coils.

An even more severe test of this representation is pro-
vided by a calculation of the depletion interaction between
two hard walls confining the polymers within a slit of
width d. Using direct grand-canonical simulations of the
full SAW polymer model, we computed the osmotic pres-
sure exerted by the polymer coils on the walls; the in-
teraction free energy per unit area A, bDF�A, is then
obtained by integrating the osmotic pressure calculated for
different values of the spacing d between the walls. These
simulations are extremely computer intensive, and were
carried out only for L � 100 [18]. In the soft colloid pic-
ture, the interactions of the polymer CM’s with each other,
by�r�, and with a wall, bf�z�, are calculated once with
the HNC inversion procedures from the g�r� and r�z� of a
full SAW polymer simulation at the bulk density. These are
then used in grand-canonical MC simulations of soft par-
ticles between two walls, and in Fig. 3 they are compared
to the exact grand-canonical MC simulations of L � 100
SAW polymers (for r�r� � 0.95). The results are in good
agreement, but the soft colloid calculations are at least
2 orders of magnitude faster. Contrary to the more widely
studied case of colloid-colloid mixtures [19], the exact in-
teraction exhibits no significant repulsive barrier, while
the soft colloid model leads to a flat maximum; the cor-
responding barrier height is, however, very small com-
pared to the attractive minimum at contact, which agrees
well with the exact data, as does the slope of the attrac-
tion. In fact, the repulsive barrier does not increase sig-
nificantly with density [16], and its origin can be traced to
our use of the “potential overlap approximation,” namely,
2524
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FIG. 3. Depletion free energy bDF�d��R2
g for two plates

separated by d. Circles are the “exact” MC simulations of
SAW polymers, the diamonds denote MC simulations of the
“soft particles,” the short dashed line denotes the wall-HNC
approximation of Eq. (4). The long-dashed and dash-dotted
lines denote the AO approximations mentioned in the text.

that the interaction of the soft particles with two paral-
lel walls a distance d apart can be written as the sum of
the two individual wall-particle interactions. This is exact
for simple liquids with true intermolecular interactions, but
not for polymers described by effective potentials, even if
the polymers are ideal [16]. For the sake of consistency,
the MC simulations for the soft colloid model were car-
ried out with effective wall-polymer and polymer-polymer
potentials appropriate for L � 100. However, we checked
that the data obtained with effective interactions appropri-
ate for longer polymers (L � 500), which cannot be easily
handled within the full segment model, are very close to
the L � 100 results, so we are confident that we are close
to the scaling regime for properties of interest.

In Fig. 3 we also compare two results derived in the
spirit of the Asakura-Oosawa (AO) approximation [20].
The free-energy difference bDF�z� is modeled by the
density times the exact depletion volume, DVid�z�, ex-
cluding one ideal Gaussian polymer of size Rg, or by a
popular phenomenological improvement [1]: bDF�z� �
bPbDVid�z�, where Pb is the bulk osmotic pressure of
the interacting polymers. Note that for the density under
consideration, these approximations are seen to be very
poor, both in regards to the depth and the range of the de-
pletion attraction. In fact, the range of the depletion inter-
action for interacting polymer coils is significantly reduced
compared to the AO predictions, valid for ideal polymers.
For low densities we find, as expected, that all the above
approaches converge [16].

These observations can be understood within the
soft colloid representation and the HNC approximation
[21], where the interacting free energy per unit area is
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given by

bDF�z�
A

� 2r
Z `

2`
h�s�h�z 2 s� ds

1 r
Z `

2`
h�z 2 s� �bf�s� 2 bfMF�s�	 ds .

(4)

Here h�z� � r�z��r 2 1 is the single wall density profile,
bf�z� is the corresponding effective wall-polymer poten-
tial, and bfMF�z� is the corresponding potential of mean
force. The first term on the right-hand side of Eq. (4) is
the density overlap approximation and would be the only
contribution in the case of ideal (Gaussian) polymer coils.
The second term arises from the correlations between
coils; this dominates the first term in the semidilute regime
�r�r� $ 1�. The standard AO approximation [20] may
be derived from Eq. (4) by replacing the density profile
by a step function of width Rg in the first term of Eq. (4)
and neglecting the correlation term. In Fig. 3 we compare
the HNC approach of Eq. (4) for the wall-wall interaction
to the exact results and the MC simulations of the soft
colloids. As was found for the homogeneous case and for
the single wall, HNC works very well here, demonstrating
that knowledge of by�r� and bf�z� quickly leads to
accurate predictions for the slit geometry, paving the way
for the use of integral equation techniques in other, more
complex, geometries.

To summarize, the coarse-grained representation of
polymer coils as soft colloids has been shown to be very
reliable, yielding pair distribution functions and concen-
tration profiles which agree closely with the results for the
full SAW segment model, while being much more efficient
from a computational point of view. Much of the success
of the coarse graining lies in our finding that the best
effective pair potential between CM’s of neighboring coils
does not depend strongly on polymer concentration, and is
reasonably close to its r ! 0 limit. Similar conclusions
were reached in recent work on the phase behavior of star
polymers, where the r ! 0 limit of the pair potential was
used to calculate the phase behavior at finite concentration
[22]. Our results for the linear polymer case suggest
that the full pair potential for star polymers may not be
strongly concentration dependent, and that our approach
could be used for star polymers in confined geometries.

Finally, we note that the soft colloid description is ex-
pected to work best in complex geometries where the
curvature is not too large on the scale of Rg, such as
colloid-polymer mixtures where the colloid radius R #

Rg. For such systems, the soft colloid model may now
be used in large-scale simulations or fluid integral equa-
tions of polymers in complex geometries, such as the
structure [23], phase behavior [1], interactions [2], and
metastability [3] of colloid-polymer mixtures, which can-
not be achieved with the detailed model of nonintersecting
polymer chains.
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