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Mean-field fluid behavior of the Gaussian core model
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We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential,
first considered by Stillingelld. Chem. Phys65, 3968(1976 ], behaves as a weakly correlated “mean-field
fluid” over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is
accurately described by the random phase approximation for the direct correlation function, and by the more
sophisticated hypernetted chain integral equation. The resulting pressure deviates very little from a simple
mean-field-like quadratic form in the density, while the low density virial expansion turns out to have an
extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by
the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal
instability against demixing at high densities. Possible implications for semidilute polymer solutions are dis-
cussed.

PACS numbs(s): 61.20.Gy, 61.25.Hq, 83.70.Hq

I. INTRODUCTION Neglecting in the first instance the state dependence of the

Interactions between atoms or molecules in simple quidSeffectlve potential, it seems hence worthwhile to examine the

invariably contain a short-range repulsive component or har&qu'“.brlum propetrtleifs |Of a ﬂum! ofts(;)f:) partl_CIeT méeract-_
core, such that the local molecular structure is dominated bif'd Via & pair potential approximated by a simple aussian

excluded volume effects. This observation explains the suc°™

cess of simple models involving hard convex bodies in ex- )
plaining the structure and phase transitions in simple atomic v(r)= eeXp( _ )
or molecular fluidd1]. For example, the hard sphere model '
has been instrumental in understanding freezing of simple

fluids[2]. The same success extends to somewhat more comheree is the energy scale arifldetermines the width. The
plex fluids such as liquid crystals, where hard ellipsoids orourier transform(FT) is

spherocylinders have been widely used to investigate the

@

R

isotropic-to-nematic transition and other mesophalsis AL a3 k?R?

However, the situation is generally not as simple in complex v(k)=m"Reexg = ——|. )
fluids, where effective interactions between mesoscopic par-

ticles are often of entropic origin. While excluded volume 2.5 . .

effects still dominate the interaction between compact colloi- 5 p=0 polymer CM potential

dal particles, the effective forces between “soft” or fractal 5 i_@@%oo Gau;s(ijaln fittolpﬂ p%t;ntial " |
objects of fluctuating shape, such as polymer coils or mem- . - Gaealan it sami dits porential
branes, cannot be modeled by hard cores. Polymers in a goa

solvent form highly penetrable coils and it is by now well 1.5 -
established that the effective interaction between the center
of mass of two polymer coils, duly averaged over internal BV(r), L
conformations, is finite for all distances, and decays rapidly
beyond the radius of gyration of the coild—7]. For two
isolated nonintersecting polymer chains, the effective pair 05 -
potential at zero separation of the centers of maés=0),
is of the order of XgT for sufficiently long chain$6,7], and
is reasonably well represented by a Gaussian whose width i
of order the polymer radius of gyratioRg, as shown in
Fig. 1. 05 ' : : '
We have recently shown that the general shape of the r/Rqg
effective pair potential remains roughly the same in dilute
and semidilute solutions of self-avoiding random walk FIG. 1. Polymer center of mass potentigls(r) from simula-
(SAW) polymers, and does not vary strongly with polymer tions of L =500 monomer SAW chain$8] are compared to a best-
concentration(see Fig. 1 [8]. The effective pair potential fit Gaussian(1), determined by fittingsv (0) to fix Be, and 5o (0)
model has been shown to accurately reproduce the structutefix R. The potential for two isolated coilg (- 0) is well approxi-
and thermodynamics calculated from Monte Ca(MC) mated by a Gaussian potential wihe=1.87,R=1.1R;. The
simulations of solutions of SAW polymers over a wide rangepotential in the semidilute regimh)~4><3/(47ng)] is approxi-
of concentration$8]. mated by a Gaussian potential wigle=2.16,R=1.4R.
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Such a “Gaussian core model(GCM) was in fact intro- 14

duced some time ago by StillingE®], who focussed on the

low-temperature regime* =e/kgT>1, where the model 1.2 | .
exhibits hard-sphere-like behavior, and a reentrant fluid-

solid-fluid phase diagram under compression below a thresh 1

old temperature. This work was further expanded by Lang

et al. [10], who showed that the model remains fluid at all 08 I

densities wher* =< 100. They also demonstrated that for this g(r)
model, the familiar hypernetted chailNC) closure for the
pair distribution functiong(r) becomes exact in the high
density limit, and that the random phase approximation
(RPA) is remarkably accurate at high densities.

In this paper we concentrate on the fluid phase of the
GCM (e*<100), with a particular emphasis on the regime
relevant for polymer solutionset =2) [8], for which the

06 [

0.2

dilute regime corresponds to reduced densitigs=pR3 %, ] 5 3
=<3/(47)~0.239, and the semidilute regime corresponds to r/R

p*=3/(4) [11] (herep=N/V is the number of Gaussian . . ) )

core particles per unit volumeWe shall successively con- FIG. 2. Comparison of MC simulations and solutions of the

sider the homogeneous fluid phase, the inhomogeneous fluldNC integral equation in a regime relevant for polymer solutions

phase in the vicinity of a hard wall, and the possibility of L8] 8v(1)=2exii—(/R]. The lines are HNC calculations, and the
demixing of binary Gaussian core Si/stems symbols represent MC simulations for different reduced densities

*

p*.
Il. THE HOMOGENEOUS FLUID PHASE c(r)=—Bo(r)+h(r)—In[1+h(r)], (5)

A. The thermodynamic stability of the GCM fluid . . .
Y Y where 8= 1/kgT. This closure must be combined with the

We consider a system dfl particles interacting via & Ornstein ZernikgO2) relation betweerc(r) andh(r) [13]
Gaussian pair potentigl), in a volumeV. In the absence of g yield a nonlinear integral equation, which must be solved
an infinitely repulsive core, the first question is that of ther-numerically. Examples foe* =2 at three reduced densities

modynamic stability against collapse, i.e., the existence of &* gre shown in Fig. 2, and compared to the results of MC
well defined thermodynamic limit. According to definition gjmulations.

3.2.1. in Ruelle’s classic onkLZ], the total interaction en- The key feature is that the “soft” correlation hole is

ergy Vi, which can be built up of pair and higher order gradually reduced ag* increases, a behavior typical of fi-

potentials, isstableif there exists @8=0 such that nite core potentials, which leads to overlap and ideal-gas-like
Va(r1s .. )= —NB 3) behavior ofg(r) in the high density limit. Note that the HNC

results are indistinguishable from the MC data, so that for
q N . e*=2 the HNC correlation function will henceforth be con-
for all N>0 and all{r} in the phase spacR". Stability sidered as providing an “exact” reference to gauge simpler

implies convergence of the grand partition function and &neories. The simplest is the RPA3,14, which may be

We”. defined thermodynamlc limit. Specializing to pair po- formally derived from the HNC closur) by linearizing the
tentialsv,, the total potential energy of the system, for anyIogarithm leading to

configuration of N particlegr;} e RV, can be written as
c(r)=—pBu(r). (6)

(2) - .
VRA(rg, e 'rN)_1<i<Ej<N va(ri—ril). @ Since Fig. 2 clearly shows that the amplitude fufr) is
rather small at high densities, we may expect the RPA clo-

For purely repulsive pair potentials, such as the GCM withSure to become more accurate as the density increases. For
e =0, V() satisfies the conditiof8), so that a well defined the GCM, Eq/(6) and Eq.(2) imply the following FT ofc(r)

thermodynamic limit exists. However, if,(r) is not strictly

_ k2p2
positive, this may no longer be true. In Appendix A two c(k)=— e* Wa/gRgeXF{ kR } @
examples are discussed, involving a finite core é&al) 4

ﬁ\rtrt]ri?ctlve tail, which do not lead to a proper thermodynammand the OZ relation immediately yields the following RPA

structure factor:

B. The structure of the GCM fluid 1 1

To determine the pair structure of the GCM fluid, we have S(k)=1+ph(k)= 1—pc(k) 1+ a exq] —k?R%/4]’
used the HNC closure which becomes exact in the high den- (8)
sity limit; this closure relates the direct correlation function
c(r) to the pair potentiab (r) and the pair correlation func- where we have introduced the dimensionless coupling pa-
tion h(r)=g(r)—1, according to rameter
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05 114 ' ] RPA becomes very accurate at high densities, so that it is
worthwhile to inquire about a correction to E®). Expand-
12 ing the logarithm on the right-hand sideHS) of Eq. (5) to
0 second order i, one arrives at the following expression for
c(r):

1
c(r)=—,80(r)+§h(r)2. (11)

_—— -

—— HNC Solution of the closur€11) and the corresponding OZ rela-
—— RPA:c(r) = -v(r)

— = (1) = expl_PV()1 tion requires an iterative procedure, as for the full HNC clo-
---------- RPA2 sure. Further simplification amounts to replach(g) in Eq.
(12) by its RPA form derived from Eq8) by FT; we refer to
this noniterative approximation as RPAD5:

. 1
/R c(r)y=—pBv(r)+ EhRPA(r)Z- (12

FIG. 3. HNC, RPA, and RPA2 forms of the direct correlation
function c(r) for Bu(r)=2exg—(r/R)?]. From top to bottom the ~From Fig. 3 itis clear thatrpa(r) is indistinguishable from
densities are* =0.1,0.5, and 1, respectively. Note that the HNC the HNC results except at low densitigs*(<0.2). The limi-
c(r) is bounded bycgpa(r)=—pBv(r) from below andf(r) tations of RPA theory at low densities become apparent by
—exd—puv(r)]-1 from above. Inset: Ratio'Trpa(0)/Cinc(0)  CONsidering the resulting behavior gfr) at short distance.
(solid ine) anderpax 0)/Sne(0) (long-dashed linevs densityp*. Th.e zero separation value ?5 easily derived from the
For p* >0.05, Crpag 0) is always within 2% of,c(0) —0 limit of the FT of Eq.(8), with the result

*

€
a=m""BepR3=7¥p* e*. 9 Irea(0) =1+ —Ligsl—a), (13)

HNC results forc(r) andS(k) at several densities are com-
pared to the RPA predictions in Figs. 3 and 4.

Sinceh(r)=In[1+h(r)], the HNC direct correlation func- %
tions are bounded below by the RPA fof8). Figure 3 also Li (X)= 2 x
shows that the HN@(r) appears to be bounded above by k=1 k"
the low density approximation

where thenth polylogarithm is defined by:

K
(14

for |x|<1. If €* <1, grpa(0) is positive for all densitiep™*.
c(r)y=f(r)=exd —Buv(r)]—-1 (10 However, whene* >1 there is always a reduced densify

belowwhich grpa(0)<<0, which is unphysical. For example,
which corresponds to the lowest order term in the expansioif e* =2, ggpa(0)<0, for p* <p§ =0.3617. However, even
of c(r) in powers ofp [13]; f(r) is the usual Mayef func-  for p* <p?¥ , the structure factoB(k) is still reasonably well
tion. Figures 3 and 4 also illustrate the point that the simplejescribed by the RPA because the deficiencieg (o) at
smallr do not strongly affecE(k). This is also illustrated in
the inset of Fig. 3, wheréRpAZ(O) is seen to approximate the
guasiexact HNC result to within 2% for densitig$=0.05,
= which is a significantly lower bound thasf; =0.3671.

1.2 T T T

i C. Thermodynamics of the GCM fluid

Turning now to thermodynamic properties, the equation
i of state can be calculated via either of two roJtk3]: from
the compressibility equation

0.8

S(k)

0.6

0.4 1 dBP(p") P “
— HNC ,8P=f — dP':f [1-p'c(k=0;p")]dp’,
———— MSA 0 Jdp 0

0.2 § (15

0 , . . whereP denotes the pressure. For soft-core potential systems
0 2 4 8 the virial equation leads to
kR
FIG. 4. RPA and HNC forms of the structure factsfk) for BP=p+ EPZ{)(k:O)_ Z_szjwrswh(r)dr_
Bu(r)=2exg—(r/R)?]. From top to bottom the densities ape 2 3 ar

=0.01,0.1,0.5,5, respectively. (16
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P FIG. 7. Compressibility factors from RPA and HNC for a

FIG. 5. Compressibility factorsZ= 8P/p) from RPAand HNC  Gaussian potential wite* =90, compared to MC simulations and
for a Gaussian potential wite* =2, compared to MC simulations to two and three term virial expansions. Again, the HNC virial
and to two and three term virial expansioB&pa, Zfinc » aNdZYne » approximation is nearly exact across the whole density range, and
are indistinguishable on this scale. Inset: The analytic ratiothe EOS is that of a mean-field fluid at all but the lowest densities.
Zeon Zhea=[1—€*R(a)/(1+al2)] ! gives a good approxima- The low-density limit is further discussed in Appendix B and illus-
tion to Zgpa/ Zine and goes to zero gs—. The ratioZip)/Zine  trated in Fig. 15.
demonstrates thalip, approximates the true EOS to better than
1% accuracy over the entire density range or=2. as high ase* =90 (remember that fore* =100 reentrant

) . crystallization sets i1f9,10]). Moreover, the two HNC esti-

If the correlation functionsh(r) and c(r) were known  mates of the pressure agree closely with the results of MC
exactly, the two routes would lead to identical equations ofsimuylations. These results confirm the conjecture that HNC
state. Approximate theories are not, in general, thermodyand RPA become exact for the GCM in the high density
namically consistent. However, as shown in Figs. 5-7, theimit, but also show that HNC works well for low densities
HNC closure yields practically identical values of the pres-iy the fluid regime we considere{ <100).
sure over the whole range of densities, even for a repulsion Turning now to the much simpler RPA, it is easily veri-

fied from Eqgs.(6) and (15) that the dimensionless equation
of state(EOS, Z= BP/p, reduces, within the compressibil-
ity route, to the simple expression

80

1 .
Zip=1+ 5 pB0(k=0) (17)

which for the GCM leads to

1
Zgpn=1+ 5. (18)

This in turn leads to an excess free energy per particle

BF 1 . 1
Tzipﬁv(kzo):§a (19

identical to that obtained from a van der Waals-like mean-

o field (MF) theory, so thaZgpa=Zye; it also implies that the

Gaussian porental with* 10, compared to MC simulations ang ©XCeSS chemical potentialis linear in density. .

to two and three term virial ex'pansiorﬁ Zf andZ},c are R(?me.mberlng that the quasiexact HNC dlr.e(.:t porrelatlon
PA» HNC HNC function is bounded below by the RPA for(®), it is imme-

very close over much of the density range. Inset: Compressibility ;. - .
factors at low density, symbols are the same as in the main figured.'ately clear from the compressibility equatitte) that one

Note thatZipe, shows unphysical behavior for very smalfl, which may expect
can be understood from the effective virial expansion discussed in c
Appendix B. Z<Zppp=ZnF - (20
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This conjecture is supported by E@.6), which shows that ll. THE GCM NEAR A WALL

the exact equation of state is given by In view of the success of the HNC and RPA theories for

the GCM in the homogeneous bulk fluid phase, it is of inter-
est to ascertain the validity of these approximations under
inhomogeneous conditions, e.g., in the presence of an exter-
nal potentiale(r) acting on the particles. In this section we
shall consider more specifically the density profiles of GCM
particles near a hard wall, using the formalism of density
functional theory(DFT). In an external potential the density

of particles will change from a constant bulk valpg to a
spatially varying local density(r). The grand potential of
the inhomogeneous fluid in equilibrium with a bulk reservoir

) . ) . fixing the chemical potentigk, may be cast in the generic
where the dimensionless spacing-r/R was introduced. form [1g]

The conjecturd20) is thus true, provided the integral on the
RHS of Eq.(22) is negative. This is very likely for suffi-
ciently high temperatures since the HNC results plotted in BQU[p(I‘)]Z,B}_in[p(I‘)]—f dr[Bu—Bo(r)]p(r),
Fig. 2 show thah(x) is mostly negative.

The integral in EQ.(22) can be calculated analytically
within the RPA, leading to the following result for the RPA
virial equation of state:

2m 2f°°r3‘wv(r)h(r)dr, 21)

— —C o
Z=Zppp 3 P 0 ar
which, for the Gaussian core model reduces to

1 4a * 2
Z=1+—a+—f x*e ¥ h(x)dx, (22
TJO0

2 37

(25

where the intrinsic free energy functional” naturally splits
into ideal and excess part$9 and F* The latter is an
unknown functional of the local densip/(r). When the in-

1 homogeneity is not too strong, the excess paft may be
v = % ’
rea=1H 5@ €' N(a), 23 expanded in a functional Taylor series in the deviation of the
local densityp(r) from the bulk density,, . If the expansion
where is truncated after second order the HNC functional results
1. : BQLp(r)]=pOp ]+f dr'Beé(r’)p(r')
N(@)= 5 [Ligo(~ @)~ Liss—a)]. (24 ’

+ | dr'{p(r")In[p(r")/py]—p(r")+
N(a) is zero for «=0, has a maximum of 0.0908 at f te(r)InLp(r )/ po]=p(r') + po}

=7.8, and goes to zero far— oo, which implies that for any

1
€*, the RPA becomes thermodynamically consistent in the - EJ drdr’[p(r)—pb]cf)z)(lr—r’|)[p(r’)
high density limit.
Interestingly, within the RPA2, the compressibility EOS —pul- (26)

may also be solved analytically and yields exactly the same

result (23) as the virial EOS in the RPAl.e., Zkpa2  This functional is to be minimized with respect 4¢r), and
MF or RPA compressibility equation of stat&7). In fact, as

shown in Figs. 5—7, the RPA virial equation of state is vir- p(r")

tually indistinguishable from the practically self-consistent p(r)=pbexp{ —,8¢(r)+pbf dr'c{?(|r’ —r|)(—— 1”
HNC results and the MC simulations, except at very low Po
reduced densitiep* . Figure 7 demonstrates that the mean- 27
field approximation(17) is still surprisingly good, even for
an interaction as large a3 =90, just below the value where

freezing sets in. This implies that the hard-sphere limit, en. . NN .

visioned by Stillingef9], is still not reached at such a strong direct co_rrelanon functlorr:b_ (N=c(n). G'Ye” c(r) from

interaction, and that the Gaussian core model behaves asti2 Previous HNC calculations of the pair structure in the

“mean-field fluid” (MFF) over a wide temperature and den- PUIK, EQ.(27) may be solved iteratively for ang(r). If c(r)

sity range. is replaced by its RPA forn6), then Eq.(27) reduces to the
Perhaps the most striking result is the persistence of th¥F form

linear slope of the equation of state to such low densities ()

[16]. The slope differs, however, from that determined by the , | _ _ , o P

(smalley second virial coefficient. This is further discussed p(r)—pbexp{ B be dr’Bu(jr = |)( Pb 1”

in Appendix B, where it is shown that the standard virial (28)

expansion of the equation of stdtE3] has a very small ra-

dius of convergence for the GCM, and is of limited use forEquation(28) also follows directly from the standard mean

this model, contrarily to the case of the hard sphere fluidield approximation(MF-DFT) for for the intrinsic free en-

[17]. ergy functional[18]

which is the familiar HNC approximation for the density
profile p(r) in terms of the external potential and thalk
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1.1 : T T : 8 T

//\ ]
1.05 |-}

/ | p(z)/p,
4

—— MF-DFT

— Punc(0)/P(0)
——- analytic approximation

= pye{0)/p(0 0 s . !
0 05 1 15 2
0.95 ' : : z
0 0.5 1 1.5 2
% . '
P FIG. 9. Density profiles from HNC and the MF-DFT for Gauss-

ian particles €=2,R=1) near a hard wall. Symbols are for MC
simulations at three densities, the solid lines are from the MF-DFT

Iyti i i f he RPA2 imati -
fa;r;ae)itli ;atflsc;btiigﬁg e(;oin; :hg rati e(lgg)/ro?g?itlzocn :/olem ) approach, and the dashed lines are from the HNC approach. The
: Pt -)7p RPAZHNC®  two theories and simulation agree to within the accuracy of the

Scl)?i:\)':ist?yet:eNscijrﬁ :Efe t())?tltze(;:a%?prommatlon, even though it doesgraph forp*=0.5 andp* =1, but small discrepancies appear for

p*=0.1, where the HNC is slightly more accurate.

FIG. 8. Ratiopync(0)/p(0) from Eq. (31) compared to the

BF M p(r)]=BF+ %J' drdr’ Bu(r,r')p(r)p(r’), though it tends to increase with increasied. In fact, the
ratio punc(0)/p(0) may be estimated from the very accurate
29 RrpA2; SiNCeZipar= Zhpa, the required pressure may be cal-

which, in a different context, is identical to the functional _culgted from Eq(23), while the RPAZ inverse compressibil-
ity is calculated to be

used to derive the Poisson-Boltzmann theory for ionic fluids
if v(r,r') is taken to be the Coulomb potential apdthe
charge density. (ﬁ

Specializing to the case of a planar wall coinciding with ap
the x-y plane, and confining the particles to the=0 half-

space, without any additional external potential, we note thafne resulting analytic estimate Qfyc(0)/p(0) is also

*

T=1+a—;—Q[Lil/z(—m—us/z(—a)]. (32)

the density profilep(z) satisfies the contact conditiga9] shown in Fig. 8; as expected, it gives a good approximation
of punc(0)/p(0). Even though the MF approach exactly sat-
p(z=0)=pP, B0 sfies the sum rul¢30), the HNC approach, which does not

satisfy Eq.(30), is a better approximation. We note that the
arguments above can be extended to the popular Percus-
Yevick approximation [13], where ppy(0)/p(0)=~(1

+ a)¥?/(1+ 1/2) [20], which, in contrast to the HNC or

whereP is the pressure exerted by the particles on the wall
equal to the bulk pressure in the absence of an external p
tential. The sum rul€30) is satisfied by the MF-DFT ap-

proach, Wh?rePMF(O):/EPMF:PbZMF' with Zye defined — y\ie"annroaches, becomes increasingly less accurate as the
by Eq. (17) sinceZy=Zgps- However, the sum rule is not density increases.

satisfied by the(more accurateHNC approximation(27), We have numerically solved the HNC and MF Euler-

which instead leads tf20] Lagrange equation&27) and (28) to calculate the density
profilesp(z) of a GCM near a hard wall, for several values
(31) of the bulk densityp, . The theoretical profiles are compared
in Fig. 9 to the results of MC simulations. The agreement is
seen to be excellent, particularly at the higher densities. In
This reduces to the exact res(@0) provided the pressure is fact, within the accuracy of the figure the difference between
a quadratic function of the bulk density. This is very nearlythe HNC and MF approaches is visible only for smakt
true over a wide range of densities, as shown in the previous=0.1, where, as expected, the HNC approach is slightly
section. In particular the simple RPA compressibiligr n more accurate.
MF) EOS (18), which provides a fair representation of the In Fig. 10 we show density profiles for particles interact-
numerical HNC results, is of the necessary linear form toing with an external potentig® ¢(z) = exd —z]/z, a situation
make Eq.(30) and Eq.(31) compatible. The deviations from similar to that encountered for polymer coils near a W8l
the sum rulg30) may be traced back to the slight nonlinear- Once again, we observe that the HNC and MF-DFT ap-
ity of Zyne, as demonstrated in the inset of Fig. 5 and in Fig.proaches are very close, suggesting that both are very accu-
8. The relative error does not exceed 3% fdr=2, al- rate and could potentially be fruitfully combined with the

p(0)=5py 1+

&BP)
dpy ) ¢|
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! ' ' ' last inequality ensures stability at constant pressure; it is
\ — equivalent to the more familiar conditiqw?g(x, P)/9x?]p
ol \ — explB(2)] | >0, yvhgreg is the Gil_::bs free energy per pz_article. We note
MF-DFT that if either of the first two stability condition&34g or
© HNC p#=0.1 (34b) are violated, the more restrictive stability condition
° mg p*f)'s (340 is violated as well. Spinodal instability occurs when
© pr=1 . - . o .
Eq. (340, is satisfied as an equality. The condition is equiva-
p(2)/p, lent to the k—O divergence of the concentration-
S L 7 concentration structure factor
Sed(K) =X2S14(K) +(1=X)?Sy5(K) = 2X(1—X) S;(K),
(35
where theS, (k) are the usual partial structure factgis].
From the OZ relations for a binary mixture it is easily in-
0s ; 5 3 . ferred thatS.(0) diverges when

[1—(1-x)pC1y(0)][1—XpC2A0)]
FIG. 10. Density profiles from HNGsymbol$ and MF-DFT orn )
(lines) for Gaussian particleset =2,R=1) interacting with an ex- —X(1-x)pc10)]°=0. (36)

ternal potential3¢(z) =exd —zJ/z. . . . .
We now examine the implications of these conditions

effective potentials between polymer center of mEgisto wit.hin the MF approximation, which we have ;hown to yield
derive a full DFT for polymer solutions in complex geom- réliable results, except at low reduced dengity The MF
etries. In summary then, the results of this section confirn{'€® €nergy(19), properly generalized to the binary situation,
that the model considered indeed behaves as a “mean-fiel§29S
fluid” under inhomogeneous conditions. _ . 1
f(X,P)=f'd(P)+fm'X(X)+EPVo(X), (37)
IV. PHASE SEPARATION IN TWO-COMPONENT

REPULSIVE GAUSSIAN MIXTURES where the first, ideal gas, term is irrelevant in the subsequent

Since the underlying polymer mixtures exhibit interestingConsiderationsf™ is the ideal mixing term
phase behavior under a variety of physical conditions, it is MiX/ gy — B B
natural to consider binary mixtures of Gaussian core mix- P00 =xInx+(1=x)In(1=x), (38)

tures, interacting via pair potentials and the MF interaction term is

Aouulr) = €L e = (r/Ry)%] B3 Uo(x)=(1-%028014(0) + 2X(1-X)B0140) + X5 (0).

where the species indices<lv, u<2. The total number den- (39
sity is still denoted by = (N;+ N,)/V, while the concentra- The {35VM(0)} are thek—0 limits of the ETs of the inter-

tion variablex=N,/N. We are interested in the possibility .tqn potentials. In fact, the MF free ener¢87) has the

of a phase separation, or demixing transition, of the WOz e mathematical form as a second-virial theory which

species. The thermodynamic stability conditions for any bi'would be valid for very low densitiek22].

nary mixture can be expressed in terms of the Helmholtz free' \yih the ME free energy(37), the stability conditions
energy per particlé(x,v)=F(N;,N,,V)/N, considered as a (3489—(340) reduce to ’
function of the intensive variablesandv (or p=1/), for

any fixed temperature. These conditions [&E] 1+p\70(x)>0, (409
3%t 1—px(1—x)x>0 40D
— | >0 (343 pX( X)X ) ( )
v? ’
) 1+ pV1(x) — p2X(1—X)A>0, (409
2
(a_f >0 (34b) respectively, where the following parameters were defined:
Ix? ’ . A .
’ X=2B012(0) [ Bv11(0) + B 0)], (41)
o\ [ 9%t &*f |2 - - -
(F) (g) _(&U&X >0. (340 A=[Bv10)]1°~ Bv11(0) BvA0), (42)
v
X v
V1(X)=(1=X)Bv11(0) +XBv2o0). (43

The first inequality expresses mechanical stability., posi-
tive compressibility, the second is the condition for stability Equation(403 can only be violated if the potentials them-
against spontaneous demixing at constant volume, while thselves violate a two-component extension of Eb) from
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Appendix A, which is a necessafhut not sufficient condi- 15
tion for the existence of a well-defined thermodynamic limit.

The limit of stability of the mixturdi.e., the spinodal lineat

constant volume or pressure is reached when the inequalitie

(40b) and (400 turn into equalities; the latter condition also

follows from Eq.(36), when thef:m are replaced by their
RPA limits ¢, (k)= — Bv,,(k). Demixing at constant vol-
ume is possible, provideg>0; the density along the spi-
nodal is then easily calculated to be

SRﬁ

po(X)= (44)

X(1=X)x "

Demixing at constant pressure is only possible provided

>0. The corresponding density along the spinodal satisfies 0 ' ! ' ‘
0 0.2 0.4 0.6 0.8 1

X

V(%) + VV1(x) %+ 4x(1—x) A
ps(X)= 2X(1—X)A , (45) FIG. 11. Constant pressure spinoddb) for parameters taken
from simulations ofL =100 andL =200 monomer effective poly-
mer CM potentiald 7]. The x axis denotes the compositior= x,
=N,/N. They axis denotes the densiunyl, where Ry, is the
= radius of gyrationR¢ for the L=200 polymers. The dot is the

the pressure along the spinodal is

1 - - .
BP(X)=ps(X)+ §P§(X)V0(X)a (46) critical point at &=0.70, pR3,=5.6).
and the critical consolute point is determined by the condi- Rizz E(Rfﬁ Rgz)- (52
tion 2
dPy(x) The relation(51) between thee,, favors mixing. On the
TZO' (47) other handR,>1/2(R1;+ R5,), which resembles the posi-

tive nonadditivity that can drive demixing in hard-core mix-
tures[24]. Substituting Eq(52) into Eqg.(49), we find that a

The simple quadratic expressiod6) for the pressurd, is . : . s . ;
easily inverted to obtain an expression for the spinodal densPinodal instability of the mixture is possible at constant vol-

sity as a function of concentrationand pressur®. ume provided
We now apply these general considerations within the MF . .
framework to the binary Gaussian core model for which 2 5 1+ (Rg2/Ryy)

€11 [1+(Ryp/Ryp)?1*2

(53
Bv,,(0)=7"€ R3 . (48)
R which contradicts the requiremef®l). On the other hand, if
Inserting the binary GCM expression foy,(0) into expres-  Eq. (52) is substituted into Eq(50), demixing at constant
sions (42) and (43) for y and A, we find that phase- pressure may occur provided

separation at constant volume or at constant pressure is pos-
3

sible provided (e,)? 2(Ry,/Ry1) . -
x=732e5 R~ (LR + 5 R3)1>0 (49) €l1€3 [ 1+(Ryo/Ryp)?
or which is compatible with the requireme(gl).
More specifically, we have chosen values of the param-
A= 7 (€,)?RS,— er1e5,R3R3,)] > 0. (50)  eterse;, andR,, appropriate for a polymer mixture of self-

avoiding polymers oL =200 (species 1) andl =100 (spe-

In order to focus on physically relevant values of the pa-cies 2 monomerg7,23]. The resulting spinodal liné45) in
rameterSe’;M andR,,,, it is important to make contact with the x-p plane, calculated from the MF free ener@7) with
known results for polymer coils in a good solveli,7]. (48), is shown in Fig. 11. Phase separation into two solutions
Simulations on binary solutions of self-avoiding polymer of different compositionx occurs above a critical density
coils carried out in the low concentration linfif] suggest p§=5.6Rfl and critical compositionx.=0.70. Note that
that the effective pair potentials between centers of mass agnce all terms in the free energy are of entropic origin, the
reasonably well represented by the Gaussian f@8n with ~ temperature scales out, i.e., the mixture behaves as an ather-

mal system. In view of the remarkable accuracy of the MF
€, <€=€5, (51)  theory at high density, as illustrated in Sec. Il and Ill for the
one component GCM fluid, we expect the phase diagrams,
and calculated within MF(or equivalently RPA to be reliable;
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full calculations of the binodal line, based on RPA2 andthe melt. Again, further analysis is required to decide if the

HNC theories, will be reported elsewhere. analogy between the demixing of Gaussian core mixtures
and of polymer blends is fortuitous, or has some deeper
V. CONCLUSIONS foundation.

The calculations carried out in this paper, and in related
work [8], lead to the conclusion that a system of classical ACKNOWLEDGMENTS
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creases as a quadratic function of the density. On the other
hand, in the opposite low density regime, a virial expansion
of the equation of state in powers of the density appears to
converge only at extremely low densities. This is in sharp
contrast to hard-core systems, for which the virial expansion It was pointed out in Sec. Il A that the GCM satisfies
provides a good estimate of the equation of state up to relaRuelle’s condition(3) for the existence of a finite thermody-
tively high packing fractiond17], while the pressure di- namic limit. In this appendix we give two examples of pair
verges near close packing according to a simple free volumgotentials involving a repulsive core and a sntractive
picture. At very strong interaction strengtle*(=100), the  component which do not satisfy Ruelle’s stability condition,
GCM behaves effectively as a hard core fluid that freezes aind hence belong to the class of potentials referred to by him
intermediate densities, but remelts under further compressioss “catastrophic.” The following considerations are not
to return to mean-field-like behaviof9,10. The small completely academic, since it has been shown in Rz
correlational effects at low and intermediate interactionthat the effective pair potential between the centers of mass
strengths are adequately described by the simple, analytisf two polymer coils in a good solvent indeed exhibits a
RPA2 extension of RPA theory, or by the HNC integral small attractive part at distances of the order of several times
equation(requiring numerical solutionwhich is nearly ther-  the radius of gyratiorR, for intermediate densities. When
modynamically consistent over a broad range of temperathe polymer coils are no longer in a good solvent the poten-
tures and densities. tials can develop even larger attractive pqmth

The MF theory performs equally well in the inhomoge-  According to proposition 3.2.2 in Ref12], given an in-
neous situation of Gaussian core particles near a hard walleraction energy/ﬁ) built up by pair potentials ,, the grand
The binary version of the model phase separates at high departition function is finite only if the following two equiva-
sities, when the widths of the Gaussian repulsion satisfy th@gnt properties hold for alN=0 and all{r;} e R":
composition rule(52), provided condition(54) is satisfied.
This provides an interesting example of phase separation in
systems with purely repulsive interactions. > 2 vy|ri—rh=0 (A1)

To conclude it seems worthwhile to consider the rel- b
evance of the GCM for the description of polymer solutions.zng
The latter enter the semidilute regime when polymer coils
start to overlap, i.e., whep* ~3/(4). For densities of this

APPENDIX A: THERMODYNAMIC STABILITY
OF SOFT-CORE POTENTIAL SYSTEMS

N N

. (Ad)

4
1.7RG)

order we have seen that the GCM behaves as a “mean-field Vi, !rN):lS;},SN va([ri—r)=—NB (A2)

fluid,” with a quadratic density dependence of the pressure.

The exponent 2 is close to the 9/4 power observed for théor a B=0. Note that in Eq(A1) the double sum includes

osmotic pressure of semidilute polymer solutig@s]. The  the self-interactioni(=j).

difference between the exponent 9/4 and 2 is due in part to We consider two examples of potentials which do not

the weak, but significant density dependence of the effectivgatisfy these conditions

pair potential between the centers of mass of self-avoiding )

polymers[8], which leads to an additional density depen- r r

dence of the RPA or MF equation of stgt7). This possi- UA(r)ZlB?CO% V(2+9) 1-7RG) exp{ _(1-7RG) }

bility is being explored in more detdiR6)]. (A3)
The effective polymer-wall potentials derived in RES)

show a significant variation with density. Nevertheless, the

form of thep(z)/p,, for the GCM in afixedexternal potential ve(r)= lB?CO%‘/;( 1-7RG) ex;{ -

follows the same qualitative trends as the distribution of the

polymer CM’s near a wallpcu(2)/pp, Suggesting that the and compare them in Fig. 12 to the polymer CM potential

physics of polymer coils near a wall is well captured by thebetween two isolatetl =500 SAW polymer coils. Her@ is

GCM. an arbitrary positive constant taken to Be0.001 in Fig.
The demixing transition of binary Gaussian core mixturesl2. Although at first sight they do not appear very different

is reminiscent of the tendency of polymers of different mo-from the purely repulsive polymer potential, they are both

lecular weight to phase separate at high concentration and ifcatastrophic.”
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FIG. 12. Two “catastrophic” potentials compared to a typical ~ FIG. 13. Second virial coefficients for a Gaussian potential as a
CM potential for two polymers in a good solvent. Potentia(r) function of interaction strengtl* (B5>B,>B}"). Also included is
(A3) violates the condition§A1) and (A2) for homogeneous fluid the empirical relatiorB5S \In(2¢*)], where BYS(¢o) is the hard-
configurations, while potentialg(r) (A4) violates Eqs.(Al) and  sphere second-virial coefficient.

(A2) only for inhomogeneous configurations like the fcc crystal.
yet clear whether the pair-potential picture of polymer solu-

If 5>0, the first potentialy A(r), violates a weaker con- tions[8] remains valid for poor solvents.
dition than Eq.(Al) or Eq.(A2), namely,
APPENDIX B: VIRIAL EXPANSION FOR THE GCM
FLUID

U(O):J v(r)dr=0, (AS) In this appendix we briefly consider the convergence of

the virial expansion of the equation of state of the GCM in

o .- . powers of the densitp. The FT of the Mayef function in
which is necessargbut not sufficienk for a thermodynamic Eq. (10) is given by the convergent sum

limit. When it does not hold, condition®A1) and (A2) can

be violated for a homogeneous “gas” wit(r)=1. This k2 i

has a further implication for fluids described by a mean-field A S BT (—€")

free-energy(19), since the inverse compressibiligBP/dp f(k)=m2> T (B1)
n=1 nin

=1+ Bv(0)p cannot go through zero without violating the
condition (A5), which implies that one-component soft-core
fluids described by a mean-field EOS cannot support a sp
nodal instability.

The second potentialg(r) has an integraT;B(O)>0, but
it still violates Egs.(Al) and (A2) for an inhomogeneous
configuration. For example, for an fcc lattice with single oc- 732 2 (—e*)n
cupancy= ' 'vg(|r;—ri|)=—0.13N. The potential is cata-
strophic because one can always lower the total energy in-
definitely through multiple occupancy of the lattice sites.

The 6 point in polymer solutions can be defined as the
temperature where the effective second osmotic virial coef-
ficient B, passes through {7]. Above the# point the sol-
vent is said to be “good,” while below thé point the sol-  The variations o8, and B3 with €* are shown in Figs. 13
vent is said to be “poor.” Simulations of a model for two and 14; both virial coefficients are always positive.
polymers in a poor solvent show that the effective pair po- The virial expansion of the equation of state reads
tential is no longer strictly positive definite below thgpoint
[7], implying that the pair potentials can become cata-
strophic. In fact, for the type of polymer CM potentials con-
sidered, this seems to occur just below thpoint tempera-
ture whereB,=0. It is tempting to speculate that the coil- and the results from the two and three term series are com-
globule transition, which also typically occurs slightly below pared in Figs. 5—-7 of Sec. Il to the predictions of the RPA
the 0 temperature, is related to the point at which the effec-and HNC theories, and to MC simulations f6f=2,10, and
tive pair potential becomes catastrophic. However, it is no®0. The virial expansion is seen to break down very early. In

Here the width parametd® in the Gaussian potentiél) has
been chosen as unit of length for convenience. The second
and third virial coefficient®, andB; of the GCM can then

be expressed as the following convergent sums:

(—e*)ititk

1 o o0
By=— 373 3 ®3)
i=1i=1

KE1iljrkI(i] +jk+ik)%?

P
z= BT:H B,p+B3p?+ O(p?) (B4)
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FIG. 14. Third virial coefficients for a Gaussian potential as a P(Ge")

function of interaction strengte* . B5=0, BY'>B;. Also included o3 - o
is the empirical relatiorB,(e*) = BYY \In(2e")], whereB(o) is FIG. S:L5. Zvs p(oefz) in the low density limit. Heres* =90 so
the hard-sphere third-virial coefficient. Inspfy= 1/(w%%*) is the  that (o) =2.27; p(0gi)*=1 corresponds tp* =0.085. For low
maximum density for which the RPA virial EO®3) can be written  effective density the EOS follows the hard-sphere E@&e ap-

as an expansion in powers of the densjiy,= \/5/(0? 3 is the proximated by the Carnahan-Starling fof@8]). For higher densi-

density at which the effective hard-sphere system with the sam#eS the fluid moves towards the mean-field fluid lingee Fig. .
second virial coefficient as the GCM would be close-packed. ~ Note that the two RPA expressions for the EOS are very poor
approximations in this low density regime.

particular, although the MF EOS, which becomes very accu- _ . o .

rate at high density, predicts a linear variation DHfwith resents the first two virial coefficients, it nevertheless accu-
density, the slope differs more and more frdg as the rately descripes the EOS, implying that the' density is not a
interaction strengtla* increases. Adding thB contribution ~ 900d expansion parameter for the GCM fluid phase.

leads to rapid deterioration of the predicted EOS as the den- A further hint at the breakdown of the virial expansion
sity increases. comes from summing the virial series to all orders in the

The shortcoming of the virial expansion in powers of den-high-temperature limit, where, from the diagramattic repre-
sity is further illustrated by considering the RPA. From Eqs.sentation of the virial coefficien{sL3], it can be shown that
(18) and(23), one may extract the following compressibility the B, are given by
and virial estimates of the second and third virial coefficients

1 o (—€)"(n=1)
. 1 . . an _ 571_S(n 1)/2 o + O(E*)n+l (Bg)
BZIETr €*, B3=0, (B5) n
3 .3 for n=3. WhenB}" (B6) is added, this recovers exactly the
vir_l 312_x _E * vir _ (€) virial RPA equation of stat€23), which can only be ex-
Bz =T "€ 1 € y BS = ( ) . . .
2 8 93 panded in powers of density far<1, i.e., for
As shown in Figs. 13 and 14, the exact virial coefficients are 1
bracketed by the virial and compressibility estimates ex- p* <pm=—35 5 ~0.1796¢". (B10)
tracted from the RPA me
BS>B,>BY", (B7)  This implies that in the high-temperature limit, the virial ex-
_ pansion does not converge for densities higher pifat For
BY">B;>B5=0. (B8)  €*=2, there is no convergent density expansion of the RPA

o o . _virial EOS for p*>pr~0.0898. A similar breakdown in
The large deviations shown in Figs. 13 and 14 imply that, inconyergence may be expected for the exact virial expansion.
contrast to the case at high den_s_ltles, the RPA is exp_e_cted tthe physical reason for this lack of convergence lies in the
perform poorly at very low densities and largfe, where itis  possibility of multiple overlap of soft core particles, giving
thermodynamically inconsistent. In fa&;" even goes nega- much more weight to higher order cluster integrals compared
tive for e* =5.7. The effect this has on the RPA virial EOS tg the case of fluids with hard-core interactions.
is demonstrated in the inset Of Flg 6 and in Flg 15. How- At |arge enoug]ff*, the Over|ap probabi"ty becomes ex-
ever, even though foe* =2, By" is 13% less thamB,, and  ponentially small, and the GCM can be mapped onto an ef-
BY" is over 300% larger thaBs3, Zp, remains within 1%  fective hard-sphere systeff,10]. One possible criterion for
of the exact EOS over the entire density range. Thus, in spitthe mapping is to equate the second virial coefficients. From
of the fact that the RPA virial approximation grossly misrep-this we obtain an effective hard-sphere radius of
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RE system[p(o5)3~1], not far above which any effective
ZBZ(E ) (B11) virial expansion is expected to break dousee, e.g., the

inset of Fig. 14. In fact, since Gaussian potentials do not
which for e*>1 is well approximated by the empirical ex- have an infinitely hard core, it is possible to achieve much
pressiono i~ \In(2€*). For largee* and low densities, the higher densities than are normally available to simple lig-
equation of state resembles that of hard sphéses, e.g., uids. At the lowest densities the fluid is described by a linear
Fig. 19, suggesting that a virial expansion does indeed exissecond virial theory EOS, but as the density increases, this
for low densities. We note that for this large valueedf the  rapidly turns over to a mean-field-like linear EOS with a
true virial expansion appears to have a larger radius of cordifferent (largep slope. Thus, even though the EOS is well
vergence than that of the RPA virial EOS, for which described by a first order polynomial in the densitit is not
pm(ag'f§)3~0.023. Fore* =100 there is a freezing transition at all equivalent to a second virial theory, and the density is
at roughly the density expected for the effective hard-sphergenerally not a good expansion parameter.
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