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motivation

• Use gauge/gravity duality to study, far-from-equilibrium 
strongly interacting dynamics

• Go beyond near-equilibrium dynamics (linear response, 
probe approximation)

• Honestly solve dynamics of interesting initial states
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gauge/gravity duality
• a.k.a. “AdS/CFT duality,” “gauge/string duality,” “holography”

• Some non-Abelian gauge theories have exact reformulation as 
higher dimensional gravitational (or string) theories.

Simplest case: maximally supersymmetric SU(Nc) Yang-Mills (N=4 SYM)                
= string theory on AdS5 × S5.  More complicated generalizations for less 
supersymmetric, non-conformal theories.

• Strong coupling (and large Nc) limit of quantum field theory 
given by classical dynamics in dual gravitational description.

• Holographic description gives geometric                 
representation of renormalization flow:
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2 Preliminary holographic notions 3

versus ‘mesonic’ phases. The precise meaning of these terms will be made
clear in what follows.

2 Preliminary holographic notions

There exist certain quantum field theories in which the locality of the renor-
malisation group (RG) flow can be (usefully) geometrically realised. This is a
feature of the holographic correspondence that will be central to our discus-
sion. The basic idea is to append an extra spatial dimension to the spacetime
of the quantum field theory. This extra dimension will correspond to the RG
scale as illustrated in figure 1 below. In contrast to the fixed ‘boundary’ field
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Figure 1 The extra radial dimension in holography corresponds to the
renormalisation group scale. Processes in the interior determine long dis-
tance physics, the IR, of the dual field theory while processes near the
boundary control the short distance, or UV, physics.

theory spacetime, the ‘bulk’ spacetime with an extra dimension will be dy-
namical. The boundary conditions set at infinity in the bulk correspond to
the UV values of couplings in the field theory. Solving the gravitational equa-
tions of motion is dual to following the RG flow down in energy scales. A
modern presentation of the holographic renormalisation group may be found
in [4, 5]. For our purposes we will only need the mental picture of figure 1 as
a way of organising our thoughts about asymptotically AdS spacetimes. The
asymptotic spacetime describes the UV of the quantum field theory while
the interior of the spacetime describes the IR.
At this point we can understand why AdS spacetime plays a privileged role

in discussions of holography. The simplest quantum field theories are those
that exhibit no RG flow at all, i.e. that are scale invariant. AdS spacetime is
the geometrisation of this invariance for a relativistic quantum field theory.

spacetime 
boundary
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holography: features
• strongly coupled, large N QFT = classical (super)gravity 

in higher dimension

• valid description on all scales

• gravitational fluctuations: 1/N2 suppressed

• QFT state ⬌ asymptotically AdS geometry

• O(N2) entropy ⬌ gravitational (black brane) horizon

• thermalization ⬌ gravitational infall, horizon formation & 
equilibration

• non-equilibrium QFT dynamics ⬌ classical gravitational 
initial value problem
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applications
• Heavy-ion collisions:

• homogeneous isotropization

• boost invariant flow

• colliding planar shocks

• colliding “nuclei”

• Turbulence:

• normal fluids

• superfluids

• Other stuff:

• dynamical quenches

• black hole formation/ring-down
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this talk

• Methods

• characteristic formulation

• residual diffeomorphism invariance

• integration strategy

• Colliding planar shocks

• dependence on shock width:

• surviving remnants of initial shocks?

• approximate boost invariance?

• Colliding “nuclei”
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The di↵eomorphism freedom (3.2) may be used to transform the boundary one-form w into

a standard form such as

w
µ

(x) = �� 0

µ

. (3.4)

This simple choice will be used in the explicit examples presented below in sections 4–6.

Alternatively, one could choose to require that the boundary one-form u coincide with the

flow field v which will (eventually) be extracted from the boundary stress-energy tensor

via Eq. (2.5). Circumstances in which this may be desirable will be discussed in the next

subsection.

3.2 Boundary metric and asymptotic behavior

We are interested in solutions to Einstein’s equations for which the boundary geometry is flat

Minkowski space. Using the ansatz (3.1), such solutions may be expanded, asymptotically,

in inverse powers of r,

g
µ⌫

(x, r) ⇠ h
µ⌫

(x) +
1X

n=1

g(n)
µ⌫

(x) r�n . (3.5)

The leading term h
µ⌫

(x) is the D dimensional boundary metric. This equals the r ! 1 limit

of the induced metric obtained by restricting the D+1 dimensional metric (3.1) to r = const.

slices, ds2
��
r=const.

= (r2/L2) g
µ⌫

(x, r) dxµdx⌫ , after rescaling to remove the overall r2/L2

factor. The order D coe�cient g(D)

µ⌫

in expansion (3.5) cannot be determined solely by a near-

boundary analysis; the value of this coe�cient (which depends on the solution throughout

the bulk) determines the boundary stress-energy tensor exactly as in the Fe↵erman-Graham

case,

hT
µ⌫

i ⌘ DLD�1

16⇡G
N

g(D)

µ⌫

. (3.6)

The boundary metric h
µ⌫

may be chosen to equal the usual Minkowski metric,

h
µ⌫

(x) = ⌘
µ⌫

. (3.7)

But demanding a flat boundary geometry does not obligate one to use Cartesian Minkowski

space coordinates. Use of the boundary metric (3.7) represents a further, arbitrary choice of

coordinates on the boundary geometry. Alternatively, one may choose to describe Minkowski

space using some set of coordinates {xµ} which are non-trivially (and non-linearly) related

to a set of Cartesian Minkowski coordinates {y↵}, so that

h
µ⌫

(x) =
@y↵(x)

@xµ
@y�(x)

@x⌫
⌘
↵�

. (3.8)

For some problems, the simple choice (3.7) of Minkowski boundary coordinates is su�-

cient. This will be the case for the specific examples presented in subsequent sections. For

other problems, exploiting the freedom of using non-Cartesian boundary coordinates, with

– 6 –

boundary metric

metric ansatz
• Fefferman-Graham: good for equilibrium, bad for dynamics

• Eddington-Finklestein: good, regular across future horizon

• x𝜇	 = D-dimensional boundary coordinates

• x0	 ≡ t = const. slices = null surface

• r = (non-inverted) bulk radius, ∂r = infalling null geodesic

• w = w𝜇 𝑑x𝜇 = timelike boundary one-form 

• boundary asymptotics: 

7

widely used in numerical relativity calculations in asymptotically Minkowski space [35–37].

However, employing this powerful approach has some practical downsides. Implementing this

method (particularly when combined with adaptive mesh refinement) is complex. One must

formulate a scheme for dynamically choosing lapse and shift vectors, or make some a-priori

choice, in a manner which, one hopes, will allow the foliation to remain regular throughout

the spacetime region of interest. This is non-trivial.

3.1 Metric ansatz

We have chosen to employ the first approach involving on a metric ansatz. However, our cho-

sen ansatz is one specifically tailored to gravitational infall problems, and is a generalization

of traditional ingoing Eddington-Finkelstein coordinates for black holes. It employs a null

slicing of spacetime constructed from infalling null geodesics. Previous work [11, 32] studying

late time behavior of solutions which approach stationary black brane solutions convincingly

demonstrates the virtues of using generalized Eddington-Finkelstein coordinates for this class

of asymptotically AdS gravitational infall problems. The general form of the metric is

ds2 =
r2

L2

g
µ⌫

(x, r) dxµ dx⌫ � 2w
µ

(x) dxµ dr , (3.1)

where r is a non-inverted bulk radial coordinate (so the spacetime boundary lies at r = 1),

and {xµ} denote the D remaining boundary coordinates.9 The boundary one-form w =

w
µ

dxµ appearing in the second term is independent of the radial coordinate r. This one-form

is assumed to be timelike and, without loss of generality, may be taken to satisfy w2 = �1

(using the boundary metric discussed below). A more explicit representation of the metric

g
µ⌫

which describes the geometry on fixed-r slices will be introduced in section 3.3.

From the ansatz (3.1), one immediately sees that lines along which r varies while the

other coordinates are held fixed are null curves. One may easily check that these curves

are, in fact, infalling null geodesics for which r is an a�ne parameter. Therefore, the vector

@
r

is a directional derivative along infalling null geodesics. At the boundary (r = 1), an

observer whoseD-velocity components equal uµ would describe these geodesics as representing

trajectories of comoving objects at rest in his frame; their tangent vectors are normal to the

D�1 spatial basis vectors in the observer’s frame. In our coordinates, these geodesics remain

purely radial throughout the bulk geometry.

The form of the metric ansatz (3.1) is preserved by two types of residual di↵eomorphisms:

arbitrary D-dimensional di↵eomorphisms (independent of r),

xµ ! x0µ ⌘ fµ(x) , (3.2)

and arbitrary shifts in the radial coordinate (depending on x),

r ! r0 ⌘ r + ��(x) . (3.3)

9The inverse metric gMN =

 
(L/r)2 (gµ⌫�wµw⌫/w2) �wµ/w2

�w⌫/w2 �(r/L)2/w2

!
, with wµ(x, r) ⌘ gµ⌫(x, r)w⌫(x).
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The di↵eomorphism freedom (3.2) may be used to transform the boundary one-form w into
a standard form such as

w
µ

(x) = �� 0

µ

. (3.4)

This simple choice will be used in the explicit examples presented below in sections 4–6.
Alternatively, one could choose to require that the boundary one-form w coincide with the
flow field u which will (eventually) be extracted from the boundary stress-energy tensor
via Eq. (2.5). Circumstances in which this may be desirable will be discussed in the next
subsection.

3.2 Boundary metric and asymptotic behavior

We are interested in solutions to Einstein’s equations for which the boundary geometry is flat
Minkowski space. Using the ansatz (3.1), such solutions may be expanded, asymptotically,
in inverse powers of r,

g
µ⌫

(x, r) ⇠ h
µ⌫

(x) +
1X

n=1

g(n)

µ⌫

(x) r�n . (3.5)

The leading term h
µ⌫

(x) is the D dimensional boundary metric. This equals the r ! 1
limit of the induced metric obtained by restricting the D+1 dimensional metric (3.1) to
r = const. slices, ds2

��
r=const.

= (r2/L2) g
µ⌫

(x, r) dxµdx⌫ , after rescaling to remove the overall
r2/L2 factor. The order-D coe�cient g

(D)

µ⌫

in expansion (3.5) cannot be determined solely
by a near-boundary analysis; the value of this coe�cient (which depends on the solution
throughout the bulk) determines the boundary stress-energy tensor in a manner similar to
the Fe↵erman-Graham case. With w↵ ⌘ h↵� w

�

, one finds

hT
µ⌫

i ⌘ LD�1

16⇡G
N

⇣
D g(D)

µ⌫

+ w↵g
(D)

↵�

w� h
µ⌫

⌘
. (3.6)

The boundary metric h
µ⌫

may be chosen to equal the standard Minkowski metric,

h
µ⌫

(x) = ⌘
µ⌫

. (3.7)

But demanding a flat boundary geometry does not obligate one to use Cartesian Minkowski
space coordinates. Use of the boundary metric (3.7) represents a further, arbitrary choice of
coordinates on the boundary geometry. Alternatively, one may choose to describe Minkowski
space using some set of coordinates {xµ} which are non-trivially (and non-linearly) related
to a set of Cartesian Minkowski coordinates {y↵}, so that

h
µ⌫

(x) =
@y↵(x)

@xµ

@y�(x)
@x⌫

⌘
↵�

. (3.8)

For some problems, the standard choice (3.7) of Minkowski boundary metric is su�cient.
This will be the case for the specific examples presented in subsequent sections. For other
problems, exploiting the freedom of using non-Cartesian boundary coordinates, with corre-
sponding boundary metric (3.8), is helpful. This is true, for example, in problems involving
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preferred family of 
boundary observers

r = ∞ 
boundary

event 
horizon

x0

apparent 
horizon

null 
geodesic

r
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residual invariance/gauge fixing

• boundary diffeomorphisms:

➡ choose co-moving boundary frame:

• radial shifts:

➡ fix radial position of apparent horizon:

➡ rectangular computational domain
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widely used in numerical relativity calculations in asymptotically Minkowski space [35–37].

However, employing this powerful approach has some practical downsides. Implementing this

method (particularly when combined with adaptive mesh refinement) is complex. One must

formulate a scheme for dynamically choosing lapse and shift vectors, or make some a-priori

choice, in a manner which, one hopes, will allow the foliation to remain regular throughout

the spacetime region of interest. This is non-trivial.

3.1 Metric ansatz

We have chosen to employ the first approach involving on a metric ansatz. However, our cho-

sen ansatz is one specifically tailored to gravitational infall problems, and is a generalization

of traditional ingoing Eddington-Finkelstein coordinates for black holes. It employs a null

slicing of spacetime constructed from infalling null geodesics. Previous work [11, 32] studying

late time behavior of solutions which approach stationary black brane solutions convincingly

demonstrates the virtues of using generalized Eddington-Finkelstein coordinates for this class

of asymptotically AdS gravitational infall problems. The general form of the metric is

ds2 =
r2

L2

g
µ⌫

(x, r) dxµ dx⌫ � 2w
µ

(x) dxµ dr , (3.1)

where r is a non-inverted bulk radial coordinate (so the spacetime boundary lies at r = 1),

and {xµ} denote the D remaining boundary coordinates.9 The boundary one-form w =

w
µ

dxµ appearing in the second term is independent of the radial coordinate r. This one-form

is assumed to be timelike and, without loss of generality, may be taken to satisfy w2 = �1

(using the boundary metric discussed below). A more explicit representation of the metric

g
µ⌫

which describes the geometry on fixed-r slices will be introduced in section 3.3.

From the ansatz (3.1), one immediately sees that lines along which r varies while the

other coordinates are held fixed are null curves. One may easily check that these curves

are, in fact, infalling null geodesics for which r is an a�ne parameter. Therefore, the vector

@
r

is a directional derivative along infalling null geodesics. At the boundary (r = 1), an

observer whoseD-velocity components equal uµ would describe these geodesics as representing

trajectories of comoving objects at rest in his frame; their tangent vectors are normal to the

D�1 spatial basis vectors in the observer’s frame. In our coordinates, these geodesics remain

purely radial throughout the bulk geometry.

The form of the metric ansatz (3.1) is preserved by two types of residual di↵eomorphisms:

arbitrary D-dimensional di↵eomorphisms (independent of r),

xµ ! x0µ ⌘ fµ(x) , (3.2)

and arbitrary shifts in the radial coordinate (depending on x),

r ! r0 ⌘ r + ��(x) . (3.3)

9The inverse metric gMN =

 
(L/r)2 (gµ⌫�wµw⌫/w2) �wµ/w2

�w⌫/w2 �(r/L)2/w2

!
, with wµ(x, r) ⌘ gµ⌫(x, r)w⌫(x).
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The di↵eomorphism freedom (3.2) may be used to transform the boundary one-form w into

a standard form such as

w
µ

(x) = �� 0

µ

. (3.4)

This simple choice will be used in the explicit examples presented below in sections 4–6.

Alternatively, one could choose to require that the boundary one-form u coincide with the

flow field v which will (eventually) be extracted from the boundary stress-energy tensor

via Eq. (2.5). Circumstances in which this may be desirable will be discussed in the next

subsection.

3.2 Boundary metric and asymptotic behavior

We are interested in solutions to Einstein’s equations for which the boundary geometry is flat

Minkowski space. Using the ansatz (3.1), such solutions may be expanded, asymptotically,

in inverse powers of r,

g
µ⌫

(x, r) ⇠ h
µ⌫

(x) +
1X

n=1

g(n)
µ⌫

(x) r�n . (3.5)

The leading term h
µ⌫

(x) is the D dimensional boundary metric. This equals the r ! 1 limit

of the induced metric obtained by restricting the D+1 dimensional metric (3.1) to r = const.

slices, ds2
��
r=const.

= (r2/L2) g
µ⌫

(x, r) dxµdx⌫ , after rescaling to remove the overall r2/L2

factor. The order D coe�cient g(D)

µ⌫

in expansion (3.5) cannot be determined solely by a near-

boundary analysis; the value of this coe�cient (which depends on the solution throughout

the bulk) determines the boundary stress-energy tensor exactly as in the Fe↵erman-Graham

case,

hT
µ⌫

i ⌘ DLD�1

16⇡G
N

g(D)

µ⌫

. (3.6)

The boundary metric h
µ⌫

may be chosen to equal the usual Minkowski metric,

h
µ⌫

(x) = ⌘
µ⌫

. (3.7)

But demanding a flat boundary geometry does not obligate one to use Cartesian Minkowski

space coordinates. Use of the boundary metric (3.7) represents a further, arbitrary choice of

coordinates on the boundary geometry. Alternatively, one may choose to describe Minkowski

space using some set of coordinates {xµ} which are non-trivially (and non-linearly) related

to a set of Cartesian Minkowski coordinates {y↵}, so that

h
µ⌫

(x) =
@y↵(x)

@xµ
@y�(x)

@x⌫
⌘
↵�

. (3.8)

For some problems, the simple choice (3.7) of Minkowski boundary coordinates is su�-

cient. This will be the case for the specific examples presented in subsequent sections. For

other problems, exploiting the freedom of using non-Cartesian boundary coordinates, with
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imposing the leading behavior (3.7) one finds

⌃ = r + �+O(r�7) , F
i

= @
i

�+ f
(2)

i

r�2 +O(r�3) , (3.26a)

A = (r + �)2 � 2 @
t

�+ a(4) r�2 +O(r�3) , g̃
ij

= �
ij

+ g̃
(4)

ij

r�4 +O(r�5) , (3.26b)

d
+

⌃ = 1

2

(r + �)2 + 1

2

a(4) r�2 +O(r�3) , d
+

g̃
ij

= �2 g(4)
ij

r�3 +O(r�4) , (3.26c)

where � = �(t,x) is completely undetermined. Also undetermined by an asymptotic analysis

are the subleading coe�cients a(4), f (2)

i

, and g̃
(4)

ij

(each of which is a function of v and x).14

These coe�cients determine the expectation value of the stress-energy tensor in the dual field

theory,

hT 00i = 3# a(4) , hT 0

i

i = 4# f
(2)

i

, hT
ij

i = # a(4) �
ij

+ 4# g̃
(4)

ij

. (3.27)

One must solve Einstein’s equations throughout the bulk to determine the coe�cients a(4),

f
(2)

i

, and g̃
(4)

ij

; this will be discussed further below. But �(t,x) is determined by fiat — one

must simply choose some scheme for fixing �.15

One seemingly natural approach is just to demand that � vanish identically. That is,

one could require that ⌃(t,x, r) � r vanish, for all v and x, as r ! 1. However, this turns

out to be a bad choice as it leads to apparent horizons whose radial positions vary very

rapidly with x and v. Such variation causes greater di�culty with numerical loss of precision

due to cancellations between terms which grow rapidly deep in the bulk. And it can lead

to situations where the radial coordinate r decreases to zero and turns negative before the

apparent (or Poincaré) horizon is reached — which is a nuisance since it makes the inverted

radial coordinate, u ⌘ 1/r, which is otherwise convenient for numerical work, singular within

the computational domain of interest.

A preferable choice is to use the residual reparameterization freedom to put the apparent

horizon at a fixed radial position,

r
h

(t,x) = r
h

(3.30)

for all v and x. If this surface is an apparent horizon, then an a�nely-parameterized outgoing

null geodesic congrunece, normal to the surface (when restricted to a t = const. slice) will

14Because g̃ has unit determinant, the sub-leading coe�cient g̃
(4)
ij is automatically traceless (as well as

symmetric). Correspondingly, the full stress-energy tensor (3.27) of the dual field theory is automatically

traceless as well.
15For the case of D = 3, the expressions analogous to (3.26) and (3.27) are:

⌃ = r + �+O(r�5) , Fi = @i�+ f
(1)
i r�1 +O(r�2) , (3.28a)

A = (r + �)2 � 2@t�+ a(3) r�1 +O(r�2) , g̃ij = �ij + g̃
(3)
ij r�3 +O(r�4) . (3.28b)

d+⌃ = 1
2 (r + �)2 + 1

2a
(3) r�1 +O(r�2) , d+g̃ij = � 3

2g
(3)
ij r�2 +O(r�3) , (3.28c)

with

hT 00i = 2# a(3) , hT 0
ii = 3# f

(1)
i , hTiji = # a(3) �ij + 3# g̃

(3)
ij . (3.29)
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Eulerian → Lagrangian description

Requires planar horizon topology

of a covariant tensor, one-form, and scalar field, respectively). As mentioned earlier, arbitrary
radial shifts,

r ! r̄ = r + ��(x) , (3.16)

also leave the form of the metric invariant. Metric functions transform as

A(x, r)! Ā(x, r̄) ⌘ A(x, r̄���) + @
t

��(x) , (3.17a)

F
i

(x, r)! F̄
i

(x, r̄) ⌘ F
i

(x, r̄���) + @
i

��(x) , (3.17b)

while G
ij

(x, r) ! Ḡ
ij

(x, r̄) ⌘ G
ij

(x, r̄���). From the transformations (3.17), it is apparent
that A and F

i

function as the temporal and spatial components of a “radial shift” gauge field.
In light of the spatial di↵eomorphism invariance of the metric ansatz, it must be possible

to write explicit forms of the resulting Einstein equations in a manner which is manifestly
covariant under spatial di↵eomorphisms. In addition, it is possible, and quite helpful, to write
expressions in a form which also makes invariance under the radial shift symmetry manifest.
To do so, we introduce derivatives which transform covariantly under both radial shifts and
spatial di↵eomorphisms. For the temporal derivative, this is accomplished by defining

d
+

⌘ @
t

+ A(X) @
r

. (3.18)

As noted earlier, @
r

is a directional derivative along ingoing radial null geodesics. The d
+

derivative is the corresponding directional derivative along the outgoing null geodesic which
passes through some event X in the radial direction.

The analogous definition for spatial derivatives, acting on (spatial) scalar functions, is

d
i

⌘ @
i

+ F
i

(X) @
r

. (3.19)

Geometrically, these are derivatives along spacelike directions which are orthogonal (at the
event X) to the plane spanned by tangents to ingoing and outgoing radial null geodesics.
In the derivatives (3.18) and (3.19), A and F

i

act like gauge field components, with @
r

the
associated “charge” operator. When acting on spatial tensor fields, one must augment the
derivative (3.19) with an a�ne connection, which we denote by e�i

jk

, to build a derivative
which is also covariant under spatial di↵eomorphisms. The required connection is the usual
Christo↵el connection associated with the spatial metric G

ij

except that, to maintain radial
shift invariance, the spatial derivatives appearing in the definition of the connection must be
replaced by d

i

derivatives. Hence,
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. (3.20b)

Here, and henceforth, we use primes to denote radial di↵erentiation.
We denote by er the resulting spatial and radially covariant derivative. When displaying

indices, we use a vertical bar (|), instead of the usual semicolon, to indicate this modified
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widely used in numerical relativity calculations in asymptotically Minkowski space [35–37].

However, employing this powerful approach has some practical downsides. Implementing this

method (particularly when combined with adaptive mesh refinement) is complex. One must

formulate a scheme for dynamically choosing lapse and shift vectors, or make some a-priori

choice, in a manner which, one hopes, will allow the foliation to remain regular throughout

the spacetime region of interest. This is non-trivial.

3.1 Metric ansatz

We have chosen to employ the first approach involving on a metric ansatz. However, our cho-

sen ansatz is one specifically tailored to gravitational infall problems, and is a generalization

of traditional ingoing Eddington-Finkelstein coordinates for black holes. It employs a null

slicing of spacetime constructed from infalling null geodesics. Previous work [11, 32] studying

late time behavior of solutions which approach stationary black brane solutions convincingly

demonstrates the virtues of using generalized Eddington-Finkelstein coordinates for this class

of asymptotically AdS gravitational infall problems. The general form of the metric is

ds2 =
r2

L2

g
µ⌫

(x, r) dxµ dx⌫ � 2w
µ

(x) dxµ dr , (3.1)

where r is a non-inverted bulk radial coordinate (so the spacetime boundary lies at r = 1),

and {xµ} denote the D remaining boundary coordinates.9 The boundary one-form w =

w
µ

dxµ appearing in the second term is independent of the radial coordinate r. This one-form

is assumed to be timelike and, without loss of generality, may be taken to satisfy w2 = �1

(using the boundary metric discussed below). A more explicit representation of the metric

g
µ⌫

which describes the geometry on fixed-r slices will be introduced in section 3.3.

From the ansatz (3.1), one immediately sees that lines along which r varies while the

other coordinates are held fixed are null curves. One may easily check that these curves

are, in fact, infalling null geodesics for which r is an a�ne parameter. Therefore, the vector

@
r

is a directional derivative along infalling null geodesics. At the boundary (r = 1), an

observer whoseD-velocity components equal uµ would describe these geodesics as representing

trajectories of comoving objects at rest in his frame; their tangent vectors are normal to the
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The form of the metric ansatz (3.1) is preserved by two types of residual di↵eomorphisms:
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xµ ! x0µ ⌘ fµ(x) , (3.2)
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r ! r0 ⌘ r + ��(x) . (3.3)

9The inverse metric gMN =

 
(L/r)2 (gµ⌫�wµw⌫/w2) �wµ/w2

�w⌫/w2 �(r/L)2/w2

!
, with wµ(x, r) ⌘ gµ⌫(x, r)w⌫(x).
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r2

L2 gij(x, r) ⌘ Gij(t,x, r) ⌘ ⌃(t,x, r)2 ĝij(t,x, r) det(ĝ) ⌘ 1

of a covariant tensor, one-form, and scalar field, respectively). As mentioned earlier, arbitrary
radial shifts,
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��(x) , (3.17b)
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ij

(x, r̄) ⌘ G
ij

(x, r̄���). From the transformations (3.17), it is apparent
that A and F

i

function as the temporal and spatial components of a “radial shift” gauge field.
In light of the spatial di↵eomorphism invariance of the metric ansatz, it must be possible

to write explicit forms of the resulting Einstein equations in a manner which is manifestly
covariant under spatial di↵eomorphisms. In addition, it is possible, and quite helpful, to write
expressions in a form which also makes invariance under the radial shift symmetry manifest.
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event X) to the plane spanned by tangents to ingoing and outgoing radial null geodesics.
In the derivatives (3.18) and (3.19), A and F
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act like gauge field components, with @
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the
associated “charge” operator. When acting on spatial tensor fields, one must augment the
derivative (3.19) with an a�ne connection, which we denote by e�i

jk

, to build a derivative
which is also covariant under spatial di↵eomorphisms. The required connection is the usual
Christo↵el connection associated with the spatial metric G
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except that, to maintain radial
shift invariance, the spatial derivatives appearing in the definition of the connection must be
replaced by d
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derivatives. Hence,
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covariant derivative. So, for example, if v is a spatial vector and ! a spatial one-form, then

vi

|k ⌘ (erv)i

k

= d
k

(vi) + e�i

jk

vj = vi

,k

+ v0 i F
k

+ e�i

jk

vj , (3.21a)

!
i|k ⌘ (er!)

ik

= d
k

(!
i

)� e�j

ik

!
j

= !
i,k

+ !0
i

F
k

� e�j

ik

!
j

. (3.21b)

The modified covariant derivative is both metric compatible, G
ij|k = 0, and torsion free,

e�i

jk

= e�i

kj

. Associated with our modified spatial covariant derivative is a modified spa-
tial Riemann curvature tensor, eR

ijkl

, defined by the usual formula, but with our modified
derivatives replacing the usual derivatives.17

With these preliminaries in hand, we now examine the resulting Einstein equations. The
D+1 dimensional set of equations (3.12) must decompose into one symmetric rank two spatial
tensor equation, two spatial vector equations, and three spatial scalar equations. After tedious
work, one finds the following simple results. The three scalar equations may be written as:18

0 = tr
�

G00 � 1

2

G0 2� , (3.22)

0 = A00 + 1

2

er · F 0 + 1

2

F 0 · F 0 + 1

2

(tr d
+

G)0 + 1

4

tr (G0 d
+

G) + 2⇤/⌫ , (3.23)

0 = tr [d
+

(d
+

G)�A0 (d
+

G)� 1

2

(d
+

G)2] + 2 er · E + 1

2

tr (⌦2) . (3.24)

The dot products appearing here and in subsequent expressions are defined using the spatial
metric G

ij

. The spatial tensors G0 and F 0 are defined as the radial derivatives of covariant
components, (G0)

ij

⌘ (G
ij

)0 and (F 0)
i

⌘ (F
i

)0. Likewise for G00, d
+

G, d
+

F , etc. Hence,
G0 i

j

= GikG0
kj

and F 0 i = GijF 0
j

. Therefore tr (G0) ⌘ G0 i
i

= GijG0
ji

and F · F = F iF
i

=
F

i

GijF
j

. In equation (3.24), the last term involves the square of the two-form

⌦
ij

⌘ F
j|i � F

i|j = F
j,i

� F
i,j

+ F
i

F 0
j

� F
j

F 0
i

, (3.25)

which is the spatial (or “magnetic”) part of the field strength associated with the radial shift
symmetry. The penultimate term involves the corresponding time-space (or “electric”) part
of the radial shift field strength,

E
i

⌘ d
+

F
i

� d
i

A = F
i,t

�A
,i

+ A F 0
i

� F
i

A0 . (3.26)

17Explicitly, eRi
jkl ⌘ dk

e�i
jl � dl

e�i
jk + e�i

mk
e�m

jl � e�i
ml
e�m

jk. The modified spatial Ricci tensor and scalar

are given by the usual contractions, eRjk ⌘ eRi
jik and eR ⌘ eRk

k. The modified Riemann tensor is antisymmetric

in the last two indices, as usual, but need not be antisymmetric in the first two indices, or symmetric under

(ij)$ (kl) pair exchange. Instead, eRijkl = bRijkl+� eR(ij)kl where bRijkl obeys the usual symmetries [odd under

i $ j or k $ l, even under (ij)$ (kl)], while � eRijkl = 1
2G0

ij ⌦kl + 1
4

ˆ
G0

ik ⌦jl �G0
il ⌦jk + G0

jl ⌦ik �G0
jk ⌦il

˜
.

The two-form ⌦, defined in eq. (3.25), is the “magnetic” field strength associated with the radial shift

symmetry. The extra piece � eRijkl of the modified spatial Riemann tensor leads to a corresponding term

� eRij = 1
4 [G0 · ⌦� ⌦ · G0 + ⌦ (tr G0)] in the modified spatial Ricci tensor which is antisymmetric.

18We use a mixture of index-free notation (for simple factors like tr G0, F · F , or er · F 0), together with

indices on more involved expressions; this makes the results most concise. Factors of the inverse spatial metric

G�1 = kGijk are implicitly present in raised spatial indices. Be aware that raising of indices does not commute

with radial or temporal di↵erentiation.
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metric compatible, 
torsion free

spatial scale factor

of a covariant tensor, one-form, and scalar field, respectively). As mentioned earlier, arbitrary
radial shifts,

r ! r̄ = r + ��(x) , (3.16)

also leave the form of the metric invariant. Metric functions transform as
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��(x) , (3.17a)
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��(x) , (3.17b)

while G
ij

(x, r) ! Ḡ
ij

(x, r̄) ⌘ G
ij

(x, r̄���). From the transformations (3.17), it is apparent
that A and F

i

function as the temporal and spatial components of a “radial shift” gauge field.
In light of the spatial di↵eomorphism invariance of the metric ansatz, it must be possible

to write explicit forms of the resulting Einstein equations in a manner which is manifestly
covariant under spatial di↵eomorphisms. In addition, it is possible, and quite helpful, to write
expressions in a form which also makes invariance under the radial shift symmetry manifest.
To do so, we introduce derivatives which transform covariantly under both radial shifts and
spatial di↵eomorphisms. For the temporal derivative, this is accomplished by defining

d
+

⌘ @
t

+ A(X) @
r

. (3.18)

As noted earlier, @
r

is a directional derivative along ingoing radial null geodesics. The d
+

derivative is the corresponding directional derivative along the outgoing null geodesic which
passes through some event X in the radial direction.

The analogous definition for spatial derivatives, acting on (spatial) scalar functions, is

d
i

⌘ @
i

+ F
i

(X) @
r

. (3.19)

Geometrically, these are derivatives along spacelike directions which are orthogonal (at the
event X) to the plane spanned by tangents to ingoing and outgoing radial null geodesics.
In the derivatives (3.18) and (3.19), A and F

i

act like gauge field components, with @
r

the
associated “charge” operator. When acting on spatial tensor fields, one must augment the
derivative (3.19) with an a�ne connection, which we denote by e�i

jk

, to build a derivative
which is also covariant under spatial di↵eomorphisms. The required connection is the usual
Christo↵el connection associated with the spatial metric G

ij

except that, to maintain radial
shift invariance, the spatial derivatives appearing in the definition of the connection must be
replaced by d

i

derivatives. Hence,

e�i

jk

⌘ 1

2

Gil (d
k

G
lj

+ d
j

G
lk

� d
l

G
jk

) (3.20a)

= 1
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. (3.20b)

Here, and henceforth, we use primes to denote radial di↵erentiation.
We denote by er the resulting spatial and radially covariant derivative. When displaying

indices, we use a vertical bar (|), instead of the usual semicolon, to indicate this modified
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spatial dimensionality, D-1

covariant derivative. So, for example, if v is a spatial vector and ! a spatial one-form, then

vi

|k ⌘ (erv)i

k

= d
k

(vi) + e�i

jk

vj = vi

,k

+ v0 i F
k

+ e�i

jk

vj , (3.21a)
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i

)� e�j

ik

!
j

= !
i,k

+ !0
i

F
k

� e�j

ik

!
j

. (3.21b)

The modified covariant derivative is both metric compatible, G
ij|k = 0, and torsion free,

e�i

jk

= e�i

kj

. Associated with our modified spatial covariant derivative is a modified spa-
tial Riemann curvature tensor, eR

ijkl

, defined by the usual formula, but with our modified
derivatives replacing the usual derivatives.17

With these preliminaries in hand, we now examine the resulting Einstein equations. The
D+1 dimensional set of equations (3.12) must decompose into one symmetric rank two spatial
tensor equation, two spatial vector equations, and three spatial scalar equations. After tedious
work, one finds the following simple results. The three scalar equations may be written as:18

0 = tr
�

G00 � 1

2

G0 2� , (3.22)

0 = A00 + 1

2

er · F 0 + 1

2

F 0 · F 0 + 1

2

(tr d
+

G)0 + 1

4

tr (G0 d
+

G) + 2⇤/⌫ , (3.23)

0 = tr [d
+

(d
+

G)�A0 (d
+

G)� 1

2

(d
+

G)2] + 2 er · E + 1

2

tr (⌦2) . (3.24)

The dot products appearing here and in subsequent expressions are defined using the spatial
metric G

ij

. The spatial tensors G0 and F 0 are defined as the radial derivatives of covariant
components, (G0)

ij

⌘ (G
ij

)0 and (F 0)
i

⌘ (F
i

)0. Likewise for G00, d
+

G, d
+

F , etc. Hence,
G0 i

j

= GikG0
kj

and F 0 i = GijF 0
j

. Therefore tr (G0) ⌘ G0 i
i

= GijG0
ji

and F · F = F iF
i

=
F

i

GijF
j

. In equation (3.24), the last term involves the square of the two-form

⌦
ij

⌘ F
j|i � F

i|j = F
j,i

� F
i,j

+ F
i

F 0
j

� F
j

F 0
i

, (3.25)

which is the spatial (or “magnetic”) part of the field strength associated with the radial shift
symmetry. The penultimate term involves the corresponding time-space (or “electric”) part
of the radial shift field strength,

E
i

⌘ d
+

F
i

� d
i

A = F
i,t

�A
,i

+ A F 0
i

� F
i

A0 . (3.26)

17Explicitly, eRi
jkl ⌘ dk

e�i
jl � dl

e�i
jk + e�i

mk
e�m

jl � e�i
ml
e�m

jk. The modified spatial Ricci tensor and scalar

are given by the usual contractions, eRjk ⌘ eRi
jik and eR ⌘ eRk

k. The modified Riemann tensor is antisymmetric

in the last two indices, as usual, but need not be antisymmetric in the first two indices, or symmetric under

(ij)$ (kl) pair exchange. Instead, eRijkl = bRijkl+� eR(ij)kl where bRijkl obeys the usual symmetries [odd under

i $ j or k $ l, even under (ij)$ (kl)], while � eRijkl = 1
2G0

ij ⌦kl + 1
4

ˆ
G0

ik ⌦jl �G0
il ⌦jk + G0

jl ⌦ik �G0
jk ⌦il

˜
.

The two-form ⌦, defined in eq. (3.25), is the “magnetic” field strength associated with the radial shift

symmetry. The extra piece � eRijkl of the modified spatial Riemann tensor leads to a corresponding term

� eRij = 1
4 [G0 · ⌦� ⌦ · G0 + ⌦ (tr G0)] in the modified spatial Ricci tensor which is antisymmetric.

18We use a mixture of index-free notation (for simple factors like tr G0, F · F , or er · F 0), together with

indices on more involved expressions; this makes the results most concise. Factors of the inverse spatial metric

G�1 = kGijk are implicitly present in raised spatial indices. Be aware that raising of indices does not commute

with radial or temporal di↵erentiation.
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ij|k = 0, and torsion free,
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. Associated with our modified spatial covariant derivative is a modified spa-
tial Riemann curvature tensor, eR

ijkl

, defined by the usual formula, but with our modified
derivatives replacing the usual derivatives.17

With these preliminaries in hand, we now examine the resulting Einstein equations. The
D+1 dimensional set of equations (3.12) must decompose into one symmetric rank two spatial
tensor equation, two spatial vector equations, and three spatial scalar equations. After tedious
work, one finds the following simple results. The three scalar equations may be written as:18
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which is the spatial (or “magnetic”) part of the field strength associated with the radial shift
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The two-form ⌦, defined in eq. (3.25), is the “magnetic” field strength associated with the radial shift

symmetry. The extra piece � eRijkl of the modified spatial Riemann tensor leads to a corresponding term
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The modified covariant derivative is both metric compatible, G
ij|k = 0, and torsion free,
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kj

. Associated with our modified spatial covariant derivative is a modified spa-
tial Riemann curvature tensor, eR

ijkl

, defined by the usual formula, but with our modified
derivatives replacing the usual derivatives.17

With these preliminaries in hand, we now examine the resulting Einstein equations. The
D+1 dimensional set of equations (3.12) must decompose into one symmetric rank two spatial
tensor equation, two spatial vector equations, and three spatial scalar equations. After tedious
work, one finds the following simple results. The three scalar equations may be written as:18

0 = tr
�

G00 � 1

2

G0 2� , (3.22)

0 = A00 + 1

2

er · F 0 + 1

2

F 0 · F 0 + 1

2

(tr d
+

G)0 + 1

4

tr (G0 d
+

G) + 2⇤/⌫ , (3.23)

0 = tr [d
+

(d
+

G)�A0 (d
+

G)� 1

2

(d
+

G)2] + 2 er · E + 1

2

tr (⌦2) . (3.24)

The dot products appearing here and in subsequent expressions are defined using the spatial
metric G

ij

. The spatial tensors G0 and F 0 are defined as the radial derivatives of covariant
components, (G0)

ij

⌘ (G
ij

)0 and (F 0)
i

⌘ (F
i

)0. Likewise for G00, d
+

G, d
+

F , etc. Hence,
G0 i

j

= GikG0
kj

and F 0 i = GijF 0
j

. Therefore tr (G0) ⌘ G0 i
i

= GijG0
ji

and F · F = F iF
i

=
F

i

GijF
j

. In equation (3.24), the last term involves the square of the two-form

⌦
ij

⌘ F
j|i � F

i|j = F
j,i

� F
i,j

+ F
i

F 0
j

� F
j

F 0
i

, (3.25)

which is the spatial (or “magnetic”) part of the field strength associated with the radial shift
symmetry. The penultimate term involves the corresponding time-space (or “electric”) part
of the radial shift field strength,

E
i

⌘ d
+

F
i

� d
i

A = F
i,t

�A
,i

+ A F 0
i

� F
i

A0 . (3.26)

17Explicitly, eRi
jkl ⌘ dk

e�i
jl � dl

e�i
jk + e�i

mk
e�m

jl � e�i
ml
e�m

jk. The modified spatial Ricci tensor and scalar

are given by the usual contractions, eRjk ⌘ eRi
jik and eR ⌘ eRk

k. The modified Riemann tensor is antisymmetric

in the last two indices, as usual, but need not be antisymmetric in the first two indices, or symmetric under

(ij)$ (kl) pair exchange. Instead, eRijkl = bRijkl+� eR(ij)kl where bRijkl obeys the usual symmetries [odd under

i $ j or k $ l, even under (ij)$ (kl)], while � eRijkl = 1
2G0

ij ⌦kl + 1
4

ˆ
G0

ik ⌦jl �G0
il ⌦jk + G0

jl ⌦ik �G0
jk ⌦il

˜
.

The two-form ⌦, defined in eq. (3.25), is the “magnetic” field strength associated with the radial shift

symmetry. The extra piece � eRijkl of the modified spatial Riemann tensor leads to a corresponding term

� eRij = 1
4 [G0 · ⌦� ⌦ · G0 + ⌦ (tr G0)] in the modified spatial Ricci tensor which is antisymmetric.

18We use a mixture of index-free notation (for simple factors like tr G0, F · F , or er · F 0), together with

indices on more involved expressions; this makes the results most concise. Factors of the inverse spatial metric

G�1 = kGijk are implicitly present in raised spatial indices. Be aware that raising of indices does not commute

with radial or temporal di↵erentiation.
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The two vector equations are:

0 = G
ik

⇥

G1/2 F 0 k⇤0 G�1/2 �G0 k
i|k + (trG0)|i , (3.27)

0 = d
+

F 0
i

+ (d
+

G)k

i|k � (tr d
+

G)|i + 1

2

(tr d
+

G)F 0
i

� 2A0
|i �G0

i

kE
k

+ ⌦k

i|k + F 0
k

⌦k

i

, (3.28)

with G1/2 ⌘ (detG)1/2. And the symmetric tensor equation is:

0 =
n

G
ik

⇥

G1/4(d
+

G)k

j

⇤0
G�1/4 + 1

4

G0
ij

tr (d
+

G)� eR
ij

+ 2

⌫

⇤ G
ij

+ F 0
i|j + 1

2

F 0
i

F 0
j

o

+ (i$ j) ,

(3.29)

with eR
ij

the modified spatial Ricci tensor. The trace of this equation separates from the
traceless part, and reads

0 =
⇥

G1/2 tr (d
+

G)
⇤0

G�1/2 � eR + 2⇤ + er · F 0 + 1

2

F 0 · F 0 , (3.30)

with eR the modified spatial Ricci scalar. Every term appearing in eqs. (3.22)–(3.24) and
(3.27)–(3.30) is invariant under the radial shift symmetry.

3.5 Propagating fields, auxiliary fields, and constraints

To elucidate the structure of equations (3.22)–(3.30) it is helpful to write them in a more
schematic form after extracting an overall scale factor ⌃ from the spatial metric G

ij

. Let

G
ij

(X) = ⌃(X)2 ĝ
ij

(X) , (3.31)

with the rescaled metric ĝ ⌘ kĝ
ij

k defined to have unit determinant,19

det ĝ(X) = 1 . (3.32)

Equations (3.22), (3.27), and (3.23) are linear second order radial ordinary di↵erential equa-
tions (ODEs) for ⌃, F , and A, respectively, having the forms20

�

@2

r

+ Q
⌃

[ĝ]
�

⌃ = 0 , (3.33)
⇣

�j

i

@2

r

+ P
F

[ĝ,⌃]j
i

@
r

+ Q
F

[ĝ,⌃]j
i

⌘

F
j

= S
F

[ĝ,⌃]
i

, (3.34)

@2

r

A = S
A

[ĝ,⌃, F, d
+

⌃, d
+

ĝ] . (3.35)

19The spatial scale factor ⌃ must be non-zero throughout the computational domain, as any zero in ⌃ implies

a coordinate singularity at which the metric degenerates. The determinant of the spatial metric (3.31) coincides

(up to a sign) with the determinant of the complete bulk metric (3.14), det kGijk = � det kgMNk = ⌃2⌫ .
20To convert eq. (3.22) to the form (3.33), note that det ĝ = 1 implies that tr (ĝ0) = 0 and tr (ĝ00) = tr (ĝ0 2).

Hence, tr (G0) = 2⌫ ⌃0/⌃, while tr (G00) = 2⌫
ˆ
⌃00/⌃ + (⌃0/⌃)2

˜
+ tr (ĝ0 2) and tr (G0 2) = 4⌫ (⌃0/⌃)2 + tr (ĝ0 2).

The conversion of eq. (3.24) to the form (3.39) below uses the analogous relations tr (d+G) = 2⌫ (d+⌃)/⌃,

tr (d+(d+G)) = 2⌫
ˆ
(d+(d+⌃))/⌃ + (d+⌃)2/⌃2

˜
+ tr ((d+ĝ)2), and tr ((d+G)2) = 4⌫ (d+⌃)2/⌃2 + tr ((d+ĝ)2).
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for all x. This choice makes the computational domain a simple rectangular region. If the

surface r = r̄
h

is an apparent horizon, then an outgoing null geodesic congruence, normal

to the surface (when restricted to a t = const. slice) will have vanishing expansion [40, 41].

An exercise shows that this translates, in our metric ansatz, to a condition on d
+

⌃ at the

apparent horizon,21

d
+

⌃|
r̄h

= S
˙

⌃h
[ĝ, ⌃, F ] , (3.39) {eq:Sigdothor}

with

S
˙

⌃h
[ĝ, ⌃, F ] ⌘ 1

2⌫

⇥

2r · F � 1

2

tr (G0) F · F
⇤

. (3.40)

and all fields evaluated at radial position r̄
h

.

We want condition (3.39) to hold at all times. It is convenient to regard this as the

combination of a constraint on initial data at time t = t
0

(which is implemented by finding the

radial shift (3.34) needed to satisfy condition (3.39) at time t
0

), together with the condition

that the horizon position be time-independent, @r
h

/@t = 0, which requires that the time

derivative of condition (3.39) hold at all times,

@
t

d
+

⌃|
r̄h

= @
t

S
˙

⌃h
[ĝ, ⌃, F ] . (3.41) {eq:drh/dt}

Evaluating this horizon stationarity condition [and using eqs. (3.29), (3.30), and (3.32) to

simplify] leads to a second order linear elliptic di↵erential equation for A on the horizon.

Explicitly, one finds

0 = r2A + rA · (F 0 � G0F ) + 1

2

A
h

�R + 2⇤ + 1

2

(F 0 � G0F ) · (F 0 � G0F ) + r · (F 0 � G0F )
i

+ F · F
h

�1

2

tr [(d
+

G)0] + (r · F )0 + F
i;j

G0 ji � 1

4

(F · F )0tr G0
i

� 1

2

tr [(d
+

G)2] + 2(d
+

G)jiF
i;j

+ 2F · r2F + (F 0 � G0F ) · r(F · F )

� 1

2

(F
i;j

� F
j;i

)(F j;i � F i;j)
�

�

�

r=rh

, (3.42) {eq:apphoreq}

with R the spatial Ricci scalar.

3.7 Integration strategy {sec:strategy}
The set of equations (3.26)–(3.32) have a remarkably convenient nested structure, which

permits a simple and e�cient integration strategy.

21Ref. [42] has a particularly nice treatment of null congruences. One may define the congruence as k↵(x) =

µ(x)�(x),↵ where, within the time-slice of interest, the surface �(x) = C, for some value of the constant

C, will define the apparent horizon. Requiring that k be null fixes the time derivative @t� in terms of

spatial derivatives of �. Requiring that the congruence satisfy the (a�nely parameterized) geodesic equation

k

↵
k�;↵ = 0 determines the time derivative of the multiplier function µ in terms of its spatial derivatives. Given

these time derivatives, one may then compute the expansion via ✓ = r · k. Demanding that the result vanish

on the surface � = C gives the condition that this surface be an apparent horizon. Eq. (3.39) is the result

of specializing this condition to the case � = r, so that the surface under consideration lies at a fixed radial

position.
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r

x

r

x

Figure 1. Focusing of null infalling radial geodesics and consequent formation of caustics. Only
the radial direction and one spatial direction are shown. The grey shaded “blob” represents some
perturbation in the geometry causing focusing of infalling geodesics. The shaded area at the bottom
of each figure represents events behind the apparent horizon. Left panel: caustic formation outside
the apparent horizon. Right panel: caustic hidden behind apparent horizon. {fig:caustics}

ameliorated by increasing the IR cuto↵, or in other words, choosing initial data which leads

to larger values of the apparent horizon radius.

The bottom line is that excising the geometry inside the horizon is not only allowable,

it is also necessary to avoid numerical problems. The location of the apparent horizon may

be tuned by suitably adjusting what, in the dual field theory, is a small background energy

density.

This is an appropriate point at which to discuss the limits of applicability of our methods.

We require that the metric ansatz (3.14) provide good coordinates throughout the region of

spacetime between the boundary and an apparent horizon at some radial position r = r
h

(t,x).

This could potentially fail if: (a) some coordinate singularity develops in the spacetime region

outside the apparent horizon, or (b) an apparent horizon of the assumed form does not exist.

Since our choice of coordinates is directly tied to the congruence of infalling radial null

geodesics, possibility (a) would mean some event is not uniquely identified by our coordinates

(x, r), which label a particular infalling radial geodesic (originating at point x on the bound-

ary), together with an a�ne position r along this geodesic. This is precisely what happens

when there is focusing of the geodesic congruence, leading to intersections between di↵ering

geodesics. The boundary of the region where such intersections occur defines a caustic. As

illustrated schematically in fig. 1, a localized perturbation will typically lead to focusing of

geodesics and the consequent formation of caustics. Our method assumes that any such caus-

tics lie outside the computational domain; in other words, they must be hidden behind the

apparent horizon.

– 9 –

result (3.6) for the stress-energy tensor using our renamed metric functions, we have23

h eT 00i = �2D�1

D

a(D) , h eT 0ii = f (D)

i

, h eT iji = ĝ(D)

ij

� 2

D

a(D) �
ij

. (3.42)

One must solve Einstein’s equations throughout the bulk to determine the coe�cients a(D),

f (D)

i

, and ĝ(D)

ij

; our procedure for doing so will be discussed in the next subsection. But �(x)

is determined by fiat — one must simply adopt some scheme for fixing �.

One seemingly natural approach is to demand that � vanish identically. That is, one could

require that ⌃(x, r)�r vanish, for all x, as r ! 1. However, this turns out to be a bad choice

as it leads to apparent horizons whose radial positions vary rapidly with x. Such variation

causes greater di�culty with numerical loss of precision due to cancellations between terms

which grow large deep in the bulk. And it can lead to situations where the radial coordinate

r decreases to zero and turns negative before the apparent (or Poincaré) horizon is reached —

which is a nuisance since it makes the inverted radial coordinate u ⌘ 1/r, which is otherwise

convenient for numerical work, singular within the computational domain of interest.

A much preferable choice is to use the residual reparameterization freedom to put the

apparent horizon at a fixed radial position,

r
h

(x) = r̄
h

(3.43)
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⌃ at the apparent horizon.24 One finds:

d
+

⌃|
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S
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[ĝ, ⌃, F ] ⌘ �1

2

⌃0 F 2 � 1

⌫

⌃ r · F . (3.45)

and all fields evaluated at radial position r̄
h

.25

We want condition (3.44) to hold at all times. It is convenient to regard this as the

combination of a constraint on initial data (which is implemented by finding the radial shift

23Because ĝ has unit determinant, the sub-leading coe�cient ĝ
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ij is automatically traceless (as well as
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equation structure

12

nested linear radial ODEs!

(1)

(2)

(3)

(4)

(5)

(★)

horizon stationarity condition:

linear elliptic PDE

The trace of this equation separates from the traceless part, and reads17
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/
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2
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3.5 Propagating fields, auxiliary fields, and constraints {sec:structure}
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by
writing

G
ij

(X) = ⌃(X)2 ĝ
ij

(X) , (3.24) {eq:Ghat}
with the rescaled metric ĝ ⌘ kĝ

ij

k having unit determinant,

det ĝ(X) = 1 . (3.25) {eq:unitdet}

Equations (3.16), (3.20), and (3.17) are linear second order radial ordinary di↵erential
equations (ODEs) for ⌃, F , and A, respectively, having the forms18
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[ĝ,⌃]j
i

⌘

d
+

F
j

= S
˙

F
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The final scalar equation (3.18) directly expresses the (modified) second time derivative of ⌃
in terms of the fields ĝ, ⌃, F , and A, plus the first d
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derivatives of ⌃ and ĝ,
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17Note that (r · F )0 = r · (F 0�G

0
F ) + 1

2F ·r(tr G

0).
18To convert eq. (3.16) to the form (3.26), note that traces of first derivatives of the spatial metric only
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⌃00

/⌃ + (⌃0
/⌃)2

˜
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˜
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+ tr (ĝ00) and tr (G0 2) =

4⌫ (⌃0
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det ĝ(X) = 1 . (3.25) {eq:unitdet}

Equations (3.16), (3.20), and (3.17) are linear second order radial ordinary di↵erential
equations (ODEs) for ⌃, F , and A, respectively, having the forms18

�

@2

r

+ Q
⌃

[ĝ]
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[ĝ,⌃, F, ⌃̇]
ij

, (3.30) {eq:gdoteqn}
⇣

�j

i

@
r

+ Q
˙

F
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⇣
r2 + PAh [ĝ,⌃, F ] ·r+QAh [ĝ,⌃, F ]

⌘
Ah = SAh [ ˙̂g, ĝ, ⌃̇,⌃, F ]
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radial integration constants

• near-boundary behavior:

13

⌃ ⇠ 1 r + �+O(r1�2D)

d+⌃ ⇠ 1
2 (r+�)2 + 1

2a
(D) r2�D + · · ·

d+ĝ ⇠ 0 r2�D +O(r1�D)

A ⇠ r2 + 2� r + (�2 � 2 @t�) +O(r2�D)

Fi ⇠ 0 r2 + @i�+ f (D)
i r2�D + · · ·

A ! Ah

• near-horizon behavior:

boundary momentum density

boundary energy density

radial shift
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integration strategy
•           : given                              

• integrate radial ODE (1) (for each x) ➡ 

• integrate (2) ➡ F

• integrate (3) ➡ 

• integrate (4) ➡ 

• solve horizon eqn. (★) ➡ Ahorizon

• integrate (5) ➡ A

• extract          from A

• extract                             from stress-energy conservation:

• do time step, 

14

➡ 

⌃(t0,x, r)

d+(⌃)

t ! t0 + ✏

t = t0 ĝij(t0,x, r), �(t0,x), a
(D)(t0,x), f

(D)
i (t0,x)

d+(ĝ)

@t ĝ

@t �

@t a
(D), @t f

(D)

the radial position of the apparent horizon, which forms the IR boundary of the computational

domain. As described above, the horizon position invariance condition, dr
h

/dt = 0, reduces to

the second order linear elliptic di↵erential equation (3.42) for A on the horizon. The functions

(evaluated at a given time t
0

and radius r̄
h

) appearing in the coe�cients and source term of

this linear elliptic PDE have all been determined in earlier steps of the integration procedure.

Solving the linear PDE (3.42) (with appropriate boundary conditions in the spatial directions)

will determine the IR boundary value A(t
0

,x, r̄
h

). This provides one of the two integration

constants needed to integrate eq. (3.28) and determine A everywhere on the t = t
0

time slice;

the second integration constant is fixed by the asymptotic behavior A ⇠ r2 + 2�r + O(1) as

r ! 1, showing that 2� is the coe�cient of the term linear in r.

After the determination of A in this manner, using the horizon-invariance condition, one

may extract the time derivative of � from the subleading asymptotic behavior (3.36a) of A.

The needed term may be isolated most conveniently by combining A with d
+

⌃, as

@
t

� = lim
r!1

�

d
+

⌃ � 1

2

A
�

, (3.43) {eq:lambdaevo}

with corrections to the limit vanishing as O(r2�2D). The determination of A also allows one

to extract t-derivatives from d
+

derivatives so that, on the t = t
0

time slice, one can now

evaluate

@
t

ĝ
ij

= d
+

ĝ
ij

� 1

2

A @
r

ĝ
ij

. (3.44) {eq:timeevo}

To recap, having started at time t = t
0

with ĝ
ij

, �, f (D)

i

, and a(D), the above procedure

allows one to evaluate the time derivatives of ĝ
ij

and �. Using a suitable integration method

(such as fourth-order Runge-Kutta), these time derivatives, along with time derivatives from

previous time slices, are the information needed to determine ĝ
ij

and � on the next time

slice at t = t
0

+ ✏, up to an error vanishing as a power of the time-step ✏ (e.g., ✏5 for fourth-

order Runge-Kutta). Appropriate choices for time integration methods are discussed below

in subsection 3.12.

However, before one can repeat the entire procedure above on the t
0

+ ✏ time slice, one

must also evaluate the time derivatives of asymptotic coe�cients f (D)

i

and a(D), as these

are needed to determine the values of these coe�cients on the subsequent time slice. The

time derivative of f (D)

i

could be obtained by integrating the linear radial ODE (3.31) to find

d
+

F , converting the d
+

derivative to a t derivative, and then extracting @
t

f (D)

i

from the first

subleading term in the large r asymptotic behavior of @
t

F . Likewise, @
t

a(D) could be obtained

by integrating the final radial ODE (3.32) to find @
t

d
+

⌃, and then extracting @
t

a(D) from

its subleading asymptotic behavior. However, there is a simpler, far more e�cient approach:

direct use of boundary stress-energy conservation (2.5). As indicated in eq. (3.37), up to a

common overall factor, D�1

D

a(D) is the energy density (and the trace of the spatial stress

tensor), f (D)

i

are the components of the momentum density, and ĝ(D)

ij

is the traceless part of

the spatial stress tensor. Hence, the needed time derivatives of f (D)

i

and a(D) are given by

@
t

a(D) = � D

D�1

@
i

f (D)

i

, @
t

f (D)

i

= � 1

D

@
i

a(D) � @
j

ĝ(D)

ji

, (3.45) {eq:bndevo}
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details, details

• field redefinitions: remove leading pieces, rescale

• spatial compactification = addl. IR cutoff

• discretization = UV cutoff, pseudo-spectral derivatives

• choice of time integrator

• low-pass filtering to alleviate aliasing, spectral blocking

• domain decomposition

15
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field redefinitions

• map radial direction to compact domain: u = 1/r

• remove singular u → 0 terms

• rescale to make boundary asymptotics O(u0) or O(u1):

16

3.10 Field redefinitions {sec:fieldredef}
For numerical work, it is helpful to make a change of variable which maps the unbounded

radial coordinate r to a finite interval. We just invert, and define [[L DEPENDENCE???]]

u ⌘ 1/r . (3.47)

In all the radial ODEs (3.26)–(3.30), the endpoint u = 0 (or r = 1) is a regular singular

point. As shown in Eq. (3.36), the metric functions A and ⌃, as well as the time derivative

d
+

⌃, diverge as u ! 0. For numerical purposes, it is helpful to define subtracted functions in

which the (known) leading pieces which diverge as u ! 0 are removed. We have also found

it helpful to rescale our subtracted functions by appropriate powers of u so that the resulting

functions vanish linearly, or approach a constant, as u ! 0. This helps avoid loss of precision

due to large cancellations between di↵erent terms near u = 0. Altogether, this has lead us to

use the following redefined fields in numerical work:24 {eq:redefs}

�(x, u) ⌘ ⌃(x, 1/u) � 1/u , �
ij

(x, u) ⌘ u1�D [ĝ
ij

(x, 1/u) � �
ij

] , (3.48a) {eq:ghatredef}
a(x, u) ⌘ A(x, 1/u) � ⌃(x, 1/u)2 , �̇

ij

(x, u) ⌘ u2�D [d
+

ĝ
ij

(x, 1/u)] , (3.48b)

f
i

(x, u) ⌘ F
i

(x, 1/u) , �̇(x, u) ⌘ u3�D

⇥

d
+

⌃(x, 1/u) � 1

2

⌃(x, 1/u)2
⇤

. (3.48c)

Writing ⌃2, and not just (u�1+�)2, in the subtraction terms for A and d
+

⌃ is an arbitrary

choice which makes no practical di↵erence as ⌃ coincides with u�1+� up to O(u2D�1) terms

which are negligible near the boundary. The resulting boundary conditions for these redefined

fields are:

�(x, u) ! �(x) , �
ij

(x, u) ⇠ u ĝ(D)

ij

(x) , a(x, u) remains regular , (3.49a)

�̇(x, u) ⇠ 1

2

u a(D)(x) , �̇
ij

(x, u) ! 0 , f
i

(x, u) ⇠ @
i

� + uD�2f (D)

i

(x) , (3.49b)

as u ! 0.

3.11 Discretization {sec:discretization}
To integrate the radial ODEs (3.26)–(3.30), and the horizon equation (3.42), one must dis-

cretize the radial and spatial coordinates, represent functions as finite arrays of function

values on some specified set of points, and replace derivatives with suitable finite di↵erence

approximations.

Complications arise from the fact that u = 0 is a singular point in all the radial ODEs.

Typical numerical ODE integrators (involving short-range finite di↵erence approximations)

do not tolerate such a singular point at the endpoint of the computational interval. One must

introduce some finite separation scale u
min

, use truncated (analytically derived) asymptotic

24If one introduces an explicit parameterization for ĝij which solves the unit determinant constraint, as we

do below in the examples discussed in section 4, then redefinition (3.48a) is replaced by a simple rescaling of

the individual functions parameterizing ĝij .
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UV cutoff: discretization

• use (pseudo)spectral methods: represent functions using 

finite Fourier (x) & Chebyshev (r) basis expansion

• trade series coefficients for function values on collocation grid:

• linear radial ODEs ➡ linear matrix equation with dense 
coefficient matrix

• better accuracy, much faster convergence than traditional finite 
range finite difference approximations of derivatives

• no need to excise u = 0 endpoint

17

expansions to approximate functions in the near-boundary region 0 < u < u
min

, and only use

numerical integration for u > u
min

. To achieve accurate results one must carefully select u
min

,

and the order of the asymptotic expansion, so that the (in)accuracy of the truncated asymp-

totic expansion is comparable to that of the numerical integration. As one uses progressively

finer discretizations (together with suitably matched improvements in the treatment of the

asymptotic region), the gain in accuracy scales, at best, as a power of the radial discretization,

error ⇠ (�u)k, with the exponent k depending on the range of the chosen finite di↵erence

approximation.

For many di↵erential equations, substantially improved numerical accuracy can be ob-

tained by using spectral methods.25 This approach entails the use of very long-range ap-

proximations to derivatives. In essence, one represents functions as linear combinations of a

(truncated) set of basis functions, and then exactly evaluates derivatives of these functions.

For functions periodic on an interval of length L, the natural basis functions are complex

exponentials, eiknx with k
n

⌘ 2⇡n/L (or the equivalent sines and cosines), and the expansion

is just a truncated Fourier series,

f(x) =
M

X

n=�M

↵
n

eiknx . (3.50) {eq:spectral1}

For aperiodic functions on an interval, convenient basis functions are Chebyshev polynomials,

T
n

(z) ⌘ cos(n cos�1 z). For functions on the interval 0 < u < 1, the appropriate expansion

reads

g(u) =
M

X

n=0

↵
n

T
n

(2u � 1) . (3.51) {eq:spectral2}

This is nothing but a Fourier cosine series in the variable ✓ ⌘ cos�1(2u�1).

In so-called pseudospectral or collocation approaches, one determines the expansion coe�-

cients {↵
n

} by inserting the truncated expansion (3.50) or (3.51) into the di↵erential equation

of interest and demanding that the residual exactly vanish at a selected set of points whose

number matches the number of expansion coe�cients. For the Fourier series (3.50), these

grid points should be equally spaced around the interval,

x
m

= L

✓

m

2M+1

◆

+ const., (3.52) {eq:chebgrid}

for m = �M, · · ·, M . Knowledge of the expansion coe�cients {↵
n

} is completely equivalent

to knowledge of the function values {f
m

} on the collocation grid points,

f
m

⌘ f(x
m

) . (3.53)

For the Chebyshev case (3.51), appropriate grid points are given by the extrema and endpoints

of the M ’th Chebyshev basis function.26 With the [0, 1] interval used in expansion (3.51),

25For a good introduction to spectral methods, see ref. [43].
26The Chebyshev grid points (3.54) are simply the image, under the mapping u = 1

2 (1 + cos ✓), of equally

spaced points in ✓ which would be appropriate for a Fourier cosine expansion. This choice of grid points, which

include the interval endpoints, is most convenient when dealing with the imposition of boundary conditions.
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these are

u
m

= 1

2

⇣

1 � cos
m⇡

M

⌘

, (3.54) {eq:chebygrid}

for m = 0, · · ·, M . Again, knowledge of the expansion coe�cients {↵
n

} is completely equiv-

alent to knowledge of the function values {g
m

⌘ g(u
m

)} on the collocation grid points. In

practice, one uses these function values, plus interpolation formula, which together exactly

reproduce the truncated basis expansions (3.50) or (3.51).

For linear di↵erential equations, spectral methods convert the di↵erential equation into

a straightforward linear algebra problem (albeit one with a dense coe�cient matrix, not a

banded or sparse matrix as is the case when using short-range finite di↵erence approxima-

tions). One key advantage of spectral methods is improved convergence. For su�ciently

well-behaved functions, accuracy improves exponentially as the number of basis functions is

increased. A second advantage is that one can directly apply spectral methods to di↵er-

ential equations with regular singular points, as long as the specific solution of interest is

well-behaved at the singular point. See ref. [43] for further detail.

We have found the use of (pseudo)spectral methods to be quite advantageous. We use

the Fourier series form (3.50) to represent functional dependence on periodic spatial coor-

dinates, and the Chebyshev form (3.51) to represent functional dependence in the radial

direction (using the inverted radial variable u).27 [[Say something here about typical number

of points/dimension?]]

3.12 Time integrator {sec:timeint}
As outlined above in Section 3.7, in our evolution scheme we choose to evolve the minimal

set of fields � ⌘ {ĝ
ij

, a(D), f (D)

i

, �}. Discretizing the geometry with N
i

grid points in the xi

spatial direction and N
u

points in the radial direction, the fields in � constitute a total of

[1
2

(⌫�1) N
u

+ 1](⌫+2)
Q

⌫

i=1

N
i

independent degrees of freedom. The time evolution portion

of the spatially discretized Einstein equations then take the schematic form

d�

dt
= F [�] . (3.55) {eq:odes}

In other words, after discretizing the spatial and radial directions, Einstein’s equations reduce

to a large system of simple, first-order ODEs describing the time-evolution of �. Evaluating

F [�] is tantamount to first solving the nested system of radial equations (3.26)–(3.30) to find

27Convergence of the spectral approximation (3.51) with increasing order M is naturally related to analytic

properties of the functions under consideration. For problems involving a flat boundary geometry, all metric

functions have expansions about u = 0 in integer powers of u. After applying the field redefinitions discussed

above, expansions of our unknown functions only involve non-negative powers of u. As noted in footnote 7,

for problems involving a non-flat boundary geometry, and an even dimension D, the near-boundary expansion

necessarily includes logarithmic terms. One can still usefully apply spectral methods in this case, provided

one subtracts these log terms (to reasonably high order) in the field redefinitions. Convergence of the spectral

expansion will be degraded and non-exponential, but the performance of spectral methods can still be superior

to traditional short range discretization methods.

– 23 –

Tuesday, May 20, 14



performance

✓ stable evolution

✓ accurate results

✓ fast computation

18

0 5 10 15 20 25 30
−80

−60

−40

−20

0

20

40

60

80

 

 

data
quasinormal mode

t

e|R
e�

1
|t
�p

/p
eq

Wednesday, September 4, 13

Figure 4. A plot of e|Re �1|t�p/peq as well as the lowest quasinormal mode (also multiplied by a factor
of e|Re�1|t). The fit to the lowest quasinormal mode agrees with the numerics at the 1 part in 104 level
or better after time t = 10.

At su�ciently late times, the damped oscillations of the pressure anisotropy reflect the

discrete spectrum of complex quasinormal mode frequencies characterizing infinitesimal de-

partures from equilibrium [13, 14], specifically those of ` = 2 metric perturbations whose

linearized dynamics around the AdS-Schwarzschild black brane solution coincides with fluc-

tuations of a minimally coupled scalar field. The late time asymptotic response has the form

�p(t) ⇠ Re
X

n

c
n

e��nt , (4.8)

where the first few quasinormal mode frequencies, at zero wavevector, are given by [13]:

�
1

⇡T
= 2.746676 + 3.119452 i ,

�
2

⇡T
= 4.763570 + 5.169521 i ,

�
3

⇡T
= 6.769565 + 7.187931 i .

(4.9)

As a check on the accuracy of the numerics, in fig. 4 we plot e|Re�1|t �p/p
eq

, as well as a fit

to the lowest quasinormal mode. As is evident from the figure, the rescaled amplitude of

e|Re�1|t �p/p
eq

is constant at late times. Indeed, our fit to the lowest quasinormal mode agrees

with the numerics at the level of a part in 104, or better, after time t = 10.

In terms of physics, perhaps the most significant result one sees from fig. 3 (and from

the results of ref. [24]) is that the characteristic relaxation time is comparable or shorter than

1/T , even when the system is initially quite far from equilibrium with �p/p
eq

of O(10). The

gravitational infall time in the AdS-Schwarzschild geometry is also order 1/T . This naturally

suggests that, even far from equilibrium, one should regard the gravitational infall time as

characterizing the relaxation time of non-hydrodynamic degrees of freedom.
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colliding planar null shocks

• energy density localized on infinite planar sheets

• caricature of large, Lorentz-contracted nuclei

• questions:

• domain of validity of hydrodynamic approximation?

• dependence on longitudinal profile?

• surviving remnants?

• approximate boost invariance?

19
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• 2D translation invariance

➡  

➡ 2+1D PDEs

• Initial conditions: superposition of counter-propagating planar shocks

• Single shock, arbitrary longitudinal profile: known solution:

• Choose Gaussian profile with width w, surface energy density µ3:

• Results depend on dimensionless width parameter wµ

colliding shocks

20

2

Note that h⇤ is a directional derivative along infalling ra-
dial null geodesics, d+h is a derivative along outgoing
radial null geodesics, and d3h is a derivative in the lon-
gitudinal direction orthogonal to both radial geodesics.

Near the boundary, Einstein’s equations may be solved
with a power series in r. Solutions with flat Minkowski
boundary geometry have the form

A = r2
�
1 +

2⇥

r
+

⇥2�2⌥v⇥

r2
+

a4

r4
+ O(r�5)

⇥
, (4a)

F = ⌥z⇥ +
f2

r2
+ O(r�3) . (4b)

B =
b4

r4
+ O(r�5) , (4c)

� = r + ⇥ + O(r�7) , (4d)

The coe⇧cient ⇥ is a gauge dependent parameter which
encodes the residual di⇥eomorphism invariance of the
metric. The coe⇧cients a4, b4 and f2 are sensitive to
the entire bulk geometry, but must satisfy

⌥va4 = � 4
3 ⌥zf2 , ⌥vf2 = �⌥z( 1

4a4 + 2b4) . (5)

These coe⇧cients contain the information which, under
the holographic mapping of gauge/gravity duality, de-
termines the field theory stress-energy tensor Tµ⇥ [13].
Defining E ⌅ 2⇤2

N2
c

T 00, P⌅ ⌅ 2⇤2

N2
c

T⌅⌅, S ⌅ 2⇤2

N2
c

T 0z, and

P⇧ ⌅ 2⇤2

N2
c

T zz, one finds

E = � 3
4a4 , P⌅ = � 1

4a4 + b4 , (6a)

S = �f2 , P⇧ = � 1
4a4 � 2b4 . (6b)

Eqs. (5) and (6) imply ⌥µTµ⇥ = 0 and Tµ
µ = 0.

Numerics overview.— Our equations (2) have a natu-
ral nested linear structure which is extremely helpful in
solving for the fields and their time derivatives on each
v = const. null slice. Given B, Eq. (2a) may be inte-
grated in r to find �. With B and � known, Eq. (2b)
may be integrated to find F . With B, � and F known,
Eq. (2d) may be integrated to find d+�. With B, �, F
and d+� known, Eq. (2e) may be integrated to find d+B.
Last, with B, �, F , d+� and d+B known, Eq. (2c) may
be integrated to find A. At this point, one can compute
the field velocity ⌥vB = d+B � 1

2AB⇤, evolve B forward
in time to the next time step, and repeat the process.

In this scheme, each nested equation is a linear ODE
for the field being determined, and may be integrated in
r at fixed v and z. The requisite radial boundary condi-
tions follow from the asymptotic expansions (4). Con-
sequently, the initial data required to solve Einstein’s
equations consist of the function B plus the expansion
coe⇧cients a4 and f2 — all specified at some constant v
— and the gauge parameter ⇥ specified at all times. Val-
ues of a4 and f2 on future time slices, needed as boundary
conditions for the radial equations, are determined by in-
tegrating the continuity relations (5) forward in time.

Eqs. (2f) and (2g) are only needed when deriving
the series expansions (4) and the continuity conditions
(5). In this scheme, they are e⇥ectively implemented as
boundary conditions. Indeed, the Bianchi identities im-
ply that Eqs. (2f) and (2g) are boundary constraints; if
they hold at one value of r then the other Einstein equa-
tions guarantee that they hold at all values of r.

An important practical matter is fixing the computa-
tional domain in r. If an event horizon exists, then one
may excise the geometry inside the horizon, as this re-
gion is causally disconnected from the outside geometry.
Moreover, one must excise the geometry to avoid singu-
larities behind the horizon [14]. To perform the excision,
we identify the location of an apparent horizon (an outer-
most marginally trapped surface) which, if it exists, must
lie inside an event horizon [15]. For the initial conditions
discussed in the next section, the apparent horizon al-
ways exists — even before the collision — and has the
topology of a plane. Hence, one may fix the residual dif-
feomorphism invariance by requiring the apparent hori-
zon position to lie at a fixed radial position, r = 1. The
defining conditions for the apparent horizon then imply
that fields at r = 1 must satisfy

0 = 3�2 d+�� ⌥z(F � e2B) + 3
2F 2 �⇤e2B , (7)

which is implemented as a boundary condition to deter-
mine ⇥ and its evolution. Horizon excision is performed
by restricting the computational domain to r ⌃ [1,⇧].

Another issue is the presence of a singular point at
r =⇧ in the equations (2). To handle this, we discretize
Einstein’s equations using pseudospectral methods [16].
We represent the radial dependence of all functions as a
series in Chebyshev polynomials and the z-dependence
as a Fourier series, so the z-direction is periodically com-
pactified. With these basis functions, the computational
domain may extend all the way to r =⇧, where bound-
ary conditions can be directly imposed.

Initial data.— We want our initial data to describe two
well-separated planar shocks, with finite thickness and
energy density, moving toward each other. In Fe⇥erman-
Graham coordinates, an analytic solution describing a
single planar shock moving in the ⇤z direction may be
easily found and reads [11],

ds2 = r2[�dx+dx� + dx

2
⌅] +

1
r2

[dr2 + h(x±) dx2
±] , (8)

with x± ⌅ t ± z, and h an arbitrary function which we
choose to be a Gaussian with width w and amplitude µ3,

h(x±) ⌅ µ3 (2⇤w2)�1/2 e�
1
2 x2
±/w2

. (9)

The energy per unit area of the shock is µ3(N2
c /2⇤2). If

the shock profile h has compact support, then a super-
position of right and left moving shocks solves Einstein’s
equations at early times when the incoming shocks have

2

Note that h⇤ is a directional derivative along infalling ra-
dial null geodesics, d+h is a derivative along outgoing
radial null geodesics, and d3h is a derivative in the lon-
gitudinal direction orthogonal to both radial geodesics.

Near the boundary, Einstein’s equations may be solved
with a power series in r. Solutions with flat Minkowski
boundary geometry have the form

A = r2
�
1 +

2⇥

r
+

⇥2�2⌥v⇥

r2
+

a4

r4
+ O(r�5)

⇥
, (4a)

F = ⌥z⇥ +
f2

r2
+ O(r�3) . (4b)

B =
b4

r4
+ O(r�5) , (4c)

� = r + ⇥ + O(r�7) , (4d)

The coe⇧cient ⇥ is a gauge dependent parameter which
encodes the residual di⇥eomorphism invariance of the
metric. The coe⇧cients a4, b4 and f2 are sensitive to
the entire bulk geometry, but must satisfy

⌥va4 = � 4
3 ⌥zf2 , ⌥vf2 = �⌥z( 1

4a4 + 2b4) . (5)

These coe⇧cients contain the information which, under
the holographic mapping of gauge/gravity duality, de-
termines the field theory stress-energy tensor Tµ⇥ [13].
Defining E ⌅ 2⇤2

N2
c

T 00, P⌅ ⌅ 2⇤2

N2
c

T⌅⌅, S ⌅ 2⇤2

N2
c

T 0z, and

P⇧ ⌅ 2⇤2

N2
c

T zz, one finds

E = � 3
4a4 , P⌅ = � 1

4a4 + b4 , (6a)

S = �f2 , P⇧ = � 1
4a4 � 2b4 . (6b)

Eqs. (5) and (6) imply ⌥µTµ⇥ = 0 and Tµ
µ = 0.

Numerics overview.— Our equations (2) have a natu-
ral nested linear structure which is extremely helpful in
solving for the fields and their time derivatives on each
v = const. null slice. Given B, Eq. (2a) may be inte-
grated in r to find �. With B and � known, Eq. (2b)
may be integrated to find F . With B, � and F known,
Eq. (2d) may be integrated to find d+�. With B, �, F
and d+� known, Eq. (2e) may be integrated to find d+B.
Last, with B, �, F , d+� and d+B known, Eq. (2c) may
be integrated to find A. At this point, one can compute
the field velocity ⌥vB = d+B � 1

2AB⇤, evolve B forward
in time to the next time step, and repeat the process.

In this scheme, each nested equation is a linear ODE
for the field being determined, and may be integrated in
r at fixed v and z. The requisite radial boundary condi-
tions follow from the asymptotic expansions (4). Con-
sequently, the initial data required to solve Einstein’s
equations consist of the function B plus the expansion
coe⇧cients a4 and f2 — all specified at some constant v
— and the gauge parameter ⇥ specified at all times. Val-
ues of a4 and f2 on future time slices, needed as boundary
conditions for the radial equations, are determined by in-
tegrating the continuity relations (5) forward in time.

Eqs. (2f) and (2g) are only needed when deriving
the series expansions (4) and the continuity conditions
(5). In this scheme, they are e⇥ectively implemented as
boundary conditions. Indeed, the Bianchi identities im-
ply that Eqs. (2f) and (2g) are boundary constraints; if
they hold at one value of r then the other Einstein equa-
tions guarantee that they hold at all values of r.

An important practical matter is fixing the computa-
tional domain in r. If an event horizon exists, then one
may excise the geometry inside the horizon, as this re-
gion is causally disconnected from the outside geometry.
Moreover, one must excise the geometry to avoid singu-
larities behind the horizon [14]. To perform the excision,
we identify the location of an apparent horizon (an outer-
most marginally trapped surface) which, if it exists, must
lie inside an event horizon [15]. For the initial conditions
discussed in the next section, the apparent horizon al-
ways exists — even before the collision — and has the
topology of a plane. Hence, one may fix the residual dif-
feomorphism invariance by requiring the apparent hori-
zon position to lie at a fixed radial position, r = 1. The
defining conditions for the apparent horizon then imply
that fields at r = 1 must satisfy

0 = 3�2 d+�� ⌥z(F � e2B) + 3
2F 2 �⇤e2B , (7)

which is implemented as a boundary condition to deter-
mine ⇥ and its evolution. Horizon excision is performed
by restricting the computational domain to r ⌃ [1,⇧].

Another issue is the presence of a singular point at
r =⇧ in the equations (2). To handle this, we discretize
Einstein’s equations using pseudospectral methods [16].
We represent the radial dependence of all functions as a
series in Chebyshev polynomials and the z-dependence
as a Fourier series, so the z-direction is periodically com-
pactified. With these basis functions, the computational
domain may extend all the way to r =⇧, where bound-
ary conditions can be directly imposed.

Initial data.— We want our initial data to describe two
well-separated planar shocks, with finite thickness and
energy density, moving toward each other. In Fe⇥erman-
Graham coordinates, an analytic solution describing a
single planar shock moving in the ⇤z direction may be
easily found and reads [11],

ds2 = r2[�dx+dx� + dx

2
⌅] +

1
r2

[dr2 + h(x±) dx2
±] , (8)

with x± ⌅ t ± z, and h an arbitrary function which we
choose to be a Gaussian with width w and amplitude µ3,

h(x±) ⌅ µ3 (2⇤w2)�1/2 e�
1
2 x2
±/w2

. (9)

The energy per unit area of the shock is µ3(N2
c /2⇤2). If

the shock profile h has compact support, then a super-
position of right and left moving shocks solves Einstein’s
equations at early times when the incoming shocks have

Janik & Peschanski

gµ⌫ = gµ⌫(t, z, r) kĝijk = diag(eB , eB , e�2B)
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initial data

• transformation to infalling 
coordinates:

• must solve coupled 1+1D 
PDEs

• shocks extend “forward” 
deep in bulk

• apparent horizon exists 
regardless of separation
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Figure 5. Plots of b+ (left) and �+ (right) for a single narrow shock of width w = 0.075 moving in
the +z direction. The choice of gauge parameter �+ is such that u = 1 corresponds with Fe↵erman-
Graham coordinate ⇢̃ = 8. On the boundary, u = 0, the shock is centered at z = 0 at the time
shown, t = 0. However, in Eddington-Finkelstein coordinates the shock increasingly extends into the
+z direction as one goes deeper into the bulk. This also manifests itself in the gauge parameter �,
which di↵ers significantly from its background value in front of the shock. In regions where b+ = 0
the geometry is that of AdS5.

We employ domain decomposition in both the radial and longitudinal (t�z) directions

when solving eqs. (4.22) and (4.23). We use 20 Chebyshev polynomials in each subdomain

in both directions. We employ 350 subdomains in the t�z direction and 35 subdomains in

the u direction, and solve the equations in the interval �18  t�z  18. Using domain de-

composition in each direction is advantageous for several reasons. First, as mentioned above,

the coordinate transformation can become badly behaved deep in the bulk. As discussed in

sec. 3.15, if the convergence of the spectral series very deep in the bulk becomes poor, the

use of domain decomposition serves to reduce the influence of such poor convergence on fields

closer to the boundary. Second, the use of domain decomposition — with relatively few points

in each subdomain — allows the function b
+

[defined in eq. (4.20b)], and its near-boundary

asymptotics, to be determined numerically with very good and controllable accuracy. In

particular, the use of domain decomposition allows finely spaced grid points to be used for

rapidly varying functions, thereby enabling good spectral convergence, while simultaneously

avoiding the significant round-o↵ error that can occur when employing a single global domain

with a very large number of grid points.

Fig. 5 plots the resulting functions b
+

and �
+

, at time t = 0, for a single narrow shock

moving in the +z direction. One sees that b
+

is non-zero for positive values of z (well beyond

the width of the shock) deep in the bulk. Likewise, the gauge function �
+

di↵ers significantly

from its background value far in front of the shock. This behavior is an unavoidable con-

sequence of our use of infalling Eddington-Finkelstein coordinates, combined with the fact

that, in Fe↵erman-Graham coordinates, the perturbation to the geometry due to the shock
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Figure 6. Plots of the anisotropy function b (left) and gauge parameter � (right) for two incoming
narrow shocks of width w = 0.075. The choice of gauge parameter � is such that the apparent horizon
lies at u = 1. In the dark red region where b di↵ers negligibly from zero, the geometry is that of AdS5.

where ✓(z) is a regularized step function,

✓(z) =
1

2



1 � erf

✓

� zp
2w

◆�

. (4.32)

With this choice, provided |t
0

| � w, the function � di↵ers negligibly from �± in the vicinity

of each shock.

After determining {b, a(4), f (4)

z

, �} on the domain decomposition grid used to find the

transformation functions, we then interpolate the functions to the spectral grid used to evolve

Einstein’s equations. The interpolation is performed using the spectral representations of

the functions in each subdomain, and hence entails no lose of spectral accuracy. For the

evolution of the geometry, we choose to use a Fourier grid in the z direction with N
z

points,

with periodicity enforced at z = ±z
max

with z
max

⌘ 10. For narrow shock collisions we use

N
z

= 801 and for wide shock collisions we use N
z

= 401. We use domain decomposition

in the radial direction with 4 domains, each having 20 Chebyshev points. After computing

the functions {b, a(4), f (4)

z

, �} on the new grid, we then apply a radial gauge transform to

reposition the apparent horizon to radial coordinate u = 1.

Before proceeding, we address two more technical points. First, in the infinite volume

(z
max

! 1) limit, the apparent horizon asymptotes to the Poincaré horizon at Fe↵erman-

Graham coordinate ⇢̃ ! 1. In this limit, our choice of constant ⇢̃
max

in eq. (4.28) will not

yield the the entire above-horizon geometry in the computational domain 0  u  1. This can

present a problem since, for any finite choice of z
max

, one cannot compute the location of the

apparent horizon and thereby know how big ⇢̃
max

should be until the functions {b, a(4), f (4)

z

, �}
are computed (which requires a choice of ⇢̃

max

). However, the above-horizon pre-collision

geometry at large |z| is simply AdS
5

. Because of this, one may freely adjust �(t
0

, z) at large
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µv µz
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di↵eomorphism trans-
forming the single shock metric (8) from Fe↵erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B

+

+ B�. We choose the
initial time v

0

so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a

4

and f
2

may be found analytically,

a
4

= � 4

3

[h(v
0

+z)+h(v
0

�z)] , f
2

= h(v
0

+z)�h(v
0

�z).
(10)

A complication with this initial data is that the metric
functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a

4

a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, T

bkgd

= 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v = 0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where Pk has its
maximum, it is roughly 5 times larger than P?. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, Pk is more than 3 times
larger than P?.

The fluid/gravity correspondence [17] implies that at
su�ciently late times the evolution of Tµ⌫ will be de-
scribed by hydrodynamics. To test the validly of hydro-

old results
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From full stopping to transparency in a holographic model of heavy ion collisions
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We numerically simulate planar shock wave collisions in anti-de Sitter space as a model for heavy
ion collisions of large nuclei. We uncover a cross-over between two di↵erent dynamical regimes
as a function of the collision energy. At low energies the shocks first stop and then explode in a
manner approximately described by hydrodynamics, in close similarity with the Landau model. At
high energies the receding fragments move outwards at the speed of light, with a region of negative
energy density and negative longitudinal pressure trailing behind them. The rapidity distribution
of the energy density at late times around mid-rapidity is not approximately boost-invariant but
Gaussian, albeit with a width that increases with the collision energy.

1. Introduction. Holography has provided successful
toy models for the study of (near)equilibrium properties
of the quark-gluon plasma created in heavy ion collisions
(HIC) at RHIC and LHC (see e.g. [1] for reviews). Ap-
plying holography to the far-from-equilibrium early stage
of a HIC is challenging and interesting. The challenge
arises because one must solve Einstein’s equations in a
dynamical setting, which generically must be done nu-
merically [2, 3]. The interest lies in that understanding
the strong coupling limit described by holography may
help us bracket the real-world situation.

Here we will follow the approach of Ref. [2], in which
a HIC was toy-modeled as a collision of two planar
shock waves of finite thickness in anti-de Sitter space
(AdS). In the dual conformal field theory (CFT) this
corresponds to a collision of two infinite sheets of en-
ergy characterized by a stress tensor whose only non-

zero component is T±±(z±) = N

2

c

2⇡2

⇢4 e−z2±�2w2

, where z
is the ‘beam direction’, z± = t ± z, w is the width of
the sheets and the sign depends on the direction of mo-
tion of the shock. We choose t = 0 to correspond to
the time at which the two shocks would exactly over-
lap if there were no interactions. We will work with en-
ergy densities, energy fluxes and pressures normalized as(E ,S,P

L

,P
T

) = 2⇡2

N

2

c

(−T t

t

, T z

t

, T z

z

, T x⊥
x⊥ ). We will thus re-

fer to ⇢4 as the maximum energy density of the incoming
shocks, which is related to the energy per unit transverse
area µ used in [2] through µ3 =√2⇡ ⇢4w. Scale invariance
of the CFT implies that the physics only depends on the
dimensionless product ⇢w. Ref. [2] chose µw

CY

= 0.75,
corresponding to ⇢w

CY

� 0.64. Note that for the incom-
ing shocks one has E = P

L

= ∓S and P
T

= 0.
Given the simplicity of the model, we will not attempt

to match the values of ⇢ and w to a specific HIC. Instead,
we note that, in a real HIC, the product ⇢w decreases as

�−1�2 as the total center-of-mass energy of the collision,√
s
coll

= 2�M
ion

, increases. This suggests that HICs at
increasingly higher energies may be modeled by decreas-
ingly smaller values of ⇢w. We will therefore simulate
collisions with several values of ⇢w ranging from 2⇢w

CY

to 1
8⇢wCY

. We will refer to the former as ‘thick shocks’
and to the latter as ‘thin shocks’. We will focus on our
physical results and refer the reader to [2] for technical
details [4]. We will work with fixed ⇢ and vary w, and
hence think of low-energy and high-energy collisions as
modeled by thick and thin shocks, respectively.
We will uncover a cross-over between two qualitatively

di↵erent dynamical regimes that correspond to a full-
stopping scenario for thick shocks, and to a transparency
scenario for thin ones. Among other things, the two
regimes are distinguished by the applicability of hydro-
dynamics. We will say that hydrodynamics is applicable
when the constitutive relations of first-order, viscous hy-
drodynamics predict P

L

in the local rest frame in units ofE
loc

�3 with a 20% accuracy, i.e. when 3 ��P loc

L

� �E
loc

≤ 0.2
with �P = P − P

hydro

. Tracelessness of the stress ten-
sor then implies that 3 ��P loc

T

� �E
loc

≤ 0.1. We define the
hydrodynamization time, t

hyd

, as the time after which
hydrodynamics becomes applicable at z = 0. Other rea-
sonable definitions include tmax

hyd

= t
hyd

− t
max

and t2w
hyd

=
t
hyd

+2w. The former measures hydrodynamization from
the time when the energy density achieves its maximum
value (see Fig. 1). The latter measures hydrodynamiza-
tion from the time when the two incoming shocks be-
gin to overlap significantly [2]. The di↵erences between
these definitions are significant for thick shocks but be-
come small for thin shocks. We will also consider another
hydrodynamization time, tP

hyd

, defined by the criterion��P loc

L

� �P loc

L

≤ 0.2. One advantage of t
hyd

over tP
hyd

is thatE
loc

is always non-zero, whereas P loc

L

may vanish.
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FIG. 1. Energy and pressures for collisions of thick (left column) and thin (right column) shocks. The grey planes lie at the
origin of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

“We uncover a cross-over between two different dynamical regimes...    
At high energies, receding fragments move outward at the speed of light.”

wµ = 1.89
wµ = 0.05

background energy density = 1.5 - 7.5% of single shock peak energy density
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Figure 7. Energy density (rescaled by  = N2
c /(2⇡2)) in planar shock collisions, as a function of time

t and longitudinal position z. Top figure: wide shocks with w = 0.375. Bottom figure: narrow shocks
with w = 0.075. In both plots, the shocks approach each other along the z axis and collide at z = 0 at
time t = 0. The collisions produce debris that fills the forward light cone. In the case of narrow shock
collisions, the amplitude of the visible remnants of the shocks on the forward light cone falls like t�p

with p ⇡ 0.9.

transported inside the lightcone and the portion remaining very near the lightcone steadily

attenuates. On the left side of fig. 8 we plot the amplitude A of the energy density on the

lightcone as a function of time for the narrow shock collisions. At late times our results are

consistent with the power-law decay A ⇠ t�0.9. By time t = 9, the amplitude of the null
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Figure 7. Energy density (rescaled by  = N2
c /(2⇡2)) in planar shock collisions, as a function of time

t and longitudinal position z. Top figure: wide shocks with w = 0.375. Bottom figure: narrow shocks
with w = 0.075. In both plots, the shocks approach each other along the z axis and collide at z = 0 at
time t = 0. The collisions produce debris that fills the forward light cone. In the case of narrow shock
collisions, the amplitude of the visible remnants of the shocks on the forward light cone falls like t�p

with p ⇡ 0.9.

transported inside the lightcone and the portion remaining very near the lightcone steadily

attenuates. On the left side of fig. 8 we plot the amplitude A of the energy density on the

lightcone as a function of time for the narrow shock collisions. At late times our results are

consistent with the power-law decay A ⇠ t�0.9. By time t = 9, the amplitude of the null
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Figure 8. Left: Plot of the amplitude A of the outgoing decaying null maxima in the energy density,
as a function of time, for the narrow shock collisions. At late times our results are consistent with
A ⇠ t�p with p ⇡ 0.9. Right: Plot of the energy density for the narrow shock collision at successive
times t = 1, 2, 3, 4, 5. Small regions behind the decaying null maxima with negative energy density
are visible at t = 1, 2 and 3. By time t = 4, and thereafter, the energy density is everywhere positive.

maxima has decreased to 13% its pre-collision value. Evidently, for both wide and narrow

shocks the collision event results in the subsequent annihilation of the shocks with essentially

all energy lying well inside the forward light cone at late times.

Aside from the decay of the null peaks in the energy density, there is another qualitative

di↵erence between collisions of narrow and wide shocks. On the right side of fig. 8 we plot

the energy density for the narrow shock collision at successive times t = 1, 2, 3, 4, 5. As

is evident from the figure, there is a brief period of time after the collision when the energy

density just behind the receding null peaks is locally negative [29]. However, by time t = 4 the

energy density is everywhere positive, just as it always is for wide shock collisions. Evidently,

the presence of negative energy density is a transient e↵ect. Indeed, as shown in fig. 9, aside

from the decaying null maxima on the light cone, at late times the distribution of energy

density produced by both wide and narrow shock collisions looks quite similar.

It is instructive to compare our results with predictions from the fluid/gravity corre-

spondence. In the limit of asymptotically slowly varying fields (compared to the dissipative

scale set by the local temperature T of the system) Einstein’s equations (3.12) can be solved

perturbatively with a gradient expansion

g
MN

(x, r) ⇠
1
X

n=0

g(n)
MN

(x, r) , (4.35)

where g(n)
MN

is of order (@/@xµ)n in boundary spacetime derivatives [11]. Via eq. (3.6), this

implies that the boundary stress tensor also admits a gradient expansion. In ⌫ = D�1 spatial

dimensions, the resulting gradient expansion of the boundary stress begins

Tµ⌫

hydro

=
"

⌫
[⌘µ⌫ + (⌫+1) uµu⌫ ] � 2⌘ �

µ⌫

+ O(@2) , (4.36)
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Figure 9. Comparison of the longitudinal distribution of energy density for wide and narrow shocks
at time t = 9.

where " is the (rescaled) proper energy density, u the fluid velocity, ⌘ the shear viscosity, and

�
µ⌫

⌘ 1

2

[ @
µ

u
⌫

+ @
⌫

u
µ

+ u⇢@
⇢

(u
µ

u
⌫

)] � 1

⌫

(@
↵

u↵) [⌘
µ⌫

+u
µ

u
⌫

] . (4.37)

is the relativistic shear tensor (which is symmetric, traceless, and orthogonal to the flow ve-

locity u). The fluid velocity and proper energy density satisfy Tµ⌫

hydro

u
⌫

= �" uµ. Moreover,

the fluid/gravity gradient expansion yields expressions for all transport coe�cients as func-

tions of the proper energy density. For D = 4, the shear viscosity ⌘ = 1

4

(⇡T )3, where the

local temperature T is defined by " = 3

4

(⇡T )4 [6]. Eq. (4.36) is precisely the constitutive

relation of first order relativistic conformal hydrodynamics.

To compare our numerical results with the asymptotic predictions of the fluid/gravity

correspondence, we first extract the fluid velocity u and rescaled proper energy density "

from the numerically computed stress-energy tensor (by finding the timelike eigenvector and

associated eigenvalue of h bTµ

⌫

i, as discussed in section 2). With u and " obtained via eq. (2.7),

we then use eq. (4.36) to construct the hydrodynamic approximation to the spatial stress

tensor, T ij

hydro

. Rotational symmetry in the transverse plane implies that all o↵-diagonal

elements of the spatial stress tensor vanish, and that hT xxi = hT yyi. Therefore, we define a

simple dimensionless residual function,

R ⌘ 1

p
ave

h

�hT xxi � T xx

hydro

�

2

+
�hT zzi � T zz

hydro

�

2

i

1/2

, (4.38)

where the average pressure p
avg

⌘ 2

3

hT xxi + 1

3

hT zzi. The residual R gives a measure of the

relative deviation of the spatial stress from the prediction of the hydrodynamic constitutive

relation (4.36). Fig. 10 plots R for collisions of both wide shocks (top) and narrow shocks

(bottom). In each plot we exclude the region where R > 0.15. Specifically, for every value of

z, we define t⇤(z) as the last time for which R(t, z) > 0.15 and exclude from the plot all points

(t, z) for which t  t⇤(z). We will denote by H the region where viscous hydrodynamics works
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validity of hydrodynamics
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Figure 10. The relative deviation R of the spatial stress tensor from prediction of first order viscous
hydrodynamics for the case of wide shocks (top) and narrow shocks (bottom). As detailed in the text,
we only display the region H = {(t, z) : R(t, z)  0.15} where the residual is no more than 0.15. The
dashed curve, discussed in the text, is defined by eq. (4.39). For both cases, viscous hydrodynamics
becomes a good description near mid rapidity when t & 2.

at the 15% level or better (as measured by R). The dashed line in each plot is the curve

⌧2

hydro

= (t � �t)2 � z2, (4.39)

with �t = 0.43 and ⌧
hydro

= 1.5 which, as seen in the figure, nicely approximates the boundary

of region H. Fig. 10 clearly shows that our planar shock collisions result in the formation of

an expanding volume of fluid which is well described by hydrodynamics everywhere except

near the light cone, where non-hydrodynamic e↵ects become important. At mid-rapidity,

viscous hydrodynamics becomes a good description when t & 2 [28].

As was noted in refs. [25, 28], even in the region H where viscous hydrodynamics works
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Figure 11. The normalized anisotropy in the spatial stress, �p/pavg, at z = 0 for the narrow shocks.
The anisotropy is O(1) indicating that viscous e↵ects are not small compared to the ideal fluid terms.

at the 15% level or better, the first order viscous corrections are not small. The viscous

stress tensor �2⌘�
µ⌫

in eq. (4.36) can be just as large as the zeroth order ideal fluid term.

One manifestation of this is that in the local rest frame of the fluid (where uµ = �µ
0

), the

spatial stress hT local

ij

i can be highly anisotropic with very di↵erent eigenvalues (i.e. pressures)

in each direction. In the local fluid rest frame, this anisotropy is solely due to the gradient

corrections in eq. (4.36). To illustrate this point, fig. 11 plots, for narrow shocks, the di↵erence

�p = hT
xx

i�hT
zz

i in the eigenvalues of the spatial stress at z = 0 (where by z ! �z symmetry

the fluid is at rest), normalized by the average pressure p
avg

. As just asserted, �p/p
avg

is

O(1). Given the size of the first order gradient corrections, it is quite remarkable that the

hydrodynamic constitutive relation works so well.

It is also illuminating to examine how well boost invariant flow approximates our numer-

ical results. As the name suggests, boost invariant flow is defined by the condition that the

system be invariant under arbitrary boosts in the longitudinal direction. Our initial condi-

tions corresponding to two colliding shocks with non-zero widths are not boost invariant, and

hence neither is the debris produced by the collision. Nevertheless, in a qualified sense which

we make precise below, the produced debris does display some characteristics of nearly boost

invariant flow. In what follows we focus on the case of narrow shock collisions, and on the

dynamics in the region H, shown in fig. 10, where viscous hydrodynamics is applicable at the

15% level.

From the fluid/gravity correspondence, the fluid velocity and proper energy density

(rescaled by ) for boost invariant flow, up to second order in gradients, are given by [35]

u
µ

dxµ = d⌧ ⌘ cosh y dt + sinh y dz , (4.40a)

" = 3

4

(⇡⇤)4

(⇤⌧)4/3



1 � C
1

(⇤⌧)2/3
+

C
2

(⇤⌧)4/3
+ O

⇣ 1

(⇤⌧)2

⌘

�

, (4.40b)
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local boost invariance
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Figure 12. The longitudinal fluid velocity u
z

for narrow shock collisions, at time t = 9, in the region
H where viscous hydrodynamics works at the 15% level or better. The boost invariant flow result,
u

z

= z/⌧ , fits the numerical result quite well.

where ⌧ ⌘ p
t2 � z2 is proper time, y ⌘ tanh�1

z

t

is rapidity, and

C
1

=
2

3⇡
⇡ 0.21 , C

2

=
1 + 2 log 2

18⇡2

⇡ 0.013 . (4.41a)

The energy scale ⇤ is set by initial conditions and is otherwise arbitrary. Each subsequent

gradient correction to the proper energy density is suppressed by an additional power of

(⇤⌧)�2/3; for boost invariant flow, the fluid/gravity gradient expansion is precisely a late

time expansion in inverse powers of proper time.

Our first comparison to boost invariant flow is shown in fig. 12, where we plot the longi-

tudinal component u
z

of the fluid velocity at time t = 9 for the narrow shock collision. Also

shown in the plot is the boost invariant flow result u
z

= sinh y = z/⌧ . Again, we display u
z

only in the region H where viscous hydrodynamics works at the 15% level or better. As is

evident from the figure, the numerical result agrees quite nicely with this prediction of boost

invariant flow.

Fig. 13 shows a contour plot of the proper energy density " extracted from our numerical

results and multiplied by a factor of ⌧4/3. Lines through the origin corresponds to events with

fixed rapidity, t = z coth y. Inspecting eq. (4.40b), it is evident that if the flow was truly boost

invariant then "⌧4/3 would asymptote to a constant, independent of rapidity, in the ⌧ ! 1
limit. Fig. 13 shows that this is not at all the case; the flow is not globally boost invariant

(as was also found in ref. [29]). However, one striking feature of fig. 13 is that contours of

"⌧4/3, at late times, are approximately straight lines through the origin, t ⇡ z coth(y). This

observation suggests that on each slice of constant rapidity y, the proper energy density is

approximately given by eq. (4.40b) but with a rapidity dependent scale parameter, ⇤ = ⇤(y).

To test this hypothesis, on each slice of constant t/z = coth y we fit the proper energy density
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Figure 13. The normalized proper energy density " ⌧4/3 in the region H for the narrow shock collision.
At late times, lines of constant "⌧4/3 are approximately straight lines from the origin, t ⇡ z coth y.
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Figure 14. Left: the proper energy density " on several slices of constant rapidity y, as a function
of proper time ⌧ . The dashed curves are fits to the boost invariant flow result (4.40b) with a rapidity
dependent scale parameter ⇤(y). Right: the resulting scale parameter ⇤(y) as a function of rapidity.

" to the boost invariant expression (4.40b) allowing ⇤ to depend on y. In the left panel of

fig. 14 we plot " at y = 0, 0.85, 1.25, and 1.6, and the corresponding fit to eq. (4.40b). The

agreement with eq. (4.40b) is remarkable. In the right panel of fig. 14 we plot the resulting

scale parameter ⇤(y) emerging from this fit to local (in rapidity) boost invariant flow.

It would be interesting to study more carefully the dependence of ⇤(y) on the width of

the incoming shocks, and to evolve longer in time in order to examine the asymptotic behavior

of ⇤(y) at large rapidity.
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Figure 11. The normalized anisotropy in the spatial stress, �p/pavg, at z = 0 for the narrow shocks.
The anisotropy is O(1) indicating that viscous e↵ects are not small compared to the ideal fluid terms.

at the 15% level or better, the first order viscous corrections are not small. The viscous

stress tensor �2⌘�
µ⌫

in eq. (4.36) can be just as large as the zeroth order ideal fluid term.

One manifestation of this is that in the local rest frame of the fluid (where uµ = �µ
0

), the

spatial stress hT local

ij

i can be highly anisotropic with very di↵erent eigenvalues (i.e. pressures)

in each direction. In the local fluid rest frame, this anisotropy is solely due to the gradient

corrections in eq. (4.36). To illustrate this point, fig. 11 plots, for narrow shocks, the di↵erence

�p = hT
xx

i�hT
zz

i in the eigenvalues of the spatial stress at z = 0 (where by z ! �z symmetry

the fluid is at rest), normalized by the average pressure p
avg

. As just asserted, �p/p
avg

is

O(1). Given the size of the first order gradient corrections, it is quite remarkable that the

hydrodynamic constitutive relation works so well.

It is also illuminating to examine how well boost invariant flow approximates our numer-

ical results. As the name suggests, boost invariant flow is defined by the condition that the

system be invariant under arbitrary boosts in the longitudinal direction. Our initial condi-

tions corresponding to two colliding shocks with non-zero widths are not boost invariant, and

hence neither is the debris produced by the collision. Nevertheless, in a qualified sense which

we make precise below, the produced debris does display some characteristics of nearly boost

invariant flow. In what follows we focus on the case of narrow shock collisions, and on the

dynamics in the region H, shown in fig. 10, where viscous hydrodynamics is applicable at the

15% level.

From the fluid/gravity correspondence, the fluid velocity and proper energy density

(rescaled by ) for boost invariant flow, up to second order in gradients, are given by [35]

u
µ

dxµ = d⌧ ⌘ cosh y dt + sinh y dz , (4.40a)

" = 3

4

(⇡⇤)4

(⇤⌧)4/3



1 � C
1

(⇤⌧)2/3
+

C
2

(⇤⌧)4/3
+ O

⇣ 1

(⇤⌧)2

⌘

�

, (4.40b)
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Figure 13. The normalized proper energy density " ⌧4/3 in the region H for the narrow shock collision.
At late times, lines of constant "⌧4/3 are approximately straight lines from the origin, t ⇡ z coth y.
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Figure 14. Left: the proper energy density " on several slices of constant rapidity y, as a function
of proper time ⌧ . The dashed curves are fits to the boost invariant flow result (4.40b) with a rapidity
dependent scale parameter ⇤(y). Right: the resulting scale parameter ⇤(y) as a function of rapidity.

" to the boost invariant expression (4.40b) allowing ⇤ to depend on y. In the left panel of

fig. 14 we plot " at y = 0, 0.85, 1.25, and 1.6, and the corresponding fit to eq. (4.40b). The

agreement with eq. (4.40b) is remarkable. In the right panel of fig. 14 we plot the resulting

scale parameter ⇤(y) emerging from this fit to local (in rapidity) boost invariant flow.

It would be interesting to study more carefully the dependence of ⇤(y) on the width of

the incoming shocks, and to evolve longer in time in order to examine the asymptotic behavior

of ⇤(y) at large rapidity.
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Figure 13. The normalized proper energy density " ⌧4/3 in the region H for the narrow shock collision.
At late times, lines of constant "⌧4/3 are approximately straight lines from the origin, t ⇡ z coth y.
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Figure 14. Left: the proper energy density " on several slices of constant rapidity y, as a function
of proper time ⌧ . The dashed curves are fits to the boost invariant flow result (4.40b) with a rapidity
dependent scale parameter ⇤(y). Right: the resulting scale parameter ⇤(y) as a function of rapidity.

" to the boost invariant expression (4.40b) allowing ⇤ to depend on y. In the left panel of

fig. 14 we plot " at y = 0, 0.85, 1.25, and 1.6, and the corresponding fit to eq. (4.40b). The

agreement with eq. (4.40b) is remarkable. In the right panel of fig. 14 we plot the resulting

scale parameter ⇤(y) emerging from this fit to local (in rapidity) boost invariant flow.

It would be interesting to study more carefully the dependence of ⇤(y) on the width of

the incoming shocks, and to evolve longer in time in order to examine the asymptotic behavior

of ⇤(y) at large rapidity.
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colliding “nuclei”

• finite transverse extent, cylindrically symmetric

• single “nucleus”: smooth, localized null “shock”

✓ exact solution = linear superposition of infinitely 
boosted point sources

✓ transformation to null infalling coordinates

• Matlab implementation for general 4+1D case: 
work in progress

29
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remarks (I)

• using gauge/gravity duality to study strongly coupled 
far-from-equilibrium dynamics works for interesting 
variety of problems

• characteristic formulation, adapted to gravitational infall ➡	 
remarkably simple equations allowing efficient integration

• can achieve stable evolution

• desktop resources suffice for 1+1D, 2+1D, and even 3+1D 
problems

30

• no need to be professional numerical relativist!
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remarks (II)

31

• work to date has only scratched the surface; 
many interesting generalizations await:

• collisions:

• asymmetric shocks

• planar shocks with non-zero charge density

• “nuclei” with finite transverse extent

• turbulence in three spatial dimensions:

• normal fluids

• superfluids

• dynamics in non-conformal theories with more 
complicated dual gravitational descriptions
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