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Abstract

We show that electron±ion structure factors in ¯uid metallic systems can be well understood from an application of

linear response in the electron system, combined with hard-sphere-like correlation for the ionic component. In par-

ticular, we predict that electron±ion structure factors fall into two general classes, one for high (Z > 3) and one for low

(Z6 2) valence metals, and make suggestions for experiments to test these ideas. In addition, we show how the general

success of electronic linear response for most metallic systems stems in part from an intrinsic interference between

atomic and electronic length scales which weakens the nonlinear response. The main exception to this is metallic hy-

drogen. Ó 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

At a near fundamental level, liquid metals are
complex binary ¯uids consisting of ions in a sea of
conduction electrons, their physical properties
linked to the three corresponding correlation
functions: SII�k�; SeI�k�, and See�k� [1]. We present a
simple and evidently accurate analytic scheme to
calculate electron±ion structure factors (SeI�k�) by
combining a hard-sphere approximation for the
ionic structure with a simple linear response theory
for the electrons. These structure factors are now
in principle accessible experimentally through
recent advances in both neutron and X-ray scat-
tering techniques. Another route to e�ective elec-
tron±ion interactions therefore opens, but now
through the ¯uid state.

We also address the evident success of the linear
approximation by studying a related problem, the
density, qind�~k�, of an initially uniform electron gas
induced by an embedded pseudo-potential, vps�~k�.
By comparing linear and second order response to
full (Kohn±Sham [2]) nonlinear response, we show
that even though vps�~k� is not necessarily a small
perturbation, the consequent response series con-
verges term by term. The nonlinear terms are sig-
ni®cantly reduced by an interference between
atomic and electronic length scales for most met-
als, the main exception to this being hydrogen.

2. Discussion

2.1. Electron±ion correlation functions

The electron±ion-structure factor can be written
[1] as:
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SeI�k� � 1����������
NeNI

p hq̂�1�e �k�q̂�1�I �k�i �
n�k����

Z
p SII�k�; �1�

where q̂�1�j �k� is the Fourier transform of the one-
particle density operator of component j, SII�k� is
the ion±ion structure factor and n(k) is identi®ed
as the pseudo-electron density, or pseudo-atom (of
valence Z). Thus electron±ion correlations can be
described by convolving the pseudo-atom with the
ionic correlations. The ionic correlations are
themselves well described by a Percus±Yevick
hard-sphere structure factor [3], while the pseudo-

atom is described by a standard linear response
formulation:

n�k� � v1�k�vps�k�; �2�
where v1�k� is the well-known linear response
function; to approximate v1�k� we use a Local
Density Approximation (LDA) local ®eld factor
[4]. The electron±ion interaction is modeled by a
simple local one-parameter empty-core pseudo-
potential [5] i.e.: vps�k� � ÿ�4pe2=k2� cos�kRc�,
where Rc is the core radius and the pseudo-
potential goes through zero at k0 � p=2Rc. (We

Fig. 1. The electron±ion structure factors SeI�k� and related electron±ion correlation functions gei�r� for Mg and Bi: Car±Parrinello

results of de Wijs et al. [8] (solid line) vs. the simple linear-response approach augmented by a hard-sphere approximation (dashed line).

Panel (a) shows SeI�k� and panel (b) shows geI�r� for liquid Mg. Panel (c) shows SeI�k� and panel (d) shows geI�r� for liquid Bi. For Mg

the parameters (taken from the literature) are: rs � 2:66a0; Rc � 1:31a0 and for Bi the parameters (taken from the literature) are: rs �
2:25a0 and Rc � 1:15a0. Both have a hard-sphere parameter, g � 0:46 (note that for the geI�r� the region inside the core radius is not

physically signi®cant).
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note that at this linear level, the e�ects of ionic
averaging on the pseudo-atom are ignored [6].)
Using the approximations above in Eq. (1), we
compare our approach in Fig. 1 to the full ab-initio
Car±Parrinello [7] calculations of de Wijs et al. [8].
The correspondence is striking, especially when we
note that the parameters g and Rc are a priori set
by other physical properties (no ®tting is neces-
sary).

Besides a semi-quantitative description of elec-
tron±ion structure factors, this linear response
theory now provides an important qualitative in-
sight into the form of the electron±ion structure
factors [9]. The pseudo-atom density, n(k), is typ-
ically largest for smaller k and thereafter rapidly
declines for larger k, while the near classical ion±
ion structure factor, SII�k�, follows an inverse be-
havior; it is small for small k. Together with the
product form (1) this implies that the shape of the
electron±ion structure factor, SeI�k�, is determined
primarily by the the position of the zero-crossing,
�k0, of n�k� with respect to the ®rst maximum, kp, of
SII�k�. If �k0 < kp, then SII�k� selects (or ®lters) the
negative part of n�k� and SeI�k� takes a form sim-
ilar to that of Mg (Fig. 1(a)). Conversely, if
�k0 > kp, then the ion±ion structure factor selects
(or ®lters) the positive part of n(k), and again,
SeI�k� takes a form similar to that of Bi (Fig. 1 (c)).
Since v1�k� is positive de®nite, the zero-crossing in
linear response occurs at k0. The large slope of n(k)
near the zero-crossing then implies that nonlinear
corrections must have a small e�ect on the location
of the zero-crossing, and this, together with the
expected accuracy of linear response, implies that
�k0 � k0. For most metals, k0 is just a little less than
2kF , and the latter's ratio to kp is well known: for
low valence �Z6 2�, 2kF < kp; for high valence
�Z P 3�: 2kF > kp [10]. This accounts in a
straightforward way for the two separate forms
found by de Wijs et al. [8]: For Mg, �k0 < kp

(Z� 2), which belongs to the low valence class of
electron±ion structure factors. For Bi, �k0 > kp

(Z� 5) and we may refer to this as the high valence
class of electron±ion structure factors [11]. Gen-
erally ions of valence Z6 2 belong to the low va-
lence class while ions with valence Z > 3 belong to
the high valence class. Ions with valence Z� 3
typically belong to the high valence class also,

although they may be characterized by a crossover
form [6]. The analytical approach above can easily
be extended by using the modern theory of clas-
sical liquids to obtain improved ion±ion structure
factors [12], but to include second order contri-
butions to the pseudo-atom n(k) necessitates not
only second order electron response, but also
contributions from ion±ion triplet structure. The
latter can be carried out with concepts from the
theory of classical liquids [6].

2.2. Proposed experiments

The principal features of electron±ion structure
factors can be measured by exploiting the di�er-
ences between the X-ray scattering structure fac-
tor, SX

II�k�, determined with a free-atom form
factor, fA�k�, and the structure factor, SN

II �k�, de-
termined by neutron scattering [13,14]. As em-
phasized by Chihara [14] the X-ray structure factor
for liquid metals will equal SN

II �k� only when de-
termined with an ionic form factor augmented by a
pseudo-atom form factor; i.e. fI�k� � n�k�, so that:

SX
II�k�

SN
II �k�

� jfI�k� � n�k�j2
jfA�k�j2

: �3�

This e�ect is clearly expected to be largest for
metals with larger ratios of valence to core elec-
trons. Thus we predict a small e�ect for metals
with smaller valence to core ratio such as Na or K,
a 2% di�erence at the 1st peak of the structure for
Li (ratio� 1:2) or Al (ratio� 3:10), but by far the
largest e�ect for Be (ratio� 1:1) where the di�er-
ence at the principal peak of the structure factor
could be as high as 7%, well within experimental
range. Another interesting candidate would be
metallic Si (ratio� 4:10) since covalent e�ects still
make themselves felt in the liquid state suggesting
that experiments could reveal e�ects beyond linear
response.

To date the experimental electron±ion structure
factors and related pseudo-atoms show consider-
ably more structure than indicated by theoretical
predictions [15]. Signi®cant experimental chal-
lenges are faced in the accuracy resulting from
subtraction of two sets of data obtained by quite
di�erent means, each with important (but
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di�erent) systematic corrections; however the
present approach suggests that the current di�er-
ences between X-ray and neutron scattering
should be reexamined (see also Ref. [14]). Using a
pseudo-atom instead of the full free atom as a
form factor can assist in comparing neutron and
X-ray measurements and help unravel various
systematic corrections applied. The advent of high
precision X-ray and neutron sources currently
coming on-line suggests that these proposed e�ects
can be systematically explored.

2.3. Nonlinear response of an atom in an electron
gas

The evident (and long-standing) success of the
linear response approximation for electron re-
sponse [4], here demonstrated for electron±ion
structure factors, calls for further investigation.
The accuracy of linear response in a crystalline
solid is commonly attributed to the fact that the
structure dependent reciprocal lattice vectors are
typically near the pseudo-potential zero-crossing,
k0, with the associated inference that the net scat-
tering is smaller than one would naively expect [4].
For liquids or other disordered systems such ar-
guments are less appropriate. To examine the
strength of linear response in the absence of ionic
structure, we consider a simpler problem, namely
the response of the interacting electron gas to a
single ion, where the electron±ion interaction is
modeled by a simple local one-parameter empty-
core pseudo-potential [5]. We will compare two
routes to the induced density, qind�k�. The ®rst
follows from solving the Kohn±Sham equations [2]
exactly (for the given pseudo-potential) within the
LDA, the second from the standard expansion of
the response in powers of the perturbing (pseudo)
potential, i.e.;

qind�k� � v1�k�vps�k�
�
X

k~1

X
k~2

v2�k; k1; k2�vps�k1�vps�k2� � � � � :

�4�
Here the response functions, vn�k1 . . .�, are prop-
erties of the homogeneous interacting electron gas.
In Fig. 2 we compare the explicit second order

response with an LDA local ®eld factor [6,16] to
the full nonlinear LDA response. Clearly the
nonlinear response is well characterized by the
second order term, implying that the success of
linear response is not due to cancellation between
higher order terms of opposite sign but instead
that each successive term is individually small
compared to the previous term in the expansion;
the response series converges very rapidly, term by
term.

The nonlinear response is largest for atomic
parameter Rc � 0 (hydrogen), and decreases with a
larger atomic-parameter, Rc, as might be physi-
cally anticipated. However as Rc increases from
zero, a noticeable secondary minimum occurs
when the inverse atomic length, k0, is equal to
2kF . For the cases plotted in Fig. 2, the maximum
in second order response at k0=2kF � 1 (or

Fig. 2. A comparison of full nonlinear LDA response �q�k� ÿ
q�1��k�� (solid line) to second order LDA response (dashed line)

for an empty core pseudo-potential with Rc � 1:5a0 embedded

in an electron gas with density parameter, rs � 3a0. For the

scale, compare this to the full response with the limit

q�k ! 0� � 1. The higher order response is of the order of a few

% of the full response and in turn, the second order response

captures almost all the nonlinear response. (The small di�erence

at k ! 0 is a numerical artifact stemming from the use of a large

but ®nite real-space cut-o� radius in the Kohn±Sham proce-

dure.) In the insert is plotted the maximum of the second order

response vs. Rc=rs for rs � 2a0 (dotted), rs � 3a0 (solid) and rs �
5a0 (dashed). Note especially the minimum at Rc=rs � 0:41

which corresponds to k0 � 2kF . It is reduced by an order of

magnitude from the value at Rc � 0 (hydrogen) and is traced to

an interference between atomic and electronic length-scales.
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Rc=rs � 0:41) is reduced by an entire order of
magnitude when compared with the maximum in
second order response calculated for hydrogen
(Rc=rs � 0), and is typically equal to the value at
3Rc=rs. The physics behind this minimum is at-
tributed to the following; the second order re-
sponse function, v2�k; k1; k2�, peaks when the
summed arguments in Eq. (4) are close to 2kF [6].
If the pseudo-potential zero-crossing, k0, is near
the response peaks at 2kF , a maximal cancellation
or maximal destructive interference of the atomic
and electronic length scales occurs, leading to a
minimum in second order response. The ratio of
the atomic and electronic length scales is set pri-
marily by the volume energy terms in the total
ground state energy, and is almost independent of
structure [4]; k0=2kF lies between 0.75 and 1 for
most metals, and is therefore very close to the
secondary minimum in the nonlinear response.

As noted, the e�ect we discuss originates from
an interference between intrinsic atomic and elec-
tronic length scales, but it also complements the
argument given for crystalline solids alone, which
stems from the con¯uence of an atomic and a
structural length scale. The clear exception to these
interference e�ects is again the singular case of a
point-charge �vps�k� � 4pe2=k2�, i.e. the case of
hydrogen, which has no well-de®ned core-length
scale, k0, no oscillations in the potential and thus
no interference e�ect in the higher order terms. In
contrast to other systems, nonlinear response
terms are large term by term. In fact, the response
series may not even formally converge and care
must be taken when applying concepts derived
from linear-response theory to hydrogen (it is not
a simple material).

Finally we note that the second order response
contribution is of the same order as the di�erence
between ®rst order response with or without local
®eld corrections. In addition, the combined e�ects
of exchange and correlation partially cancel be-
tween ®rst and second order, implying that neglect
of higher order response results in an over-estima-
tion of the role of exchange and correlation, which,
in turn, has important implications for the
widespread application of linear response theory in
the derivation of e�ective ion±ion potentials in
(simple) metals.

3. Conclusions

The electron±ion structure factors of liquid
simple-metals are well described by a simple linear
response theory augmented by linear response for
the electrons. This approach suggests two main
classes of electron±ion correlation functions, one
for high and one for low valence metals. Experi-
mental advances in X-ray and neutron-scattering
may be able to provide measurements of these
electron±ion correlation functions, with liquid Be
being the most promising candidate. A route to
information on fundamental electron±ion interac-
tions therefore becomes available through the ¯uid
state. Finally, the well-documented success of the
linear response approximation for electrons stems
in part from an interference e�ect between atomic
and electronic length scales.
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