Section S18 ADVANCED QUANTUM MECHANICS

1. A non-relativistic quantum particle of mass m is moving in the one-dimensional potential $U(x)=-\alpha[\delta(x-a)+\delta(x)+\delta(x+a)]$, where $\alpha>0, a>0$. Using the Green's function of the Schrödinger operator for a free particle with $E<0, G\left(x, x^{\prime}\right)=$ $\frac{m}{\kappa \hbar^{2}} \exp \left(-\kappa\left|x-x^{\prime}\right|\right)$, where $\kappa=\sqrt{-2 m E} / \hbar$, show that the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+U(x) \psi(x)=E \psi(x)
$$

for the particle in the potential $U(x)$ with $E<0$ and the wave function boundary conditions $\psi(x) \rightarrow 0$ for $x \rightarrow \pm \infty$, corresponding to bound states in the potential $U(x)$, can be written as an integral equation

$$
\psi(x)=-\frac{m}{\kappa \hbar^{2}} \int_{-\infty}^{\infty} e^{-\kappa\left|x-x^{\prime}\right|} U\left(x^{\prime}\right) \psi\left(x^{\prime}\right) d x^{\prime}
$$

Using this integral equation and the explicit form of the potential, write down the solution $\psi(x)$ and the set of three algebraic equations determining $\psi(a), \psi(0)$ and $\psi(-a)$. Express these equations in matrix form.

Show that the bound state energies are determined by the equation

$$
1+\eta \lambda-2 e^{2 \eta}(1-\eta \lambda)+e^{4 \eta}(1-\eta \lambda)^{3}=0
$$

where $\eta=\kappa a, \lambda=\hbar^{2} / \alpha m a$.
Analyse the equation for bound states energies in the limit of small and large λ. How many energy levels are there for $\lambda \ll 1$? Find their approximate values in terms of λ and κ.

Find the energy levels and their degeneracy for $\lambda \gg 1$.
Now consider stationary states of the continuous spectrum with $E>0$ in the same potential $U(x)$. For a particle incident on the potential from the negative x direction with momentum k and obeying the integral equation

$$
\psi_{s}(x)=e^{i k x}-\frac{i m}{k \hbar^{2}} \int_{-\infty}^{\infty} e^{i k\left|x-x^{\prime}\right|} U\left(x^{\prime}\right) \psi_{s}\left(x^{\prime}\right) d x^{\prime}
$$

find the solution $\psi_{s}(x)$ corresponding to stationary scattering states.
By analyzing the asymptotics of the solution for $x \rightarrow+\infty$ and writing it in the form $S(k) e^{i k x}$, find the scattering amplitude $S(k)$ in terms of $\psi_{s}(a), \psi_{s}(0)$ and $\psi_{s}(-a)$.

Find the system of three algebraic equations determining $\psi_{s}(a), \psi_{s}(0)$ and $\psi_{s}(-a)$ and write them in matrix form. Use variables λ and $\xi=k a$.

Show that the singularities of $S(k)$ on the imaginary axis of ξ (i.e. for $\xi=i \eta$) are determined by an algebraic equation identical to the one determining the bound states energy levels in the potential $U(x)$.

Do you expect $S(k)$ to have other singularities? If yes, explain their physical significance.
2. A spinless free relativistic particle of mass m obeys the Klein - Gordon equation

$$
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \psi=0
$$

where Δ is the Laplacian in three space dimensions. What is the connection between this equation and the dispersion relation $E^{2}=p^{2} c^{2}+m^{2} c^{4}$ for the relativistic particle?

A spinless relativistic particle of mass m in an external scalar potential $U(\mathbf{r}, t)$ obeys the equation

$$
\begin{equation*}
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}+\alpha U(\mathbf{r}, t)\right] \psi=0 . \tag{2}
\end{equation*}
$$

By considering the non-relativistic limit of the associated dispersion relation, show that $\alpha=2 m / \hbar^{2}$.

A spinless relativistic particle of mass m and charge e in an external electromagnetic field $A^{\mu}=(\Phi, \mathbf{A})$ obeys the equation

$$
\left[c^{2}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}-\left(i \hbar \frac{\partial}{\partial t}-e \Phi\right)^{2}+m^{2} c^{4}\right] \psi=0
$$

where $\hat{\mathbf{p}}=-i \hbar \nabla$.
Show that the current density

$$
j_{\mu}=-\frac{i}{2}\left(\psi \partial_{\mu} \psi^{*}-\psi^{*} \partial_{\mu} \psi\right)-\frac{e}{\hbar c} A_{\mu} \psi^{*} \psi,
$$

where ψ is a solution of the Klein-Gordon equation, satisfies the continuity equation $\partial_{\mu} j^{\mu}=0$.

For a time-independent electromagnetic field, consider solutions of the form $\psi(t, \mathbf{r})=$ $e^{-i\left(m c^{2}+E\right) t / \hbar} \varphi(\mathbf{r})$. Show that the stationary Klein-Gordon equation obeyed by $\varphi(\mathbf{r})$ is

$$
\begin{equation*}
\left[c^{2}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}+m^{2} c^{4}\right] \varphi=\left(m c^{2}+E-e \Phi\right)^{2} \varphi \tag{2}
\end{equation*}
$$

For a hydrogen-like atom $e \Phi=-Z e^{2} / r, \mathbf{A}=0$. Show that the radial part $R(r)$ of the wave function $\varphi=R(r) Y_{l m}$, where $Y_{l m}(\theta, \phi)$ are the standard spherical harmonics, obeys the equation [Hint: You may use the decomposition $\Delta \varphi=\frac{1}{r} \frac{d^{2}(r R)}{d r^{2}} Y_{l m}-$ $\left.\frac{l(l+1)}{r^{2}} R Y_{l m}\right]$

$$
\begin{equation*}
\frac{1}{r} \frac{d^{2}(r R)}{d r^{2}}-V_{e f f} R(r)=A R(r) \tag{5}
\end{equation*}
$$

where $V_{e f f}=\frac{l(l+1)-\alpha_{e m}^{2} Z^{2}}{r^{2}}-\frac{2 B}{r}$ and $\alpha_{e m}=e^{2} / \hbar c$.
Find the constants A, B and discuss their non-relativistic limit.
Sketch the effective potential $V_{e f f}$. Explain qualitatively whether you expect bound states to exist for any value of Z.

Do you expect the energy spectrum derived from this equation to be in agreement with experiment? Explain.
3. Consider the following candidate for a wave equation describing a relativistic particle of mass m

$$
i \hbar \frac{\partial \psi}{\partial t}=\frac{\hbar c}{i}\left(\alpha_{1} \frac{\partial \psi}{\partial x^{1}}+\alpha_{2} \frac{\partial \psi}{\partial x^{2}}+\alpha_{3} \frac{\partial \psi}{\partial x^{3}}\right)+\beta m c^{2} \psi \equiv H_{D} \psi
$$

Can the coefficients $\alpha_{i}, i=1,2,3$ and β be real numbers? Explain.
Assuming that ψ has N components $\psi_{\alpha}, \alpha=1, \ldots N$, show that each component satisfies the Klein-Gordon equation,

$$
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \psi_{\alpha}=0
$$

provided that $\alpha_{i}^{2}=I, \beta^{2}=I, \alpha_{i} \alpha_{k}+\alpha_{k} \alpha_{i}=2 \delta_{i k}$ and $\alpha_{i} \beta+\beta \alpha_{i}=0$, where I is the identity matrix.

Show that the eigenvalues of α_{i} and β are equal to ± 1.
Show that $\operatorname{Tr} \alpha_{i}=0$ and $\operatorname{Tr} \beta=0$.
Show that N must be an even number greater than 2 .
For $N=4$, introducing $\psi^{\dagger}=\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right.$, $)$, where ψ_{α}^{*} is the component complex conjugate to ψ_{α}, using the wave equation for ψ_{α} and its Hermitian conjugate, show that the continuity equation holds,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{j}=0 \tag{5}
\end{equation*}
$$

where $\rho=\psi^{\dagger} \psi, j_{k}=c \psi^{\dagger} \alpha_{k} \psi$.
The Dirac equation in an external electromagnetic field $A^{\mu}=(\Phi, \mathbf{A})$ is

$$
\left[\gamma^{\mu}\left(p_{\mu}-\frac{e}{c} A_{\mu}\right)-m c\right] \psi=0
$$

where $\psi=\binom{\varphi}{\chi}$ is the four-component Dirac spinor. The Minkowski metric is given by $\eta_{\mu \nu}=\operatorname{diag}(+1,-1,-1,-1), p_{\mu}=i \hbar \partial_{\mu}$, and the Dirac matrices are

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \quad \gamma^{k}=\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right)
$$

where σ^{k} are Pauli matrices obeying $\sigma_{i} \sigma_{k}=\delta_{i k}+i \epsilon_{i k l} \sigma_{l}$. For time-independent external fields, consider stationary solutions of the form $\psi \sim \exp \left[-i\left(m c^{2}+E\right) t / \hbar\right]$. Write down the system of coupled equations for the spinors φ and χ.

Show that in the non-relativistic limit $|E| \ll m c^{2},|e \Phi| \ll m c^{2}$, the spinor φ obeys the Pauli equation

$$
i \hbar \frac{\partial \varphi}{\partial t}=\left[\frac{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}}{2 m}+e \Phi-\mu_{0} \sigma \cdot B\right] \varphi
$$

and find the value of the magnetic moment μ_{0}.
Does the Dirac equation uniquely predict the value of μ_{0} ? Explain.

