Numerical holography and colliding shocks

Laurence Yaffe
University of Washington

based on work with Paul Chesler: arXiv: IOII.3562, 1309.1439

Oxford University, May 2014

motivation

- Use gauge/gravity duality to study, far-from-equilibrium strongly interacting dynamics
- Go beyond near-equilibrium dynamics (linear response, probe approximation)
- Honestly solve dynamics of interesting initial states

gauge/gravity duality

- a.k.a. "AdS/CFT duality," "gauge/string duality," "holography"
- Some non-Abelian gauge theories have exact reformulation as higher dimensional gravitational (or string) theories.
Simplest case: maximally supersymmetric $\operatorname{SU}\left(N_{\mathrm{c}}\right)$ Yang-Mills ($\mathfrak{N}=4 \mathrm{SYM}$) $=$ string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$. More complicated generalizations for less supersymmetric, non-conformal theories.
- Strong coupling (and large N_{c}) limit of quantum field theory given by classical dynamics in dual gravitational description.
- Holographic description gives geometric representation of renormalization flow:

holography: features

- strongly coupled, large N QFT = classical (super)gravity in higher dimension
- valid description on all scales
- gravitational fluctuations: $1 / N^{2}$ suppressed
- QFT state \oplus asymptotically AdS geometry
- $\mathrm{O}\left(N^{2}\right)$ entropy \rightarrow gravitational (black brane) horizon
- thermalization \bullet gravitational infall, horizon formation \& equilibration
- non-equilibrium QFT dynamics \rightarrow classical gravitational initial value problem

applications

- Heavy-ion collisions:
- homogeneous isotropization
- boost invariant flow
- colliding planar shocks
- colliding "nuclei"
- Turbulence:
- normal fluids
- superfluids
- Other stuff:
- dynamical quenches
- black hole formation/ring-down
0812.2053, 1309.1439 (C\&Y)
0906.4426 (C\&Y)
1011.3562, 1309.1439 (C\&Y)
1305.4919 (Casalderrey-Solana, Heller, Mateos, van der Schee)
1307.7267 (Adams, Chesler, Liu) 1309.1439 (C\&Y)
1212.0281 (Adams,Chesler, Liu)
1212.4498 (Figueras, Wiseman) 1207.4194 (Bhaseen, Gauntlett, Simons, Sonner, Wiseman)
1201.2132 (Bantilan, Pretorius, Gubser)

this talk

- Methods
- characteristic formulation
- residual diffeomorphism invariance
- integration strategy
- Colliding planar shocks
- dependence on shock width:
- surviving remnants of initial shocks?
- approximate boost invariance?
- Colliding "nuclei"

this talk

- Methods
- characteristic formulation
- residual diffeomorphism invariance
- integration strategy
- Colliding planar shocks
- dependence on shock width:
- surviving remnants of initial shocks?
- approximate boost invariance?
- Colliding "nuclei"
work in progress

metric ansatz

- Fefferman-Graham: good for equilibrium, bad for dynamics
- Eddington-Finklestein: good, regular across future horizon

$$
d s^{2}=\frac{r^{2}}{L^{2}} g_{\mu \nu}(x, r) d x^{\mu} d x^{\nu}-2 w_{\mu}(x) d x^{\mu} d r
$$

- $x^{\mu}=D$-dimensional boundary coordinates
- $x^{0} \equiv t=$ const. slices $=$ null surface
- $r=$ (non-inverted) bulk radius, $\partial_{r}=$ infalling null geodesic
- $w=w_{\mu} d x^{\mu}=$ timelike boundary one-form
- boundary asymptotics:

$$
g_{\mu \nu}(x, r) \sim h_{\mu \nu}(x)+\sum_{n=1}^{\infty} g_{\mu \nu}^{(n)}(x) r^{-n}
$$

$$
\left\langle T_{\mu \nu}\right\rangle \equiv \frac{L^{D-1}}{16 \pi G_{N}}\left(D g_{\mu \nu}^{(D)}+w^{\alpha} g_{\alpha \beta}^{(D)} w^{\beta} h_{\mu \nu}\right)
$$

preferred family of boundary observers

residual invariance/gauge fixing

$$
d s^{2}=\frac{r^{2}}{L^{2}} g_{\mu \nu}(x, r) d x^{\mu} d x^{\nu}-2 w_{\mu}(x) d x^{\mu} d r
$$

- boundary diffeomorphisms: $x^{\mu} \rightarrow x^{\mu} \equiv f^{\mu}(x)$
\Rightarrow choose co-moving boundary frame: $\quad w_{\mu}(x)=-\delta_{\mu}^{0}$
Eulerian \rightarrow Lagrangian description
- radial shifts: $\quad r \rightarrow \bar{r}=r+\delta \lambda(x)$
\Rightarrow fix radial position of apparent horizon: $\quad r_{\mathrm{h}}(t, \mathbf{x})=r_{\mathrm{h}}$
\Rightarrow rectangular computational domain
Requires planar horizon topology

time/space split

- rename metric functions:

$$
\begin{aligned}
\frac{r^{2}}{L^{2}} g_{00}(x, r) & \equiv-2 A(t, \mathbf{x}, r) \\
\frac{r^{2}}{L^{2}} g_{0 i}(x, r) & \equiv-F_{i}(t, \mathbf{x}, r) \\
\frac{r^{2}}{L^{2}} g_{i j}(x, r) & \equiv G_{i j}(t, \mathbf{x}, r) \equiv \Sigma(t, \mathbf{x}, r)^{2} \hat{g}_{i j}(t, \mathbf{x}, r) \quad \operatorname{det}(\hat{g}) \equiv 1
\end{aligned}
$$

- radial shifts: $\quad A(x, r) \rightarrow \bar{A}(x, \bar{r}) \equiv A(x, \bar{r}-\delta \lambda)+\partial_{t} \delta \lambda(x)$

$$
F_{i}(x, r) \rightarrow \bar{F}_{i}(x, \bar{r}) \equiv F_{i}(x, \bar{r}-\delta \lambda)+\partial_{i} \delta \lambda(x)
$$

- modified (spatial+radial shift) covariant derivatives:

$$
\begin{array}{rlr}
d_{+} & \equiv \partial_{t}+A(x, r) \partial_{r} & d_{i} \equiv \partial_{i}+F_{i}(x, r) \partial_{r} \\
v^{i}{ }_{\mid k} & \equiv(\widetilde{\nabla} v)^{i}{ }_{k}=d_{k}\left(v^{i}\right)+\widetilde{\Gamma}^{i}{ }_{j k} v^{j}=v^{i}{ }_{, k}+v^{i} F_{k}+\widetilde{\Gamma}^{i}{ }_{j k} v^{j} & \text { metric compatible, } \\
& \text { torsion free } \\
\widetilde{\Gamma}_{j k}^{i} & \equiv \frac{1}{2} G^{i l}\left(d_{k} G_{l j}+d_{j} G_{l k}-d_{l} G_{j k}\right) & \\
& =\frac{1}{2} G^{i l}\left(G_{l j, k}+G_{l k, j}-G_{j k, l}+G_{l j}^{\prime} F_{k}+G_{l k}^{\prime} F_{j}-G_{j k}^{\prime} F_{l}\right) & \\
&
\end{array}
$$

Einstein equations

$$
\begin{aligned}
& 0=\operatorname{tr}\left(G^{\prime \prime}-\frac{1}{2} G^{\prime 2}\right), \\
& 0=A^{\prime \prime}+\frac{1}{2} \tilde{\nabla} \cdot F^{\prime}+\frac{1}{2} F^{\prime} \cdot F^{\prime}+\frac{1}{2}\left(\operatorname{tr} d_{+} G\right)^{\prime}+\frac{1}{4} \operatorname{tr}\left(G^{\prime} d_{+} G\right)+2 \Lambda / \nu, \\
& 0=\operatorname{tr}\left[d_{+}\left(d_{+} G\right)-A^{\prime}\left(d_{+} G\right)-\frac{1}{2}\left(d_{+} G\right)^{2}\right]+2 \tilde{\nabla} \cdot E+\frac{1}{2} \operatorname{tr}\left(\Omega^{2}\right) .
\end{aligned}
$$

$$
\text { radial shift "field strength": } \quad \Omega_{i j} \equiv F_{j \mid i}-F_{i \mid j}=F_{j, i}-F_{i, j}+F_{i} F_{j}^{\prime}-F_{j} F_{i}^{\prime}
$$

$$
E_{i} \equiv d_{+} F_{i}-d_{i} A=F_{i, t}-A_{, i}+A F_{i}^{\prime}-F_{i} A^{\prime}
$$

$$
0=G_{i k}\left[G^{1 / 2} F^{\prime k}\right]^{\prime} G^{-1 / 2}-G^{\prime k}{ }_{i \mid k}+\left(\operatorname{tr} G^{\prime}\right)_{\mid i}
$$

$$
0=d_{+} F_{i}^{\prime}+\left(d_{+} G\right)^{k}{ }_{i \mid k}-\left(\operatorname{tr} d_{+} G\right)_{\mid i}+\frac{1}{2}\left(\operatorname{tr} d_{+} G\right) F_{i}^{\prime}-2 A_{\mid i}^{\prime}-G_{i}^{\prime k} E_{k}+\Omega_{i \mid k}^{k}+F_{k}^{\prime} \Omega_{i}^{k},
$$

$$
0=\left\{G_{i k}\left[G^{1 / 4}\left(d_{+} G\right)_{j}^{k}\right]^{\prime} G^{-1 / 4}+\frac{1}{4} G_{i j}^{\prime} \operatorname{tr}\left(d_{+} G\right)-\widetilde{R}_{i j}+\frac{2}{\nu} \Lambda G_{i j}+F_{i \mid j}^{\prime}+\frac{1}{2} F_{i}^{\prime} F_{j}^{\prime}\right\}+(i \leftrightarrow j),
$$

apparent horizon

- require planar topology horizon $=$ IR cutoff
\Rightarrow any caustics hidden behind horizon
- fixed-r horizon condition
$\left.\Rightarrow d_{+} \Sigma\right|_{\bar{r}_{\mathrm{h}}}=S_{\dot{\Sigma}_{\mathrm{h}}}[\hat{g}, \Sigma, F] \equiv-\frac{1}{2} \Sigma^{\prime} F^{2}-\frac{1}{\nu} \Sigma \nabla \cdot F$

- horizon stationarity $\left.\Rightarrow \partial_{t} d_{+} \Sigma\right|_{\bar{r}_{\mathrm{h}}}=\partial_{t} S_{\dot{\Sigma}_{\mathrm{h}}}[\hat{g}, \Sigma, F]$

$$
\begin{aligned}
00 & \nabla^{2} A+\nabla A \cdot\left(F^{\prime}-G^{\prime} F\right)+\frac{1}{2} A\left[-R+2 \Lambda+\frac{1}{2}\left(F^{\prime}-G^{\prime} F\right) \cdot\left(F^{\prime}-G^{\prime} F\right)+\nabla \cdot\left(F^{\prime}-G^{\prime} F\right)\right] \\
& +F \cdot F\left[-\frac{1}{2} \operatorname{tr}\left[\left(d_{+} G\right)^{\prime}\right]+(\nabla \cdot F)^{\prime}+F_{i ; j} G^{\prime j i}-\frac{1}{4}(F \cdot F)^{\prime} \operatorname{tr} G^{\prime}\right] \\
& -\frac{1}{2} \operatorname{tr}\left[\left(d_{+} G\right)^{2}\right]+2\left(d_{+} G\right)^{j i} F_{i ; j}+2 F \cdot \nabla^{2} F+\left(F^{\prime}-G^{\prime} F\right) \cdot \nabla(F \cdot F) \\
& -\left.\frac{1}{2}\left(F_{i ; j}-F_{j ; i}\right)\left(F^{j ; i}-F^{i ; j}\right)\right|_{r=r_{h}}
\end{aligned}
$$

equation structure

$$
\begin{gathered}
\left(\partial_{r}^{2}+Q_{\Sigma}[\hat{g}]\right) \Sigma=0 \\
\left(\delta_{i}^{j} \partial_{r}^{2}+P_{F}[\hat{g}, \Sigma]_{i}^{j} \partial_{r}+Q_{F}[\hat{g}, \Sigma]_{i}^{j}\right) F_{j}=S_{F}[\hat{g}, \Sigma]_{i} \\
\left(\partial_{r}+Q_{\dot{\Sigma}}[\Sigma]\right) d_{+} \Sigma=S_{\dot{\Sigma}}[\hat{g}, \Sigma, F] \\
\left(\delta_{(i}^{k} \delta_{j)}^{l} \partial_{r}+Q_{\dot{g}}[\hat{g}, \Sigma]_{i j}^{k l}\right) d_{+} \hat{g}_{k l}=S_{\dot{\hat{g}}}[\hat{g}, \Sigma, F, \dot{\Sigma}]_{i j} \\
\partial_{r}^{2} A=S_{A}[\hat{g}, \Sigma, F, \dot{\Sigma}, \dot{\hat{g}}] \\
\text { nested linear radial ODEs! }
\end{gathered}
$$

horizon stationarity condition:

$$
\left(\nabla^{2}+P_{A_{h}}[\hat{g}, \Sigma, F] \cdot \nabla+Q_{A_{h}}[\hat{g}, \Sigma, F]\right) A_{h}=S_{A_{h}}[\dot{\hat{g}}, \hat{g}, \dot{\Sigma}, \Sigma, F]
$$

linear elliptic PDE

radial integration constants

- near-boundary behavior:

$$
\begin{aligned}
\Sigma & \sim 1 r+\lambda+O\left(r^{1-2 D}\right) \\
F_{i} & \sim 0 r^{2}+\partial_{i} \lambda+f_{i}^{(D)} \overparen{r^{2-D}+\cdots} \text { boundary momentum density } \\
d_{+} \Sigma & \sim \frac{1}{2}(r+\lambda)^{2}+\frac{1}{2} a^{(D)} \widehat{r^{2-D}+\cdots} \\
d_{+} \hat{g} & \sim 0 r^{2-D}+O\left(r^{1-D}\right) \\
A & \sim r^{2}+2 \lambda r+\left(\lambda^{2}-2 \partial_{t} \lambda\right)+O\left(r^{2-D}\right)
\end{aligned}
$$

- near-horizon behavior:

$$
A \rightarrow A_{\mathrm{h}}
$$

integration strategy

- $t=t_{0}$: given $\hat{g}_{i j}\left(t_{0}, \mathbf{x}, r\right), \lambda\left(t_{0}, \mathbf{x}\right), a^{(D)}\left(t_{0}, \mathbf{x}\right), f_{i}^{(D)}\left(t_{0}, \mathbf{x}\right)$
- integrate radial ODE (1) (for each $\mathbf{x}) \Rightarrow \Sigma\left(t_{0}, \mathbf{x}, r\right)$
- integrate $(2) \Rightarrow F$
- integrate $(3) \Rightarrow d_{+}(\Sigma)$
- integrate $(4) \Rightarrow d_{+}(\hat{g})$
$\left.\begin{array}{l}\text { - solve horizon eqn. }(\star) \Rightarrow A_{\text {horizon }} \\ \text { - integrate (5) } \Rightarrow A\end{array}\right\} \Rightarrow \partial_{t} \hat{g}$
- extract $\partial_{t} \lambda$ from A
- extract $\partial_{t} a^{(D)}, \partial_{t} f^{(D)}$ from stress-energy conservation:

$$
\partial_{t} a^{(D)}=-\frac{D}{D-1} \partial_{i} f_{i}^{(D)}, \quad \partial_{t} f_{i}^{(D)}=-\frac{1}{D} \partial_{i} a^{(D)}-\partial_{j} \hat{g}_{j i}^{(D)}
$$

- do time step, $t \rightarrow t_{0}+\epsilon$

details, details

- field redefinitions: remove leading pieces, rescale
- spatial compactification = addl. IR cutoff
- discretization $=$ UV cutoff, pseudo-spectral derivatives
- choice of time integrator
- low-pass filtering to alleviate aliasing, spectral blocking
- domain decomposition

field redefinitions

- map radial direction to compact domain: $u=1 / r$
- remove singular $u \rightarrow 0$ terms
- rescale to make boundary asymptotics $O\left(u^{0}\right)$ or $O\left(u^{1}\right)$:

$$
\begin{array}{rlrl}
\sigma(x, u) & \equiv \Sigma(x, 1 / u)-1 / u, & \gamma_{i j}(x, u) & \equiv u^{1-D}\left[\hat{g}_{i j}(x, 1 / u)-\delta_{i j}\right] \\
a(x, u) & \equiv A(x, 1 / u)-\Sigma(x, 1 / u)^{2}, & \dot{\gamma}_{i j}(x, u) \equiv u^{2-D}\left[d_{+} \hat{g}_{i j}(x, 1 / u)\right], \\
f_{i}(x, u) & \equiv F_{i}(x, 1 / u), & \dot{\sigma}(x, u) & \equiv u^{3-D}\left[d_{+} \Sigma(x, 1 / u)-\frac{1}{2} \Sigma(x, 1 / u)^{2}\right]
\end{array}
$$

UV cutoff: discretization

- use (pseudo)spectral methods: represent functions using finite Fourier (x) \& Chebyshev (r) basis expansion

$$
f(x)=\sum_{n=-M}^{M} \alpha_{n} e^{i k_{n} x} \quad g(u)=\sum_{n=0}^{M} \alpha_{n} T_{n}(2 u-1)
$$

- trade series coefficients for function values on collocation grid:

$$
x_{m}=L\left(\frac{m}{2 M+1}\right) \quad u_{m}=\frac{1}{2}\left(1-\cos \frac{m \pi}{M}\right)
$$

- linear radial $\mathrm{ODEs} \rightarrow$ linear matrix equation with dense coefficient matrix
- better accuracy, much faster convergence than traditional finite range finite difference approximations of derivatives
- no need to excise $u=0$ endpoint

performance

\checkmark stable evolution
\checkmark accurate results
\checkmark fast computation

(rescaled) pressure anisotropy
vs. lowest quasinormal mode

colliding planar null shocks

- energy density localized on infinite planar sheets
- caricature of large, Lorentz-contracted nuclei
- questions:

- domain of validity of hydrodynamic approximation?
- dependence on longitudinal profile?
- surviving remnants?
- approximate boost invariance?

colliding shocks

- 2D translation invariance
$\Rightarrow g_{\mu \nu}=g_{\mu \nu}(t, z, r) \quad\left\|\hat{g}_{i j}\right\|=\operatorname{diag}\left(e^{B}, e^{B}, e^{-2 B}\right)$
- 2+1D PDEs
- Initial conditions: superposition of counter-propagating planar shocks
- Single shock, arbitrary longitudinal profile: known solution:

$$
d s^{2}=r^{2}\left[-d x_{+} d x_{-}+d \boldsymbol{x}_{\perp}^{2}\right]+\frac{1}{r^{2}}\left[d r^{2}+h\left(x_{ \pm}\right) d x_{ \pm}^{2}\right]
$$

- Choose Gaussian profile with width w, surface energy density μ^{3} :

$$
h\left(x_{ \pm}\right) \equiv \mu^{3}\left(2 \pi w^{2}\right)^{-1 / 2} e^{-\frac{1}{2} x_{ \pm}^{2} / w^{2}}
$$

- Results depend on dimensionless width parameter $w \mu$

initial data

- transformation to infalling coordinates:
- must solve coupled $1+1$ D PDEs
- shocks extend "forward" deep in bulk
- apparent horizon exists regardless of separation
anisotropy
function $B(z, r)$

radial shift
$\lambda(z)$
single right-moving shock

superposed shocks

old results

C\&Y: 1011.3562

background energy density $=2 \%$ of single shock peak energy density

more recent results

From full stopping to transparency in a holographic model of heavy ion collisions
Jorge Casalderrey-Solana, ${ }^{1}$ Michal P. Heller, ${ }^{2, *}$ David Mateos, ${ }^{3,4}$ and Wilke van der Schee ${ }^{5}$
1305.4919

background energy density $=1.5-7.5 \%$ of single shock peak energy density
"We uncover a cross-over between two different dynamical regimes... At high energies, receding fragments move outward at the speed of light."

most recent results (I)

C\&Y: 1309.1439
New: no background energy density

most recent results (II)

no background energy density,
longer time evolution

$$
w \mu=0.075
$$

qualitative features

wide vs. narrow shocks,

$$
t=9
$$

validity of hydrodynamics

figure of merit:

$$
\begin{align*}
\mathcal{R} \equiv & \frac{1}{\bar{p}}\left[\left(\left\langle T^{x x}\right\rangle-T_{\text {hydro }}^{x x}\right)^{2}\right. \\
& \left.+\left(\left\langle T^{z z}\right\rangle-T_{\text {hydro }}^{z z}\right)^{2}\right]^{1 / 2} \\
\leq & 15 \% \quad \uparrow_{\text {first order viscous }} \tag{1}
\end{align*}
$$

hydro works even when viscous effects are $O(1)$:

local boost invariance

boost invariant flow:

$$
\begin{aligned}
& u_{\mu} d x^{\mu}=d \tau \equiv \cosh y d t+\sinh y d z \\
& \varepsilon=\frac{3}{4} \frac{(\pi \Lambda)^{4}}{(\Lambda \tau)^{4 / 3}}\left[1-\frac{C_{1}}{(\Lambda \tau)^{2 / 3}}+\frac{C_{2}}{(\Lambda \tau)^{4 / 3}}+O\left(\frac{1}{(\Lambda \tau)^{2}}\right)\right] \\
& \text { proper time } \tau \equiv \sqrt{t^{2}-z^{2}} \\
& \text { rapidity } y \equiv \tanh ^{-1}(z / t)
\end{aligned}
$$

local boost invariance: $\Lambda \rightarrow \Lambda(y)$

colliding "nuclei"

- finite transverse extent, cylindrically symmetric
- single "nucleus": smooth, localized null "shock"

\checkmark exact solution $=$ linear superposition of infinitely boosted point sources

Gubser, Pufu, Yarom
\checkmark transformation to null infalling coordinates

- Matlab implementation for general 4+1D case: work in progress

remarks (I)

- using gauge/gravity duality to study strongly coupled far-from-equilibrium dynamics works for interesting variety of problems
- characteristic formulation, adapted to gravitational infall $\boldsymbol{\rightarrow} \boldsymbol{}$ remarkably simple equations allowing efficient integration
- can achieve stable evolution
- desktop resources suffice for $1+1 \mathrm{D}, 2+1 \mathrm{D}$, and even $3+1 \mathrm{D}$ problems
- no need to be professional numerical relativist

remarks (II)

- work to date has only scratched the surface; many interesting generalizations await:
- collisions:
- asymmetric shocks
- planar shocks with non-zero charge density
- "nuclei" with finite transverse extent
- turbulence in three spatial dimensions:
- normal fluids
- superfluids
- dynamics in non-conformal theories with more complicated dual gravitational descriptions

