Section S18 ADVANCED QUANTUM MECHANICS

1. A non-relativistic quantum particle of mass m and wavenumber k is incident from the negative x direction on the one-dimensional potential well

$$
U(x)=\left\{\begin{array}{l}
-U_{0}, \quad|x| \leq \frac{a}{2}, \\
0, \quad|x|>\frac{a}{2} .
\end{array}\right.
$$

In the region $x>a / 2$, the particle is described by the wave function $\psi(x)=S(E) e^{i k(x-a)}$, where $E=\hbar^{2} k^{2} / 2 m$.

Show that the transmission amplitude $S(E)$ is given by

$$
S(E)=\frac{k \kappa}{k \kappa \cos \kappa a-\frac{i}{2}\left(k^{2}+\kappa^{2}\right) \sin \kappa a},
$$

where $\kappa=\sqrt{2 m\left(E+\left|U_{0}\right|\right)} / \hbar$.
Find the transmission probability $T(E)$.
Show that the transmission amplitude has singularities (zeros of the denominator of $S(E)$) in the complex k plane determined by the equations

$$
\begin{equation*}
\tan \frac{\kappa a}{2}=-\frac{i k}{\kappa}, \quad \cot \frac{\kappa a}{2}=\frac{i k}{\kappa} . \tag{5}
\end{equation*}
$$

Find the even and odd parity wave functions corresponding to the stationary states with $E<0$ (bound states) in the potential well.

Find equations determining the bound state energies in the potential well and show that these energies coincide with the singularities of the transmission amplitude.

Find the energies E for which the transmission probability $T(E)$ reaches its maximum value. Sketch the function $T(E)$ for $E \geq 0$.

Treating E formally as a complex variable, sketch (qualitatively) the location of the poles of the transmission amplitude in the complex k plane and the complex E plane.
2. A spinless relativistic particle of mass m in an external scalar field $\Phi(\mathbf{r}, t)$ obeys the equation

$$
\left[\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\Delta+\frac{m^{2} c^{2}}{\hbar^{2}}+\frac{2 m}{\hbar^{2}} \Phi(\mathbf{r}, t)\right] \psi=0
$$

Show that in the non-relativistic limit $\Phi(\mathbf{r}, t)$ has the meaning of the usual potential energy.

Show that the wave function $R(r)=r \psi(r)$ of the s-wave spinless particle in the external field

$$
\Phi(r)=\left\{\begin{array}{l}
-U_{0}, \quad r \leq a, \\
0, \quad r>a
\end{array}\right.
$$

satisfying the boundary condition $R(0)=0$ is

$$
R(r)=\left\{\begin{array}{l}
A \sin \left(r \sqrt{\frac{2 m U_{0}}{\hbar^{2}}-\kappa^{2}}\right), \quad r \leq a, \tag{5}\\
B e^{-\kappa r}, \quad r>a,
\end{array}\right.
$$

where $\kappa=\sqrt{m^{2} c^{4}-\epsilon^{2}} / \hbar c>0$. [Hint: You may use $\Delta \psi=\frac{1}{r} \frac{d^{2}(r \psi)}{d r^{2}}$.]
Show that the discrete energy spectrum ϵ_{n} is determined by the equation

$$
\tan \sqrt{\frac{2 m U_{0} a^{2}}{\hbar^{2}}-\kappa_{n}^{2} a^{2}}=-\frac{1}{\kappa_{n} a} \sqrt{\frac{2 m U_{0} a^{2}}{\hbar^{2}}-\kappa_{n}^{2} a^{2}},
$$

where $\kappa_{n}=\sqrt{m^{2} c^{4}-\epsilon_{n}^{2}} / \hbar c$.

What is the spectrum of an antiparticle in this field?
Find the algebraic equation determining the critical value $U_{0, \text { crit }}$ of the external field corresponding to $\epsilon_{n=0}=0$. What physical processes one may expect to occur for external fields exceeding the critical value? Is the one-particle equation adequate in this case? Explain.

A spinless relativistic particle of mass m and charge e in an external electrostatic field ϕ obeys the equation

$$
\left(-\hbar^{2} c^{2} \Delta+m^{2} c^{4}\right) \psi=\left(\mathrm{i} \hbar \partial_{t}-e \phi\right)^{2} \psi
$$

For energies close to the rest energy, i.e. for $\epsilon=m c^{2}+E$, where $|E| \ll m c^{2}$, show that in sufficiently strong fields, the force experienced by the particle is attractive irrespective of the sign of the particle's charge. [Hint: Reduce the equation to the Schrödinger equation with the appropriate effective potential.]
3. The Dirac equation in an external electromagnetic field $A^{\mu}=(\Phi, \mathbf{A})$ is

$$
\left[\gamma^{\mu}\left(p_{\mu}-\frac{e}{c} A_{\mu}\right)-m c\right] \psi=0
$$

where $\psi=\binom{\varphi}{\chi}$ is the four-component Dirac spinor. The Minkowski metric is given by $\eta_{\mu \nu}=\operatorname{diag}(+1,-1,-1,-1), p_{\mu}=\mathrm{i} \hbar \partial_{\mu}$, and the Dirac matrices are

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \quad \gamma^{k}=\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right),
$$

where I is the identity matrix, and σ^{k} are the Pauli matrices obeying $\sigma_{i} \sigma_{k}=\delta_{i k}+\mathrm{i} \epsilon_{i k l} \sigma_{l}$.
Assuming the external field is time-independent, consider stationary solutions of the Dirac equation with the time dependence of the form $\psi \sim \exp (-\mathrm{i} \epsilon t / \hbar)$.

Write down the system of coupled equations for the two-component spinors φ and χ.

Consider the positive energy solution with $\epsilon=m c^{2}+E$. Show that in the nonrelativistic limit, where $|E| \ll m c^{2},|e \Phi| \ll m c^{2}$, the spinor φ obeys the Pauli equation

$$
\mathrm{i} \hbar \frac{\partial \varphi}{\partial t}=\left[\frac{\left(\mathbf{p}-\frac{e}{c} \mathbf{A}\right)^{2}}{2 m}+e \Phi-\mu \boldsymbol{\sigma} \cdot \mathbf{B}\right] \varphi
$$

and find the value of the magnetic moment μ.
Is the value of μ universal for all charged particles with spin $1 / 2$?
Do you expect the theoretical prediction for μ following from the Dirac equation to be exact? Explain.

Is the value of the magnetic moment fixed uniquely by the Dirac equation? [Hint: Consider a non-minimal coupling to an electromagnetic field.]

Consider further the case of $\mathbf{A}=0$, and let $e \Phi=U(r)$. By expanding the Dirac equation to the next order in $|E| / m c^{2} \ll 1,|U| / m c^{2} \ll 1$, show that the spinor φ obeys the equation

$$
\mathrm{i} \hbar \frac{\partial \varphi}{\partial t}=\left(\frac{\mathbf{p}^{2}}{2 m}+U(r)+H_{1}\right) \varphi
$$

where the perturbation operator is given by

$$
H_{1}=-\frac{\mathbf{p}^{4}}{8 m^{3} c^{2}}+\frac{1}{2 m^{2} c^{2}} \frac{1}{r} \frac{d U(r)}{d r} \mathbf{L} \cdot \mathbf{S}-\frac{\hbar^{2}}{4 m^{2} c^{2}} \frac{d U}{d r} \frac{d}{d r}
$$

What is the physical meaning of terms in H_{1} ?
[You may use the following identity without proof:

$$
\left.(\boldsymbol{\sigma} \cdot \mathbf{p}) f(\boldsymbol{\sigma} \cdot \mathbf{p})=f \mathbf{p}^{2}-\hbar^{2}\left(\partial_{i} f\right) \partial_{i}-\mathrm{i} \hbar^{2} \sigma^{i} \epsilon_{i j k}\left(\partial_{j} f\right) \partial_{k} .\right]
$$

