Section S18 ADVANCED QUANTUM MECHANICS

1. A non-relativistic quantum particle of mass m is moving in the one-dimensional potential

$$
U(x)=\left\{\begin{array}{l}
-q \delta(x-a) \text { for } x>0 \\
\infty \quad \text { for } \quad x<0
\end{array}\right.
$$

where $q>0$. Show that the Green's function of a Schrödinger operator for a free particle with $E<0$ obeying the equation

$$
(\hat{H}-E) G\left(x, x^{\prime}\right)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} G\left(x, x^{\prime}\right)-E G\left(x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right)
$$

with the boundary conditions $G\left(x, x^{\prime}\right) \rightarrow 0$ for $x-x^{\prime} \rightarrow \infty$ and $G\left(0, x^{\prime}\right)=0$ is given by

$$
G\left(x, x^{\prime}\right)=\left\{\begin{array}{lc}
\frac{m}{\kappa \hbar^{2}}\left[e^{\kappa\left(x-x^{\prime}\right)}-e^{-\kappa\left(x+x^{\prime}\right)}\right], & x<x^{\prime} \\
\frac{m}{\kappa \hbar^{2}}\left[1-e^{-2 \kappa x^{\prime}}\right] e^{-\kappa\left(x-x^{\prime}\right)}, & x>x^{\prime}
\end{array}\right.
$$

where $\kappa=\sqrt{-2 m E} / \hbar$.
Using the Green's function $G\left(x, x^{\prime}\right)$, show that the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+U(x) \psi(x)=E \psi(x)
$$

for the particle in the potential $U(x)$ with $E<0$ and the wave function boundary conditions $\psi(x) \rightarrow 0$ for $x \rightarrow \infty$ and $\psi(0)=0$, corresponding to the bound states in the potential $U(x)$, can be written as an integral equation.

Show that the bound state energies are determined by the equation $G(a, a)=1 / q$.

Now consider stationary states of the continuous spectrum with $E>0$ in the same potential $U(x)$. For a particle incident on the potential from the positive x direction and described by the wave function

$$
\psi(x)=\left\{\begin{array}{l}
A\left(e^{i k x}-e^{-i k x}\right), \quad 0<x<a, \\
e^{-i k x}+B e^{i k x}, \quad x>a,
\end{array}\right.
$$

where $k=\sqrt{2 m E} / \hbar$, show that the amplitude A is given by

$$
\begin{equation*}
A=-\frac{i \lambda \bar{k}}{1-e^{2 i \bar{k}}+i \lambda \bar{k}} \tag{4}
\end{equation*}
$$

where $\bar{k}=k a, \lambda=\hbar^{2} / m q a$.
Find the equation determining the singularities of the amplitude A on the positive imaginary axis of complex \bar{k} and show that it coincides with the equation determining the bound state energies in the potential $U(x)$.

Show that for $\lambda \ll 1$ the amplitude A has poles (singularities) at

$$
k a=n \pi\left(1+\frac{\lambda}{2}+\frac{\lambda^{2}}{4}+\cdots\right)-i\left(\frac{\lambda n \pi}{2}\right)^{2}+\cdots
$$

where $n= \pm 1, \pm 2, \ldots$. Sketch the corresponding transmission coefficient $|A|^{2}$ as a function of (real) $k a$ and explain the main features of the sketch.
2. A non-relativistic quantum particle of mass m is scattered by the three-dimensional central potential $U(r)=\alpha / r^{2}, \alpha>0$. Show that the Schrödinger equation for the wave function $\psi(r, \theta, \varphi)=R(r) Y_{l m}(\theta, \varphi)$,

$$
\frac{\hbar^{2}}{2 m}\left[-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{\hat{L}^{2}}{r^{2}} \psi\right]+U(r) \psi=E \psi
$$

can be written as the Bessel equation

$$
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-\nu^{2}\right) y(x)=0
$$

for $y=r^{1 / 2} R(r)$ and $x=k r$, where $k=\sqrt{2 m E} / \hbar, E>0$, and find ν as a function of l and α.

A solution to the Bessel equation is written in the form $y(x)=A J_{\nu}(x)+B Y_{\nu}(x)$, where A and B are constants and the Bessel functions $J_{\nu}(x)$ and $Y_{\nu}(x)$ are known to have the following behavior at small and large values of $x: J_{\nu} \sim x^{\nu}, Y_{\nu} \sim x^{-\nu}$ at $x \rightarrow 0$ and $J_{\nu} \sim \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi \nu}{2}+\frac{\pi}{4}\right), Y_{\nu} \sim \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{\pi \nu}{2}-\frac{\pi}{4}\right)$ at $x \rightarrow \infty$.

By considering the boundary condition at the origin, argue that we must set $B=0$.

Comparing the phase of the sine function in the solution at $r \rightarrow \infty$ to the phase of the free particle $(U(r)=0)$, show that the phase shift δ_{l} is given by

$$
\delta_{l}=-\frac{\pi}{2}\left[\sqrt{(l+1 / 2)^{2}+\frac{2 m \alpha}{\hbar^{2}}}-(l+1 / 2)\right] .
$$

Show that for $m \alpha / \hbar^{2} \ll 1, \delta_{l} \approx-\pi m \alpha /(2 l+1) \hbar^{2},\left|\delta_{l}\right| \ll 1$, and the scattering amplitude

$$
f(k, \theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left(e^{2 i \delta_{l}}-1\right) P_{l}(\cos \theta)
$$

is approximately given by $f(k, \theta) \approx-\pi m \alpha / 2 \hbar^{2} k \sin (\theta / 2)$. Compute the corresponding differential cross-section $d \sigma / \mathrm{d} \Omega$ as a function of energy E. Hint: Expand $e^{2 i \delta_{l}}$ and use the Legendre polynomials formula $\left(1-2 x z+x^{2}\right)^{-1 / 2}=\sum_{l=0}^{\infty} x^{l} P_{l}(z)$.

Show that the result $f(k, \theta) \approx-\pi m \alpha / 2 \hbar^{2} k \sin (\theta / 2)$ coincides with the one obtained in the first Born approximation for the potential $U(r)$

$$
f^{(1)}(k, \theta)=-\frac{2 m}{\hbar^{2}} \int_{0}^{\infty} \frac{r^{\prime} \sin q r^{\prime}}{q} U\left(r^{\prime}\right) d r^{\prime}
$$

where $q=2 k \sin (\theta / 2)$. Discuss the validity condition of the Born approximation.
3. A spinless relativistic particle of mass m and charge $e>0$ in an external electromagnetic field $A^{\mu}=(\Phi, \mathbf{A})$ obeys the Klein-Gordon equation

$$
\left[c^{2}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}-\left(i \hbar \frac{\partial}{\partial t}-e \Phi\right)^{2}+m^{2} c^{4}\right] \psi=0
$$

where $\hat{\mathbf{p}}=-i \hbar \nabla$.
Show that the current density

$$
j_{\mu}=-\frac{i}{2}\left(\psi \partial_{\mu} \psi^{*}-\psi^{*} \partial_{\mu} \psi\right)-\frac{e}{\hbar c} A_{\mu} \psi^{*} \psi,
$$

where ψ is a solution of the Klein-Gordon equation, satisfies the continuity equation $\partial_{\mu} j^{\mu}=0$.

For the time-independent electromagnetic field, consider solutions of the form $\psi(t, \mathbf{r})=e^{-i \varepsilon t / \hbar} \varphi(\mathbf{r})$. Show that the stationary Klein-Gordon equation obeyed by $\varphi(\mathbf{r})$ is

$$
\left[c^{2}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}+m^{2} c^{4}\right] \varphi=(\varepsilon-e \Phi)^{2} \varphi
$$

Introducing $E=\varepsilon-m c^{2}$, show that in the non-relativistic limit $|E| \ll m c^{2}$, $|e \Phi| \ll m c^{2}$, the stationary Klein-Gordon equation reduces to the Schrödinger equation

$$
\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}+e \Phi\right] \varphi_{0}=E \varphi_{0}
$$

where $\varphi=\varphi_{0}+\varphi_{1}$, with φ_{1} denoting a relativistic correction to the solution φ_{0} of the Schrödinger equation, $\left|\varphi_{1}\right| \ll\left|\varphi_{0}\right|$.

By writing the stationary Klein-Gordon equation in the form

$$
\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}+e \Phi-E\right] \varphi=\frac{(E-e \Phi)^{2}}{2 m c^{2}} \varphi
$$

and considering the right hand side as a small perturbation in the non-relativistic limit with $\varphi=\varphi_{0}+\varphi_{1}$, show that the Schrödinger equation with the first ($\sim 1 / c^{2}$) relativistic correction is

$$
\begin{equation*}
\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{2}-\frac{1}{8 m^{3} c^{2}}\left(\hat{\mathbf{p}}-\frac{e}{c} \mathbf{A}\right)^{4}+e \Phi\right] \varphi=E \varphi \tag{8}
\end{equation*}
$$

Show that the form of the relativistic correction coincides with the one obtained from the classical Hamiltonian $H=\sqrt{c^{2}\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}+m^{2} c^{4}}+e \Phi-m c^{2}$ after the standard quantum-mechanical substitutions. Do you expect this to happen for the relativistic corrections of higher order in $1 / c^{2}$?

