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Mean-field fluid behavior of the Gaussian core model

A. A. Louis, P. G. Bolhuis, and J. P. Hansen
Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom

~Received 4 July 2000!

We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian potential,
first considered by Stillinger@J. Chem. Phys.65, 3968 ~1976!#, behaves as a weakly correlated ‘‘mean-field
fluid’’ over a surprisingly wide density and temperature range. In the bulk, the structure of the fluid phase is
accurately described by the random phase approximation for the direct correlation function, and by the more
sophisticated hypernetted chain integral equation. The resulting pressure deviates very little from a simple
mean-field-like quadratic form in the density, while the low density virial expansion turns out to have an
extremely small radius of convergence. Density profiles near a hard wall are also very accurately described by
the corresponding mean-field free-energy functional. The binary version of the model exhibits a spinodal
instability against demixing at high densities. Possible implications for semidilute polymer solutions are dis-
cussed.

PACS number~s!: 61.20.Gy, 61.25.Hq, 83.70.Hq
id
a
b

u
ex
m
e
p
o
o
th

le
pa
e

lo
al
m

go
ll
te
a

idl

a

th

th
te
lk
er
l
tu

ge

the
the
-
ian

-

I. INTRODUCTION

Interactions between atoms or molecules in simple flu
invariably contain a short-range repulsive component or h
core, such that the local molecular structure is dominated
excluded volume effects. This observation explains the s
cess of simple models involving hard convex bodies in
plaining the structure and phase transitions in simple ato
or molecular fluids@1#. For example, the hard sphere mod
has been instrumental in understanding freezing of sim
fluids @2#. The same success extends to somewhat more c
plex fluids such as liquid crystals, where hard ellipsoids
spherocylinders have been widely used to investigate
isotropic-to-nematic transition and other mesophases@3#.
However, the situation is generally not as simple in comp
fluids, where effective interactions between mesoscopic
ticles are often of entropic origin. While excluded volum
effects still dominate the interaction between compact col
dal particles, the effective forces between ‘‘soft’’ or fract
objects of fluctuating shape, such as polymer coils or me
branes, cannot be modeled by hard cores. Polymers in a
solvent form highly penetrable coils and it is by now we
established that the effective interaction between the cen
of mass of two polymer coils, duly averaged over intern
conformations, is finite for all distances, and decays rap
beyond the radius of gyration of the coils@4–7#. For two
isolated nonintersecting polymer chains, the effective p
potential at zero separation of the centers of mass,v(r 50),
is of the order of 2kBT for sufficiently long chains@6,7#, and
is reasonably well represented by a Gaussian whose wid
of order the polymer radius of gyrationRG , as shown in
Fig. 1.

We have recently shown that the general shape of
effective pair potential remains roughly the same in dilu
and semidilute solutions of self-avoiding random wa
~SAW! polymers, and does not vary strongly with polym
concentration~see Fig. 1! @8#. The effective pair potentia
model has been shown to accurately reproduce the struc
and thermodynamics calculated from Monte Carlo~MC!
simulations of solutions of SAW polymers over a wide ran
of concentrations@8#.
PRE 621063-651X/2000/62~6!/7961~12!/$15.00
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Neglecting in the first instance the state dependence of
effective potential, it seems hence worthwhile to examine
equilibrium properties of a fluid of ‘‘soft’’ particles interact
ing via a pair potential approximated by a simple Gauss
form

v~r !5e expS 2
r 2

R2D , ~1!

wheree is the energy scale andR determines the width. The
Fourier transform~FT! is

v̂~k!5p3/2R3e expS 2
k2R2

4 D . ~2!

FIG. 1. Polymer center of mass potentialsbv(r ) from simula-
tions of L5500 monomer SAW chains@8# are compared to a best

fit Gaussian~1!, determined by fittingbv(0) to fix be, andb v̂(0)
to fix R. The potential for two isolated coils (r→0) is well approxi-
mated by a Gaussian potential withbe51.87,R51.13RG . The
potential in the semidilute regime@r;433/(4pRg

3)# is approxi-
mated by a Gaussian potential withbe52.16,R51.45RG .
7961 ©2000 The American Physical Society
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Such a ‘‘Gaussian core model’’~GCM! was in fact intro-
duced some time ago by Stillinger@9#, who focussed on the
low-temperature regimee* 5e/kBT@1, where the mode
exhibits hard-sphere-like behavior, and a reentrant flu
solid-fluid phase diagram under compression below a thre
old temperature. This work was further expanded by La
et al. @10#, who showed that the model remains fluid at
densities whene* &100. They also demonstrated that for th
model, the familiar hypernetted chain~HNC! closure for the
pair distribution functiong(r ) becomes exact in the hig
density limit, and that the random phase approximat
~RPA! is remarkably accurate at high densities.

In this paper we concentrate on the fluid phase of
GCM (e* ,100), with a particular emphasis on the regim
relevant for polymer solutions (e* .2) @8#, for which the
dilute regime corresponds to reduced densitiesr* 5rR3

&3/(4p)'0.239, and the semidilute regime corresponds
r* *3/(4p) @11# ~herer5N/V is the number of Gaussia
core particles per unit volume!. We shall successively con
sider the homogeneous fluid phase, the inhomogeneous
phase in the vicinity of a hard wall, and the possibility
demixing of binary Gaussian core systems.

II. THE HOMOGENEOUS FLUID PHASE

A. The thermodynamic stability of the GCM fluid

We consider a system ofN particles interacting via a
Gaussian pair potential~1!, in a volumeV. In the absence o
an infinitely repulsive core, the first question is that of th
modynamic stability against collapse, i.e., the existence
well defined thermodynamic limit. According to definitio
3.2.1. in Ruelle’s classic book@12#, the total interaction en-
ergy VN , which can be built up of pair and higher ord
potentials, isstableif there exists aB>0 such that

VN~r 1 , . . . ,rN!>2NB ~3!

for all N.0 and all $r i% in the phase spaceRN. Stability
implies convergence of the grand partition function and
well defined thermodynamic limit. Specializing to pair p
tentialsv2, the total potential energy of the system, for a
configuration of N particles$r i%PRN, can be written as

VN
(2)~r 1 , . . . ,rN!5 (

1< i , j <N
v2~ ur i2r ju!. ~4!

For purely repulsive pair potentials, such as the GCM w
e* >0, VN

(2) satisfies the condition~3!, so that a well defined
thermodynamic limit exists. However, ifv2(r ) is not strictly
positive, this may no longer be true. In Appendix A tw
examples are discussed, involving a finite core and~small!
attractive tail, which do not lead to a proper thermodynam
limit.

B. The structure of the GCM fluid

To determine the pair structure of the GCM fluid, we ha
used the HNC closure which becomes exact in the high d
sity limit; this closure relates the direct correlation functi
c(r ) to the pair potentialv(r ) and the pair correlation func
tion h(r )5g(r )21, according to
-
h-
g
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c~r !52bv~r !1h~r !2 ln@11h~r !#, ~5!

where b51/kBT. This closure must be combined with th
Ornstein Zernike~OZ! relation betweenc(r ) andh(r ) @13#
to yield a nonlinear integral equation, which must be solv
numerically. Examples fore* 52 at three reduced densitie
r* are shown in Fig. 2, and compared to the results of M
simulations.

The key feature is that the ‘‘soft’’ correlation hole i
gradually reduced asr* increases, a behavior typical of fi
nite core potentials, which leads to overlap and ideal-gas-
behavior ofg(r ) in the high density limit. Note that the HNC
results are indistinguishable from the MC data, so that
e* .2 the HNC correlation function will henceforth be con
sidered as providing an ‘‘exact’’ reference to gauge simp
theories. The simplest is the RPA@13,14#, which may be
formally derived from the HNC closure~5! by linearizing the
logarithm, leading to

c~r !52bv~r !. ~6!

Since Fig. 2 clearly shows that the amplitude ofh(r ) is
rather small at high densities, we may expect the RPA c
sure to become more accurate as the density increases
the GCM, Eq.~6! and Eq.~2! imply the following FT ofc(r )

ĉ~k!52e* p3/2R3expF2k2R2

4 G ~7!

and the OZ relation immediately yields the following RP
structure factor:

S~k!511rĥ~k!5
1

12r ĉ~k!
5

1

11a exp@2k2R2/4#
,

~8!

where we have introduced the dimensionless coupling
rameter

FIG. 2. Comparison of MC simulations and solutions of t
HNC integral equation in a regime relevant for polymer solutio
@8# bv(r )52exp@2(r/R)2#. The lines are HNC calculations, and th
symbols represent MC simulations for different reduced densi
r* .
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a5p3/2berR35p3/2r* e* . ~9!

HNC results forc(r ) andS(k) at several densities are com
pared to the RPA predictions in Figs. 3 and 4.

Sinceh(r )> ln@11h(r)#, the HNC direct correlation func
tions are bounded below by the RPA form~6!. Figure 3 also
shows that the HNCc(r ) appears to be bounded above
the low density approximation

c~r !5 f ~r !5exp@2bv~r !#21 ~10!

which corresponds to the lowest order term in the expans
of c(r ) in powers ofr @13#; f (r ) is the usual Mayerf func-
tion. Figures 3 and 4 also illustrate the point that the sim

FIG. 3. HNC, RPA, and RPA2 forms of the direct correlatio
function c(r ) for bv(r )52exp@2(r/R)2#. From top to bottom the
densities arer* 50.1,0.5, and 1, respectively. Note that the HN
c(r ) is bounded bycRPA(r )52bv(r ) from below and f (r )

5exp@2bv(r)#21 from above. Inset: Ratio’sĉRPA(0)/ĉHNC(0)

~solid line! andĉRPA2(0)/ĉHNC(0) ~long-dashed line! vs densityr*.

For r* .0.05, ĉRPA2(0) is always within 2% ofĉHNC(0)

FIG. 4. RPA and HNC forms of the structure factorS(k) for
bv(r )52exp@2(r/R)2#. From top to bottom the densities arer*
50.01,0.1,0.5,5, respectively.
n

e

RPA becomes very accurate at high densities, so that
worthwhile to inquire about a correction to Eq.~6!. Expand-
ing the logarithm on the right-hand side~RHS! of Eq. ~5! to
second order inh, one arrives at the following expression fo
c(r ):

c~r !52bv~r !1
1

2
h~r !2. ~11!

Solution of the closure~11! and the corresponding OZ rela
tion requires an iterative procedure, as for the full HNC c
sure. Further simplification amounts to replacingh(r ) in Eq.
~11! by its RPA form derived from Eq.~8! by FT; we refer to
this noniterative approximation as RPA2@15#:

c~r !52bv~r !1
1

2
hRPA~r !2. ~12!

From Fig. 3 it is clear thatcRPA2(r ) is indistinguishable from
the HNC results except at low densities (r* &0.2). The limi-
tations of RPA theory at low densities become apparent
considering the resulting behavior ofg(r ) at short distance.

The zero separation value is easily derived from ther
→0 limit of the FT of Eq.~8!, with the result

gRPA~0!511
e*

a
Li3/2~2a!, ~13!

where thenth polylogarithm is defined by:

Lin~x!5 (
k51

`
xk

kn
~14!

for uxu<1. If e* ,1, gRPA(0) is positive for all densitiesr* .
However, whene* .1 there is always a reduced densityr0*
belowwhich gRPA(0),0, which is unphysical. For example
if e* 52, gRPA(0),0, for r* ,r0* 50.3617. However, even
for r* ,r0* , the structure factorS(k) is still reasonably well
described by the RPA because the deficiencies ofg(r ) at
small r do not strongly affectS(k). This is also illustrated in
the inset of Fig. 3, whereĉRPA2(0) is seen to approximate th
quasiexact HNC result to within 2% for densitiesr* *0.05,
which is a significantly lower bound thanr0* 50.3671.

C. Thermodynamics of the GCM fluid

Turning now to thermodynamic properties, the equat
of state can be calculated via either of two routes@13#: from
the compressibility equation

bP5E
0

r]bP~r8!

]r8
dr85E

0

r

@12r8ĉ~k50;r8!#dr8,

~15!

whereP denotes the pressure. For soft-core potential syst
the virial equation leads to

bP5r1
1

2
r2v̂~k50!2

2p

3
r2E

0

`

r 3
]bv~r !

]r
h~r !dr.

~16!
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If the correlation functionsh(r ) and c(r ) were known
exactly, the two routes would lead to identical equations
state. Approximate theories are not, in general, thermo
namically consistent. However, as shown in Figs. 5–7,
HNC closure yields practically identical values of the pre
sure over the whole range of densities, even for a repuls

FIG. 5. Compressibility factors (Z5bP/r) from RPA and HNC
for a Gaussian potential withe* 52, compared to MC simulations
and to two and three term virial expansions.ZRPA

v ,ZHNC
c , andZHNC

v ,
are indistinguishable on this scale. Inset: The analytic ra
ZRPA

c /ZRPA
v 5@12e* :(a)/(11a/2)#21 gives a good approxima

tion to ZRPA
c /ZHNC

v and goes to zero asr→`. The ratioZRPA
v /ZHNC

v

demonstrates thatZRPA
v approximates the true EOS to better th

1% accuracy over the entire density range fore* 52.

FIG. 6. Compressibility factors from RPA and HNC for
Gaussian potential withe* 510, compared to MC simulations an
to two and three term virial expansions.ZRPA

v , ZHNC
c , andZHNC

v are
very close over much of the density range. Inset: Compressib
factors at low density, symbols are the same as in the main fig
Note thatZRPA

v shows unphysical behavior for very smallr* , which
can be understood from the effective virial expansion discusse
Appendix B.
f
y-
e
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n

as high ase* 590 ~remember that fore* *100 reentrant
crystallization sets in@9,10#!. Moreover, the two HNC esti-
mates of the pressure agree closely with the results of
simulations. These results confirm the conjecture that H
and RPA become exact for the GCM in the high dens
limit, but also show that HNC works well for low densitie
in the fluid regime we consider (e* ,100).

Turning now to the much simpler RPA, it is easily ver
fied from Eqs.~6! and ~15! that the dimensionless equatio
of state~EOS!, Z5bP/r, reduces, within the compressibi
ity route, to the simple expression

ZRPA
c 511

1

2
rb v̂~k50! ~17!

which for the GCM leads to

ZRPA
c 511

1

2
a. ~18!

This in turn leads to an excess free energy per particle

bFex

N
5

1

2
rb v̂~k50!5

1

2
a ~19!

identical to that obtained from a van der Waals-like mea
field ~MF! theory, so thatZRPA

c 5ZMF ; it also implies that the
excess chemical potential is linear in density.

Remembering that the quasiexact HNC direct correlat
function is bounded below by the RPA form~6!, it is imme-
diately clear from the compressibility equation~15! that one
may expect

Z,ZRPA
c 5ZMF . ~20!

o

y
e.

in

FIG. 7. Compressibility factors from RPA and HNC for
Gaussian potential withe* 590, compared to MC simulations an
to two and three term virial expansions. Again, the HNC vir
approximation is nearly exact across the whole density range,
the EOS is that of a mean-field fluid at all but the lowest densit
The low-density limit is further discussed in Appendix B and illu
trated in Fig. 15.
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This conjecture is supported by Eq.~16!, which shows that
the exact equation of state is given by

Z5ZRPA
c 2

2p

3
r2E

0

`

r 3
]bv~r !

]r
h~r !dr, ~21!

which, for the Gaussian core model reduces to

Z511
1

2
a1

4a

3Ap
E

0

`

x4e2x2
h~x!dx, ~22!

where the dimensionless spacingx5r /R was introduced.
The conjecture~20! is thus true, provided the integral on th
RHS of Eq. ~22! is negative. This is very likely for suffi-
ciently high temperatures since the HNC results plotted
Fig. 2 show thath(x) is mostly negative.

The integral in Eq.~22! can be calculated analyticall
within the RPA, leading to the following result for the RP
virial equation of state:

ZRPA
v 511

1

2
a2e* :~a!, ~23!

where

:~a!5
1

2a
@Li3/2~2a!2Li5/2~2a!#. ~24!

:(a) is zero for a50, has a maximum of 0.0908 ata
57.8, and goes to zero fora→`, which implies that for any
e* , the RPA becomes thermodynamically consistent in
high density limit.

Interestingly, within the RPA2, the compressibility EO
may also be solved analytically and yields exactly the sa
result ~23! as the virial EOS in the RPA~i.e., ZRPA2

c

5ZRPA
v ), suggesting that the latter is more accurate than

MF or RPA compressibility equation of state~17!. In fact, as
shown in Figs. 5–7, the RPA virial equation of state is v
tually indistinguishable from the practically self-consiste
HNC results and the MC simulations, except at very lo
reduced densitiesr* . Figure 7 demonstrates that the mea
field approximation~17! is still surprisingly good, even for
an interaction as large ase* 590, just below the value wher
freezing sets in. This implies that the hard-sphere limit,
visioned by Stillinger@9#, is still not reached at such a stron
interaction, and that the Gaussian core model behaves
‘‘mean-field fluid’’ ~MFF! over a wide temperature and de
sity range.

Perhaps the most striking result is the persistence of
linear slope of the equation of state to such low densi
@16#. The slope differs, however, from that determined by
~smaller! second virial coefficient. This is further discuss
in Appendix B, where it is shown that the standard vir
expansion of the equation of state@13# has a very small ra-
dius of convergence for the GCM, and is of limited use
this model, contrarily to the case of the hard sphere fl
@17#.
n
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III. THE GCM NEAR A WALL

In view of the success of the HNC and RPA theories
the GCM in the homogeneous bulk fluid phase, it is of int
est to ascertain the validity of these approximations un
inhomogeneous conditions, e.g., in the presence of an e
nal potentialf(r ) acting on the particles. In this section w
shall consider more specifically the density profiles of GC
particles near a hard wall, using the formalism of dens
functional theory~DFT!. In an external potential the densit
of particles will change from a constant bulk valuerb to a
spatially varying local densityr(r ). The grand potential of
the inhomogeneous fluid in equilibrium with a bulk reservo
fixing the chemical potentialm, may be cast in the generi
form @18#

bVv@r~r !#5bF in@r~r !#2E dr @bm2bf~r !#r~r !,

~25!

where the intrinsic free energy functionalF in naturally splits
into ideal and excess parts,F id and F ex. The latter is an
unknown functional of the local densityr(r ). When the in-
homogeneity is not too strong, the excess partF ex may be
expanded in a functional Taylor series in the deviation of
local densityr(r ) from the bulk densityrb . If the expansion
is truncated after second order the HNC functional result

bVv@r~r !#5bV@rb#1E dr 8bf~r 8!r~r 8!

1E dr 8$r~r 8!ln@r~r 8!/rb#2r~r 8!1rb%

2
1

2E drdr 8@r~r !2rb#cb
(2)~ ur2r 8u!@r~r 8!

2rb#. ~26!

This functional is to be minimized with respect tor(r ), and
the resulting Euler-Lagrange equation reads

r~r !5rbexpF2bf~r !1rbE dr 8cb
(2)~ ur 82r u!S r~r 8!

rb
21D G

~27!

which is the familiar HNC approximation for the densi
profile r(r ) in terms of the external potential and thebulk
direct correlation functioncb

(2)(r )[c(r ). Given c(r ) from
the previous HNC calculations of the pair structure in t
bulk, Eq.~27! may be solved iteratively for anyf(r ). If c(r )
is replaced by its RPA form~6!, then Eq.~27! reduces to the
MF form

r~r !5rbexpF2bf~r !2rbE dr 8bv~ ur2r 8u!S r~r 8!

rb
21D G .

~28!

Equation~28! also follows directly from the standard mea
field approximation~MF-DFT! for for the intrinsic free en-
ergy functional@18#
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bF in@r~r !#5bF id1
1

2E drdr 8bv~r ,r 8!r~r !r~r 8!,

~29!

which, in a different context, is identical to the function
used to derive the Poisson-Boltzmann theory for ionic flu
if v(r ,r 8) is taken to be the Coulomb potential andr the
charge density.

Specializing to the case of a planar wall coinciding w
the x-y plane, and confining the particles to thez>0 half-
space, without any additional external potential, we note
the density profiler(z) satisfies the contact condition@19#

r~z50!5bP, ~30!

whereP is the pressure exerted by the particles on the w
equal to the bulk pressure in the absence of an externa
tential. The sum rule~30! is satisfied by the MF-DFT ap
proach, whererMF(0)5bPMF5rbZMF , with ZMF defined
by Eq. ~17! sinceZMF5ZRPA

c . However, the sum rule is no
satisfied by the~more accurate! HNC approximation~27!,
which instead leads to@20#

r~0!5
1

2
rbF11S ]bP

]rb
D

T
G . ~31!

This reduces to the exact result~30! provided the pressure i
a quadratic function of the bulk density. This is very nea
true over a wide range of densities, as shown in the prev
section. In particular the simple RPA compressibility~or
MF! EOS ~18!, which provides a fair representation of th
numerical HNC results, is of the necessary linear form
make Eq.~30! and Eq.~31! compatible. The deviations from
the sum rule~30! may be traced back to the slight nonlinea
ity of ZHNC, as demonstrated in the inset of Fig. 5 and in F
8. The relative error does not exceed 3% fore* 52, al-

FIG. 8. Ratio rHNC(0)/r(0) from Eq. ~31! compared to the
analytic ratio obtained from the RPA2 approximation to Eq.~31!
for e* 52. Also included is the ratiorMF(0)/r(0).ZRPA

c /ZHNC
v .

Clearly the HNC is the better approximation, even though it d
not satisfy the sum rule of Eq.~30!.
s

at

ll,
o-

us

o

.

though it tends to increase with increasinge* . In fact, the
ratio rHNC(0)/r(0) may be estimated from the very accura
RPA2; sinceZRPA2

c 5ZRPA
v , the required pressure may be ca

culated from Eq.~23!, while the RPA2 inverse compressibi
ity is calculated to be

S ]bP

]r D
T

511a2
e*

2a
@Li1/2~2a!2Li3/2~2a!#. ~32!

The resulting analytic estimate ofrHNC(0)/r(0) is also
shown in Fig. 8; as expected, it gives a good approximat
of rHNC(0)/r(0). Even though the MF approach exactly sa
isfies the sum rule~30!, the HNC approach, which does no
satisfy Eq.~30!, is a better approximation. We note that th
arguments above can be extended to the popular Per
Yevick approximation @13#, where rPY(0)/r(0)'(1
1a)1/2/(111/2a) @20#, which, in contrast to the HNC o
MF approaches, becomes increasingly less accurate as
density increases.

We have numerically solved the HNC and MF Eule
Lagrange equations~27! and ~28! to calculate the density
profilesr(z) of a GCM near a hard wall, for several value
of the bulk densityrb . The theoretical profiles are compare
in Fig. 9 to the results of MC simulations. The agreemen
seen to be excellent, particularly at the higher densities
fact, within the accuracy of the figure the difference betwe
the HNC and MF approaches is visible only for smallz at
r50.1, where, as expected, the HNC approach is sligh
more accurate.

In Fig. 10 we show density profiles for particles interac
ing with an external potentialbf(z)5exp@2z#/z, a situation
similar to that encountered for polymer coils near a wall@8#.
Once again, we observe that the HNC and MF-DFT a
proaches are very close, suggesting that both are very a
rate and could potentially be fruitfully combined with th

s

FIG. 9. Density profiles from HNC and the MF-DFT for Gaus
ian particles (e52,R51) near a hard wall. Symbols are for MC
simulations at three densities, the solid lines are from the MF-D
approach, and the dashed lines are from the HNC approach.
two theories and simulation agree to within the accuracy of
graph forr* 50.5 andr* 51, but small discrepancies appear f
r* 50.1, where the HNC is slightly more accurate.
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effective potentials between polymer center of mass@8# to
derive a full DFT for polymer solutions in complex geom
etries. In summary then, the results of this section confi
that the model considered indeed behaves as a ‘‘mean-
fluid’’ under inhomogeneous conditions.

IV. PHASE SEPARATION IN TWO-COMPONENT
REPULSIVE GAUSSIAN MIXTURES

Since the underlying polymer mixtures exhibit interesti
phase behavior under a variety of physical conditions, i
natural to consider binary mixtures of Gaussian core m
tures, interacting via pair potentials

bvnm~r !5enm* exp@2~r /Rnm!2#, ~33!

where the species indices 1<n,m<2. The total number den
sity is still denoted byr5(N11N2)/V, while the concentra-
tion variablex5N2 /N. We are interested in the possibilit
of a phase separation, or demixing transition, of the t
species. The thermodynamic stability conditions for any
nary mixture can be expressed in terms of the Helmholtz
energy per particlef (x,v)5F(N1 ,N2 ,V)/N, considered as a
function of the intensive variablesx and v ~or r51/v), for
any fixed temperature. These conditions are@21#

S ]2f

]v2D
x

.0, ~34a!

S ]2f

]x2D
v

.0, ~34b!

S ]2f

]v2D
x

S ]2f

]x2D
v

2S ]2f

]v]xD 2

.0. ~34c!

The first inequality expresses mechanical stability~i.e., posi-
tive compressibility!, the second is the condition for stabilit
against spontaneous demixing at constant volume, while

FIG. 10. Density profiles from HNC~symbols! and MF-DFT
~lines! for Gaussian particles (e* 52,R51) interacting with an ex-
ternal potentialbf(z)5exp@2z#/z.
ld

s
-

o
i-
e

he

last inequality ensures stability at constant pressure; i
equivalent to the more familiar condition@]2g(x,P)/]x2#P
.0, whereg is the Gibbs free energy per particle. We no
that if either of the first two stability conditions~34a! or
~34b! are violated, the more restrictive stability conditio
~34c! is violated as well. Spinodal instability occurs whe
Eq. ~34c!, is satisfied as an equality. The condition is equiv
lent to the k→0 divergence of the concentration
concentration structure factor

Scc~k!5x2S11~k!1~12x!2S22~k!22x~12x!S12~k!,
~35!

where theSnm(k) are the usual partial structure factors@13#.
From the OZ relations for a binary mixture it is easily in
ferred thatScc(0) diverges when

@12~12x!r ĉ11~0!#@12xr ĉ22~0!#

2x~12x!r2@ ĉ12~0!#250. ~36!

We now examine the implications of these conditio
within the MF approximation, which we have shown to yie
reliable results, except at low reduced densityr* . The MF
free energy~19!, properly generalized to the binary situatio
reads

f ~x,r!5 f id~r!1 f mix~x!1
1

2
rV̂0~x!, ~37!

where the first, ideal gas, term is irrelevant in the subsequ
considerations,f mix is the ideal mixing term

f mix~x!5x ln x1~12x!ln~12x!, ~38!

and the MF interaction term is

V̂0~x!5~12x!2b v̂11~0!12x~12x!b v̂12~0!1x2b v̂22~0!.

~39!

The $b v̂nm(0)% are thek→0 limits of the FTs of the inter-
action potentials. In fact, the MF free energy~37! has the
same mathematical form as a second-virial theory wh
would be valid for very low densities@22#.

With the MF free energy~37!, the stability conditions
~34a!–~34c! reduce to

11rV̂0~x!.0, ~40a!

12rx~12x!x.0, ~40b!

11rV̂1~x!2r2x~12x!D.0, ~40c!

respectively, where the following parameters were define

x52b v̂12~0!2@b v̂11~0!1b v̂22~0!#, ~41!

D5@b v̂12~0!#22b v̂11~0!b v̂22~0!, ~42!

V̂1~x!5~12x!b v̂11~0!1xb v̂22~0!. ~43!

Equation~40a! can only be violated if the potentials them
selves violate a two-component extension of Eq.~A5! from
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Appendix A, which is a necessary~but not sufficient! condi-
tion for the existence of a well-defined thermodynamic lim
The limit of stability of the mixture~i.e., the spinodal line! at
constant volume or pressure is reached when the inequa
~40b! and ~40c! turn into equalities; the latter condition als
follows from Eq. ~36!, when theĉnm are replaced by thei
RPA limits ĉnm(k)52b v̂nm(k). Demixing at constant vol-
ume is possible, providedx.0; the density along the spi
nodal is then easily calculated to be

rs~x!5
1

x~12x!x
. ~44!

Demixing at constant pressure is only possible providedD
.0. The corresponding density along the spinodal satisfi

rs~x!5
V̂1~x!1AV̂1~x!214x~12x!D

2x~12x!D
, ~45!

the pressure along the spinodal is

bPs~x!5rs~x!1
1

2
rs

2~x!V̂0~x!, ~46!

and the critical consolute point is determined by the con
tion

dPs~x!

dx
50. ~47!

The simple quadratic expression~46! for the pressureP, is
easily inverted to obtain an expression for the spinodal d
sity as a function of concentrationx and pressureP.

We now apply these general considerations within the
framework to the binary Gaussian core model for which

b v̂nm~0!5p3/2enm* Rnm
3 . ~48!

Inserting the binary GCM expression forv̂nm(0) into expres-
sions ~42! and ~43! for x and D, we find that phase-
separation at constant volume or at constant pressure is
sible provided

x5p3/2@2e12* R12
3 2~e11* R11

3 1e22* R22
3 !#.0 ~49!

or

D5p3@~e12* !2R12
6 2e11* e22* R11

3 R22
3 !] .0. ~50!

In order to focus on physically relevant values of the p
rametersenm* andRnm , it is important to make contact with
known results for polymer coils in a good solvent@6,7#.
Simulations on binary solutions of self-avoiding polym
coils carried out in the low concentration limit@7# suggest
that the effective pair potentials between centers of mass
reasonably well represented by the Gaussian form~33!, with

e12* <e11* .e22* ~51!

and
.

ies

s

i-

n-

F

os-

-

re

R12
2 .

1

2
~R11

2 1R22
2 !. ~52!

The relation~51! between theenm favors mixing. On the
other handR12.1/2(R111R22), which resembles the posi
tive nonadditivity that can drive demixing in hard-core mi
tures@24#. Substituting Eq.~52! into Eq. ~49!, we find that a
spinodal instability of the mixture is possible at constant v
ume provided

e12*

e11*
.A2

11~R22/R11!
3

@11~R22/R11!
2#3/2

>1 ~53!

which contradicts the requirement~51!. On the other hand, if
Eq. ~52! is substituted into Eq.~50!, demixing at constant
pressure may occur provided

~e12* !2

e11* e22*
.F 2~R22/R11!

11~R22/R11!
2G 3

<1, ~54!

which is compatible with the requirement~51!.
More specifically, we have chosen values of the para

etersenm* andRnm appropriate for a polymer mixture of self
avoiding polymers ofL5200 ~species 1) andL5100 ~spe-
cies 2! monomers@7,23#. The resulting spinodal line~45! in
the x-r plane, calculated from the MF free energy~37! with
~48!, is shown in Fig. 11. Phase separation into two solutio
of different compositionx occurs above a critical densit
rc* 55.6/R11

3 and critical compositionxc50.70. Note that
since all terms in the free energy are of entropic origin,
temperature scales out, i.e., the mixture behaves as an a
mal system. In view of the remarkable accuracy of the M
theory at high density, as illustrated in Sec. II and III for t
one component GCM fluid, we expect the phase diagra
calculated within MF~or equivalently RPA! to be reliable;

FIG. 11. Constant pressure spinodal~45! for parameters taken
from simulations ofL5100 andL5200 monomer effective poly-
mer CM potentials@7#. The x axis denotes the compositionx5x2

5N2 /N. The y axis denotes the densityrR11
3 , whereR11 is the

5 radius of gyrationRG for the L5200 polymers. The dot is the
critical point at (x50.70,rR11

3 55.6).
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full calculations of the binodal line, based on RPA2 a
HNC theories, will be reported elsewhere.

V. CONCLUSIONS

The calculations carried out in this paper, and in rela
work @8#, lead to the conclusion that a system of classi
particles interacting via a repulsive Gaussian core poten
behaves as a weakly correlated ‘‘mean field fluid’’ over
wide range of temperatures and densities. In fact for
temperature there is always a~surprisingly low! density be-
yond which the excess free energy per particle is a lin
function of density and the resulting excess pressure
creases as a quadratic function of the density. On the o
hand, in the opposite low density regime, a virial expans
of the equation of state in powers of the density appear
converge only at extremely low densities. This is in sha
contrast to hard-core systems, for which the virial expans
provides a good estimate of the equation of state up to r
tively high packing fractions@17#, while the pressure di-
verges near close packing according to a simple free volu
picture. At very strong interaction strength (e* *100), the
GCM behaves effectively as a hard core fluid that freeze
intermediate densities, but remelts under further compres
to return to mean-field-like behavior@9,10#. The small
correlational effects at low and intermediate interact
strengths are adequately described by the simple, ana
RPA2 extension of RPA theory, or by the HNC integr
equation~requiring numerical solution!, which is nearly ther-
modynamically consistent over a broad range of tempe
tures and densities.

The MF theory performs equally well in the inhomog
neous situation of Gaussian core particles near a hard w
The binary version of the model phase separates at high
sities, when the widths of the Gaussian repulsion satisfy
composition rule~52!, provided condition~54! is satisfied.
This provides an interesting example of phase separatio
systems with purely repulsive interactions.

To conclude it seems worthwhile to consider the r
evance of the GCM for the description of polymer solution
The latter enter the semidilute regime when polymer co
start to overlap, i.e., whenr* ;3/(4p). For densities of this
order we have seen that the GCM behaves as a ‘‘mean-
fluid,’’ with a quadratic density dependence of the pressu
The exponent 2 is close to the 9/4 power observed for
osmotic pressure of semidilute polymer solutions@25#. The
difference between the exponent 9/4 and 2 is due in pa
the weak, but significant density dependence of the effec
pair potential between the centers of mass of self-avoid
polymers @8#, which leads to an additional density depe
dence of the RPA or MF equation of state~17!. This possi-
bility is being explored in more detail@26#.

The effective polymer-wall potentials derived in Ref.@8#
show a significant variation with density. Nevertheless,
form of ther(z)/rb for the GCM in afixedexternal potential
follows the same qualitative trends as the distribution of
polymer CM’s near a wall,rCM(z)/rb , suggesting that the
physics of polymer coils near a wall is well captured by t
GCM.

The demixing transition of binary Gaussian core mixtu
is reminiscent of the tendency of polymers of different m
lecular weight to phase separate at high concentration an
d
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the melt. Again, further analysis is required to decide if t
analogy between the demixing of Gaussian core mixtu
and of polymer blends is fortuitous, or has some dee
foundation.
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APPENDIX A: THERMODYNAMIC STABILITY
OF SOFT-CORE POTENTIAL SYSTEMS

It was pointed out in Sec. II A that the GCM satisfie
Ruelle’s condition~3! for the existence of a finite thermody
namic limit. In this appendix we give two examples of pa
potentials involving a repulsive core and a smallattractive
component which do not satisfy Ruelle’s stability conditio
and hence belong to the class of potentials referred to by
as ‘‘catastrophic.’’ The following considerations are n
completely academic, since it has been shown in Ref.@26#
that the effective pair potential between the centers of m
of two polymer coils in a good solvent indeed exhibits
small attractive part at distances of the order of several tim
the radius of gyrationRg for intermediate densities. Whe
the polymer coils are no longer in a good solvent the pot
tials can develop even larger attractive parts@7#.

According to proposition 3.2.2 in Ref.@12#, given an in-
teraction energyVN

(2) built up by pair potentialsv2, the grand
partition function is finite only if the following two equiva
lent properties hold for allN>0 and all$r i%PRN:

(
i

N

(
j

N

v2~ ur i2r ju!>0 ~A1!

and

VN
(2)~r 1 , . . . ,rN!5 (

1< i , j <N
v2~ ur i2r ju!>2NB ~A2!

for a B>0. Note that in Eq.~A1! the double sum includes
the self-interaction (i 5 j ).

We consider two examples of potentials which do n
satisfy these conditions

vA~r !51.87cosFA~21d!S r

1.7RG
D GexpF2S r

1.7RG
D 2G ,

~A3!

vB~r !51.87cosFApS r

1.7RG
D GexpF2S r

1.7RG
D 4G , ~A4!

and compare them in Fig. 12 to the polymer CM potent
between two isolatedL5500 SAW polymer coils. Hered is
an arbitrary positive constant taken to bed50.001 in Fig.
12. Although at first sight they do not appear very differe
from the purely repulsive polymer potential, they are bo
‘‘catastrophic.’’
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If d.0, the first potential,vA(r ), violates a weaker con
dition than Eq.~A1! or Eq. ~A2!, namely,

v̂~0!5E v~r !dr.0, ~A5!

which is necessary~but not sufficient! for a thermodynamic
limit. When it does not hold, conditions~A1! and ~A2! can
be violated for a homogeneous ‘‘gas’’ withg(r )51. This
has a further implication for fluids described by a mean-fi
free-energy~19!, since the inverse compressibility]bP/]r

511b v̂(0)r cannot go through zero without violating th
condition ~A5!, which implies that one-component soft-co
fluids described by a mean-field EOS cannot support a
nodal instability.

The second potentialvB(r ) has an integralv̂B(0).0, but
it still violates Eqs.~A1! and ~A2! for an inhomogeneous
configuration. For example, for an fcc lattice with single o
cupancy( i

N( j
NvB(ur j2r iu)520.13N. The potential is cata-

strophic because one can always lower the total energy
definitely through multiple occupancy of the lattice sites.

The u point in polymer solutions can be defined as t
temperature where the effective second osmotic virial co
ficient B2 passes through 0@7#. Above theu point the sol-
vent is said to be ‘‘good,’’ while below theu point the sol-
vent is said to be ‘‘poor.’’ Simulations of a model for tw
polymers in a poor solvent show that the effective pair p
tential is no longer strictly positive definite below theu point
@7#, implying that the pair potentials can become ca
strophic. In fact, for the type of polymer CM potentials co
sidered, this seems to occur just below theu point tempera-
ture whereB250. It is tempting to speculate that the co
globule transition, which also typically occurs slightly belo
the u temperature, is related to the point at which the eff
tive pair potential becomes catastrophic. However, it is

FIG. 12. Two ‘‘catastrophic’’ potentials compared to a typic
CM potential for two polymers in a good solvent. PotentialvA(r )
~A3! violates the conditions~A1! and ~A2! for homogeneous fluid
configurations, while potentialvB(r ) ~A4! violates Eqs.~A1! and
~A2! only for inhomogeneous configurations like the fcc crystal
d

i-

-

n-

f-

-

-

-
t

yet clear whether the pair-potential picture of polymer so
tions @8# remains valid for poor solvents.

APPENDIX B: VIRIAL EXPANSION FOR THE GCM
FLUID

In this appendix we briefly consider the convergence
the virial expansion of the equation of state of the GCM
powers of the densityr. The FT of the Mayerf function in
Eq. ~10! is given by the convergent sum

f̂ ~k!5p3/2(
n51

` expS 2
k2

4nD ~2e* !n

n!n3/2
. ~B1!

Here the width parameterR in the Gaussian potential~1! has
been chosen as unit of length for convenience. The sec
and third virial coefficientsB2 andB3 of the GCM can then
be expressed as the following convergent sums:

B252
1

2
f̂ ~0!52

p3/2

2 (
n51

`
~2e* !n

n!n3/2
, ~B2!

B352
1

3
p3(

i 51

`

(
j 51

`

(
k51

`
~2e* ! i 1 j 1k

i ! j !k! ~ i j 1 jk1 ik !3/2
. ~B3!

The variations ofB2 andB3 with e* are shown in Figs. 13
and 14; both virial coefficients are always positive.

The virial expansion of the equation of state reads

Z5
bP

r
511B2r1B3r21O~r3! ~B4!

and the results from the two and three term series are c
pared in Figs. 5–7 of Sec. II to the predictions of the RP
and HNC theories, and to MC simulations fore* 52,10, and
90. The virial expansion is seen to break down very early

FIG. 13. Second virial coefficients for a Gaussian potential a
function of interaction strengthe* (B2

c.B2.B2
vir). Also included is

the empirical relationB2
HS@Aln(2e* )#, where B2

HS(s) is the hard-
sphere second-virial coefficient.
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particular, although the MF EOS, which becomes very ac
rate at high density, predicts a linear variation ofZ with
density, the slope differs more and more fromB2 as the
interaction strengthe* increases. Adding theB3 contribution
leads to rapid deterioration of the predicted EOS as the d
sity increases.

The shortcoming of the virial expansion in powers of de
sity is further illustrated by considering the RPA. From Eq
~18! and~23!, one may extract the following compressibilit
and virial estimates of the second and third virial coefficie

B2
c5

1

2
p3/2e* , B3

c50, ~B5!

B2
vir5

1

2
p3/2e* S 12

A2

8
e* D , B3

vir5
p3~e* !3

9A3
. ~B6!

As shown in Figs. 13 and 14, the exact virial coefficients
bracketed by the virial and compressibility estimates
tracted from the RPA

B2
c.B2.B2

vir , ~B7!

B3
vir.B3.B3

c50. ~B8!

The large deviations shown in Figs. 13 and 14 imply that
contrast to the case at high densities, the RPA is expecte
perform poorly at very low densities and largee* , where it is
thermodynamically inconsistent. In fact,B2

vir even goes nega
tive for e* *5.7. The effect this has on the RPA virial EO
is demonstrated in the inset of Fig. 6 and in Fig. 15. Ho
ever, even though fore* 52, B2

vir is 13% less thanB2, and
B3

vir is over 300% larger thanB3 , ZRPA
v remains within 1%

of the exact EOS over the entire density range. Thus, in s
of the fact that the RPA virial approximation grossly misre

FIG. 14. Third virial coefficients for a Gaussian potential as
function of interaction strengthe* . B3

c50, B3
vir.B3. Also included

is the empirical relationB3(e* )5B3
HS@Aln(2e* )#, whereB3

HS(s) is
the hard-sphere third-virial coefficient. Inset:rm51/(p3/2e* ) is the
maximum density for which the RPA virial EOS~23! can be written
as an expansion in powers of the density.rcp5A2/(seff

HS)3 is the
density at which the effective hard-sphere system with the s
second virial coefficient as the GCM would be close-packed.
-

n-

-
.

s

e
-

n
to

-

te
-

resents the first two virial coefficients, it nevertheless ac
rately describes the EOS, implying that the density is no
good expansion parameter for the GCM fluid phase.

A further hint at the breakdown of the virial expansio
comes from summing the virial series to all orders in t
high-temperature limit, where, from the diagramattic rep
sentation of the virial coefficients@13#, it can be shown that
the Bn are given by

Bn52
1

2
p3(n21)/2

~2e* !n~n21!

n5/2
1O~e* !n11 ~B9!

for n>3. WhenB2
vir ~B6! is added, this recovers exactly th

virial RPA equation of state~23!, which can only be ex-
panded in powers of density fora,1, i.e., for

r* ,rm* 5
1

p3/2e*
'0.1796/e* . ~B10!

This implies that in the high-temperature limit, the virial e
pansion does not converge for densities higher thatrm* . For
e* 52, there is no convergent density expansion of the R
virial EOS for r* .rm* '0.0898. A similar breakdown in
convergence may be expected for the exact virial expans
The physical reason for this lack of convergence lies in
possibility of multiple overlap of soft core particles, givin
much more weight to higher order cluster integrals compa
to the case of fluids with hard-core interactions.

At large enoughe* , the overlap probability becomes ex
ponentially small, and the GCM can be mapped onto an
fective hard-sphere system@9,10#. One possible criterion for
the mapping is to equate the second virial coefficients. Fr
this we obtain an effective hard-sphere radius of

e

FIG. 15. Z vs r(seff
HS)3 in the low density limit. Heree* 590 so

that (seff
HS)52.27; r(seff

HS)351 corresponds tor* 50.085. For low
effective density the EOS follows the hard-sphere EOS~here ap-
proximated by the Carnahan-Starling form@13#!. For higher densi-
ties the fluid moves towards the mean-field fluid limit~see Fig. 7!.
Note that the two RPA expressions for the EOS are very p
approximations in this low density regime.
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seff
HS~e!5S 3

2p
B2~e* ! D 1/3

~B11!

which for e* .1 is well approximated by the empirical ex
pressionseff

HS'Aln(2e* ). For largee* and low densities, the
equation of state resembles that of hard spheres~see, e.g.,
Fig. 15!, suggesting that a virial expansion does indeed e
for low densities. We note that for this large value ofe* , the
true virial expansion appears to have a larger radius of c
vergence than that of the RPA virial EOS, for whic
rm(seff

HS)3'0.023. Fore* *100 there is a freezing transitio
at roughly the density expected for the effective hard-sph
n

l.

ys

sit
b

tte

gi
st

n-

re

system @r(seff
HS)3'1#, not far above which any effective

virial expansion is expected to break down~see, e.g., the
inset of Fig. 14!. In fact, since Gaussian potentials do n
have an infinitely hard core, it is possible to achieve mu
higher densities than are normally available to simple l
uids. At the lowest densities the fluid is described by a lin
second virial theory EOS, but as the density increases,
rapidly turns over to a mean-field-like linear EOS with
different ~larger! slope. Thus, even though the EOS is w
described by a first order polynomial in the densityr it is not
at all equivalent to a second virial theory, and the density
generally not a good expansion parameter.
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